QB365 Important Questions - Chemical Kinetics

12th Standard CBSE

Chemistry

Reg.No.

•				
•				

Total Marks: 50

Time : 01:00:00 Hrs

104	at Marks . 50				
Section - A					
1) The unit of rate constant for a zero order reaction is	1				
(a) mol L ⁻¹ s ⁻¹ (b) L mol ⁻¹ s ⁻¹ (c) L ² mol ⁻¹ s ⁻¹ (d) s ⁻¹					
2) The molecularity and order of the reaction 2 NO (g) + O_2 (g) $ ightarrow 2NO_2$ (g) are respectively	1				
(a) one and one (b)two and two (c)three and three (d)two and three					
3) The rate constant, the activation energy and the Arrchenius parameter of a chemical reaction at 25°C are	3.0 1				
$ imes$ 10 ⁻⁴ s ⁻¹ ,104.4 kJ mol ⁻¹ , and 6.0 $ imes$ 10 ¹⁴ s ⁻¹ respectively. The value of the rate constant as T $\longrightarrow \infty$ is					
(a) 2.0 $ imes 10^{18} s^{-1}$ (b) 6.0 $ imes 10^{14} s^{-1}$ (c) Infinity (d) 3.6 $ imes 10^{30} s^{-1}$					
4) The chemical reactions in whi <mark>ch the reactions require hi</mark> gh amount of activation energy are generally	1				
(a) slow (b) fast (c) instantaneous (d) none of these					
5) In the presence of a cataly <mark>st, the</mark> heat evol <mark>ved or ab</mark> sorbed during the reaction	1				
(a) increases (b) decrea <mark>ses (c) remains unchang</mark> ed (d) may increase or decrease					
6) Zero order reactions (1) t $_{100\%} = [A]_{0/k}$	1				
7) Linear plot with -ve slope and intercept (2) Conc.[A] vs time t for zero order	1				
8) Second half life or first order reaction (3) is same as the first	1				
9) Diamond (4) ordinarily rate of conversion is imperceptible	1				
10) Order of a complex reaction is determined by (5) order of slowest step	1				
Section - B					
11) What is physical significance of energy of activation? Explain with diagram.					
12) Explain the terms: (i) Rate determining step of a reaction (ii) Molecularity of a reaction	2				
13) Calculate the rate constant of a reaction at 293 K, given that: E_{α} = 103 kJ mol ⁻¹ , k = 7.87 $ imes$ 10 ⁻⁷ s ⁻¹ at 273	K, R - 2				
8.314 JK ⁻¹ mol ^{-1.}					
14) Show that for a first order reaction, the time required for half the change (half-life period) is independen	it of 2				
initial concentration.					
(Or)					
Derive the general form of expression for the half-life first order reaction.	6.1				
15) Show by using rate law, how much rate of reaction: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ will change if the volume reaction vessel is reduced to one-third of its initial value.	of the 2				
reaction vessel is reduced to one-third of its initial Value.					

16) At 300 °C the thermal dissociation of HI is found to be 20%. What will be the equilibrium concentrations of H₂ and I₂ in the system H₂ + I₂ \rightleftharpoons 2HI at this temperature if the equilibrium concentration of HI in it be 0.96 mol L⁻¹?

3

3

3

3

3

5

5

5

- 17) Show that in case of first order reaction, the time required for 99.9% of the reaction to complete is 10 times that required for half of the reaction to take place. [log 2 = 0.301]
- 18) What is the effect of temperature on the rate constant of reaction? How can this temperature effect on rate constant be represented quantitatively?
- 19) Calculate the half-life of a first order reaction from their rate constants given below: (a) 200 s⁻¹ (b) 2 min⁻¹ (c) 4 year⁻¹
- 20) Express the rate of the following reaction in terms of different reactants and products: $4NH_3(g)+5O_2(g)$ $\rightarrow 4NO(g)+6H_2O(g)$ If the rate of formation of NO is 3.6×10^{-3} mol L⁻¹s⁻¹, calculate (i) the rate of disappearance of NH₃ (ii) rate of formation of H₂O.

Section - D

- 21) (a) Define the following: (i) Order of a reaction (ii) Elementary step in a reaction (b) A first order reaction has a rate constant value of 0.00510 min⁻¹. If we begin with 0.10 M concentration of the reactant, how much of the reactant will remain after 3.0 hours?
- 22) (a) Distinguish between molecularity an order of a reaction.

(b) The activation energy for the reaction

 $2HI(g) \rightarrow H_2\left(g\right) + I_2(g)$

is 209.5 kJ mol⁻¹ at 581 K. Calculate the fraction of molecules having energy equal to or greater than activation energy.

[R = 8.314 JK⁻¹ mol⁻¹]

23) The half time of first order decomposition of nitramide is 2.1 hour at 15° C. NH₂NO₂(aq) \rightarrow N₂O(g) + H₂O (I) If 6.2 g of MH₂NO₂ is allowed to decompose, calculate (i) time taken for NH₂NO₂ to decompose 99% and (ii) volume of dry N₂O produced at this point, measured at STP.

##