QB365

## Important Questions - Chemical Kinetics

12th Standard CBSE

## Chemistry

Reg.No. $\square$
Time : 01:00:00 Hrs

Total Marks : 50

## Section - A

1) The unit of rate constant for a zero order reaction is
(a) $\mathrm{molL}^{-1} \mathrm{~s}^{-1}$
(b) $\mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(c) $\mathrm{L}^{2} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(d) $\mathrm{s}^{-1}$
2) The molecularity and order of the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ are respectively
(a) one and one
(b) two and two
(c) three and three
(d) two and three
3) The rate constant, the activation energy and the Arrchenius parameter of a chemical reaction at $25^{\circ} \mathrm{C}$ are 3.0 $\times 10^{-4} \mathrm{~s}^{-1}, 104.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $6.0 \times 10^{14} \mathrm{~s}^{-1}$ respectively. The value of the rate constant as $\mathrm{T} \longrightarrow \infty$ is
(a) $2.0 \times 10^{18} \mathrm{~s}^{-1}$
(b) $6.0 \times 10^{14} \mathrm{~s}^{-1}$
(c) Infinity
(d) $3.6 \times 10^{30} s^{-1}$
4) The chemical reactions in which the reactions require high amount of activation energy are generally
(a) slow
(b) fast
(c) instantaneous
(d) none of these
5) In the presence of a catalyst, the heat evolved or absorbed during the reaction $\qquad$ ..
(a) increases
(b) decreases
(c) remains unchanged
(d) may increase or decrease
6) Zero order reactions
(1) $\mathrm{t}_{100 \%}=[\mathrm{A}]_{0 / k}$
7) Linear plot with -ve slope and intercept
(2) Conc.[A] vs time $t$ for zero order
8) Second half life or first order reaction
(3) is same as the first
9) Diamond
(4) ordinarily rate of conversion is imperceptible
10) Order of a complex reaction is determined by (5) order of slowest step

## Section-B

11) What is physical significance of energy of activation? Explain with diagram.
12) Explain the terms: (i) Rate determining step of a reaction (ii) Molecularity of a reaction
13) Calculate the rate constant of a reaction at 293 K , given that: $\mathrm{E}_{\alpha}=103 \mathrm{~kJ} \mathrm{~mol}^{-1,} \mathrm{k}=7.87 \times 10^{-7} \mathrm{~s}^{-1}$ at $273 \mathrm{~K}, \mathrm{R}$ $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
14) Show that for a first order reaction, the time required for half the change (half-life period) is independent of initial concentration.
(Or)
Derive the general form of expression for the half-life first order reaction.
15) Show by using rate law, how much rate of reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ will change if the volume of the reaction vessel is reduced to one-third of its initial value.

## Section-C

16) At $300^{\circ} \mathrm{C}$ the thermal dissociation of HI is found to be $20 \%$. What will be the equilibrium concentrations of $\mathrm{H}_{2}$ and $\mathrm{I}_{2}$ in the system $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ at this temperature if the equilibrium concentration of HI in it be 0.96 mol $\mathrm{L}^{-1}$ ?
17) Show that in case of first order reaction, the time required for $99.9 \%$ of the reaction to complete is 10 times that required for half of the reaction to take place. [ $\log 2=0.301]$
18) What is the effect of temperature on the rate constant of reaction? How can this temperature effect on rate constant be represented quantitatively?
19) Calculate the half-life of a first order reaction from their rate constants given below: (a) $200 \mathrm{~s}^{-1}$ (b) $2 \mathrm{~min}^{-1}$ (c) 4 year ${ }^{-1}$
20) Express the rate of the following reaction in terms of different reactants and products: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$
$\longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ If the rate of formation of NO is $3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, calculate (i)the rate of disappearance of $\mathrm{NH}_{3}$ (ii)rate of formation of $\mathrm{H}_{2} \mathrm{O}$.

## Section - D

21) (a) Define the following: (i) Order of a reaction (ii) Elementary step in a reaction (b) A first order reaction has a rate constant value of $0.00510 \mathrm{~min}^{-1}$. If we begin with 0.10 M concentration of the reactant, how much of the reactant will remain after 3.0 hours?
22) (a) Distinguish between molecularity an order of a reaction.
(b) The activation energy for the reaction
$2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
is $209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 581 K . Calculate the fraction of molecules having energy equal to or greater than activation energy.
$\left[\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
23) The half time of first order decomposition of nitramide is 2.1 hour at $15^{\circ} \mathrm{C} . \mathrm{NH}_{2} \mathrm{NO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}$ (I)

If 6.2 g of $\mathrm{MH}_{2} \mathrm{NO}_{2}$ is allowed to decompose, calculate (i) time taken for $\mathrm{NH}_{2} \mathrm{NO}_{2}$ to decompose $99 \%$ and (ii) volume of dry $\mathrm{N}_{2} \mathrm{O}$ produced at this point, measured at STP.

