\section*{QB365 \\ Important Questions - Application of Derivatives \\ 12th Standard CBSE \\ Maths \\ Reg.No. : \\ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Time : 01:00:00 Hrs

Total Marks: 50

Section-A

1) The total cost $C(x)$ associated with provision of free mid-day meals to x students of a school in primary classes is given by $C(x)=0.005 x^{3}-0.02 x^{2}+30 x+50$ If the marginal cost is given by rate of change $\frac{d C}{d X}$ of total cost, write the marginal cost of food for 300students. What value is shown here?
2) The total cost $C(x)$ of producing x units of an article is given by $C(x)=0.005 x^{2}-0.02 x^{2}+30 x+5000$. Find the marginal cost when 3 units are produced.
3) Prove that the tangents on the curve $y=x^{3}+6$ at the points $(-1,5)$ and $(1,7)$ are parallel.
4) Find the points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are (i) parallel to the x-axis. (ii)parallel to the y axis.
5) It is given that $x=1$, the function $f(x)=x^{2}-62 x^{2}+a x+9$ attains its maximum value in the interval $[0,2]$. Find the value of a.

Section-B

6) If x changes from 4 to 4.01 , then find the approximate change in log, x.
7) The volume of a cube increasing at the rate of $9 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 10 cm .
8) Find the slope and tangent and normal to the curve $x^{2}+2 y+y^{2}=0$ at $(-1,2)$.
9) Show that the tangents to the curve $y=x^{2}-7 x+18$ at $(3,0)$ and (4, 0) are at right angles.
10) Use differentials find the approximate value of $(127)^{1 / 3}$.
11) Find an angle θ which increases twice as fast as its sine.

Section-C

12) A balloon,which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second.Find the rate at which the radius of the balloon is increasing when the radius is 15 cm .
13) The total cost $C(x)$ associated with the production of ' x ' units of an item is given by:
$C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$
Find the marginal cost when 17 units are produced.
14) Find the slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$

Section-D

15) A stone is dropped into a quiet lake and waves move in circles at a speed of 5 cm per second.At the instant when the radius of the circular wave is 8 cm , how fast is the enclosed area increasing?
16) A man 1.6 m tall walks at the rate of $0.5 \mathrm{~m} / \mathrm{sec}$ away from a lamp post, 8 meters high. Find the rate at which his
17) $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$

4

Section-E

18) Prove that the function f defined by $f(x)=x^{2}-x+1$ is neither increasing nor decreasing in ($-1,1$). Hence find the intervals in which $f(x)$ is:
(a) strictly increasing
b) strictly decreasing.
19) Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Section-A

1) 1368 Concern for children health and nutrient food for every child.
2) 30.015
3) 3.As slope at these points are equal,hence tangents are parallel.
4) (i) $y= \pm 5 . \therefore$ points are: $(0, \pm 5)$ (ii) $x= \pm 2 \therefore$ points are: $(\pm 2,0)$
5) $a=120$

Section-B

6) $y-\log x, x=4, \delta x=\cdot 01$
$\frac{\delta y}{\delta x}=\left(\frac{d y}{d x}\right)_{x=4}$
$\delta y=\left(\frac{d y}{d x}\right)_{x=4} \times \delta x$
$=\frac{1}{400}=.0025$
7) Let x denote the edge of cube, v denote the volume and s denotes the surface area of cube at instant t.
$\frac{d v}{d t}=9 \mathrm{~cm}^{2} / \mathrm{sec} . \quad x=10 \mathrm{~cm}$
$v=x^{3}$
$\frac{d v}{d t}=3 x^{2} \frac{d x}{d t}$
$\frac{9}{3 x^{2}}=\frac{d x}{d t}$
Now, $s=6 x^{2}$
$\frac{d s}{d t}=12 x \times \frac{d x}{d t}$
$\frac{d s}{d t}=12 \times 10 \times \frac{9}{3 \times 10 \times 10}$
$\frac{12 \times 9}{3 \times 10}=\frac{36}{10}$
$=3.6 \mathrm{~cm}^{2} / \mathrm{sec}$
8) Given, $x^{2}+2 y+y^{2}=0$
$2 x+2 \frac{d y}{d x}+2 y \frac{d y}{d x}=0$
$\frac{d y}{d x}(2+2 y)=-2 x$
$\frac{d y}{d x}=\frac{-2 x}{2(1+y)}=-\frac{x}{1+y}$
Slope of tangent at (-1,2)
$\frac{-1(-1)}{1+2}=\frac{1}{3}$
Slope of normal at (-1,2)
$=-\frac{3}{1}=-3$
9) Given, $y=x^{2}-7 x+18$
$\frac{d y}{d x}=2 x-7$
$\frac{d y}{d x}$ at $(3,0)=2(3)-7$
$=6-7=-1$
$\frac{d y}{d x}$ at $(4,0)=2(4)-7$
$=8-7=1$
$m_{1}=-1, m_{2}=1$
$m_{1} \times m_{2}=-1 \times 1=-1$
Hence tangent are at right angles to each other,
10) Let $y=x^{1 / 3}$

Let $x=125$ and $x+\Delta x=127$
$\Rightarrow \quad \Delta x=2$
$y=(125)^{1 / 3} \Rightarrow 5$
$y=x^{1 / 3}$
$\frac{d y}{d x}=\frac{1}{3}(x)^{-2 / 3}$
$\Rightarrow \quad \Delta y=\frac{x^{-2 / 3}}{3} \times \Delta x$
$=\frac{2}{3(5)^{2}}=\frac{2}{75}=0.0266$
$\therefore \quad y+\Delta y=5+0.0266 \Rightarrow 5.0266$
$\Rightarrow \quad 3 \sqrt{127}=5.0266$
11) Let θ denote the angle at instant t
$\frac{d \theta}{d t}=2 \frac{d}{d t}(\sin \theta)$
$\frac{d \theta}{d t}=2 \cos \theta \cdot\left(\frac{d \theta}{d t}\right)$
$1=2 \cos \theta$
$2 \cos \theta=1$
$\cos \theta=\frac{1}{2}$
$\Rightarrow \quad \theta=\cos ^{-1}\left(\frac{1}{2}\right)$
Hence required angles is $\frac{\pi}{3}$

Section-C

12) V , the volume of the balloon $=\frac{4}{3} \pi r^{3}$, where ' r ' is the radius

Given: $\frac{d V}{d t}=900($ cubic cm / s.)

$$
\begin{aligned}
& \therefore \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
& \Rightarrow 900=4 \pi r^{2} \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}=\frac{225}{\pi r^{2}}
\end{aligned}
$$

Hence, $\left\lfloor\frac{d r}{d t}\right\rfloor_{r=15}=\frac{225}{\pi X 15 X 15}=\frac{1}{\pi} \mathrm{~cm} / \mathrm{s}$.
13) Marginal cost is the rate of change of total cost with respect to output.

Now $C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$
\therefore Marginal Cost $(\mathrm{MC})=\frac{d C}{d x} \quad=(0.007)\left(3 x^{2}\right)-0.003(2 x)+15$
When $\left.\quad \mathrm{x}=17 . \mathrm{MC}=(0.007)(317)^{2}\right)-0.003(2(17))+15$ $=6.069-0.102+15=20.967$.

Hence the reqd marginal cost is Rs21 (nearly).
14) The given curve is $y=3 x^{4}-4 x$
$\therefore \frac{d y}{d x}=12 x^{3}-4$
\therefore Slope of the tangent at $\mathrm{x}=4$ is:
$\left\lfloor\frac{d y}{d x}\right\rfloor_{x=4}=12(4)^{3}-4=768-4=764$

Section-D

15) $80 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
16) $0.14 \mathrm{~cm} / \mathrm{sec}$
17) Increasing: $(-\infty, 1) \cup(1, \infty)$;Decreasing:($-1,1$)-\{0)

Section-E

18) $f^{\prime}(x)=2 x-1$
$f^{\prime}(x)>0, \forall x \in\left(\frac{1}{2}, 1\right)$
$f^{\prime}(x)>0, \forall x \in\left(-1, \frac{1}{2}\right)$
$\therefore f(x)$ is neither increasing nor decreasing in $(-1,1)$
$f(x)$ is strictly increasing on $\left(\frac{1}{2}, 1\right)$ and $f(x)$ is strictly decreasing on $\left(-1, \frac{1}{2}\right)$
19) Let $A B C D$ be a rectangle having area A inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Let the co-ordinate of A be (α, β)
\therefore Coordinate of $B \equiv(\alpha,-\beta)$
$C \equiv(-\alpha,-\beta)$
$D \equiv(-\alpha, \beta)$
Now A=Length x Breadth
$=2 \alpha \times 2 \beta$
$\Rightarrow \quad A=4 \alpha \beta$
$\Rightarrow \quad A=4 \alpha \sqrt{b^{2}\left(1-\frac{\alpha^{2}}{a^{2}}\right)}$
$\Rightarrow \quad A^{2}=16 a^{2}\left\{b^{2}\left(1-\frac{\alpha^{2}}{a^{2}}\right)\right\}$
$\Rightarrow \quad A^{2}=\frac{16 b^{2}}{a^{2}}\left(a^{2} \alpha^{2}-\alpha^{4}\right)$
$\Rightarrow \quad \frac{d\left(A^{2}\right)}{d \alpha}=\frac{16 b^{2}}{a^{2}}\left(2 a^{2} \alpha^{2}-4 \alpha^{3}\right)$

For maximum or minimum value
$\frac{d\left(A^{2}\right)}{d \alpha}=0$
$\Rightarrow \quad 2 a^{2} \alpha-4 \alpha^{3}=0$
$\Rightarrow 2 \alpha\left(a^{2}-2 \alpha^{3}\right)=0$
$\Rightarrow \quad \alpha=0, \quad a=\frac{a}{\sqrt{2}}$
Again $\Rightarrow \quad \frac{d\left(A^{2}\right)}{d \alpha}=\frac{16 b^{2}}{a^{2}}\left(2 a^{2}-12 \alpha^{2}\right)$
\Rightarrow For $\alpha=\frac{a}{\sqrt{2}} \mathrm{~A}$ is maximum.
i.e., for greatest area A $\alpha=\frac{a}{\sqrt{2}}$ and $\beta=\frac{b}{\sqrt{2}}$
\therefore Greatest area $=4 \alpha \cdot \beta=4 \frac{a}{\sqrt{2}} \times \frac{b}{\sqrt{2}}=2 a b$

