OB365

Important Questions - Relations and Functions

12th Standard CBSE

Maths Reg.No.:				

Time: 01:00:00 Hrs

Total Marks: 50

1

1

2

2

2

3

3

6

6

Section-A

- 1) If f(X)=X+7 and g(X)=X-7, $X \in \mathbb{R}$, find fog(7).?
- 2) If the binary operation * on the set of integers Z is defined by a*b=a+3b² then find the value of 2*4.
- 3) Let * be a binary operation on N given by a*b=HCF(a,b), $a, b \in N$. Write the value of 22*4.
- 4) Let R be a relation in the set of natural numbers N defined by $R=\{(a,b) \in NXN; a\}$
- 5) Let $f: N \to N$ be defined by f(x)=3x. Show that f is not onto function.

Section-B

- 6) Define Reflexive. Give one example.
- 7) Define symmetric Relation. Give one example
- 8) Define Transitive Relation. Give one example.
- 9) Let $f:X \to Y$ be a function Define a relation R on X given be R=[(a,b);(f(b))] Show that R is an equivalence relation?
- 10) $f(x) = x^2, x \in R \text{ Find } \frac{f(1.1) f(1)}{1.1 1}$
- 11) Draw graphs of function $f(x) = ax^2, x \in R$

Section-C

- 12) Are f and g both necessarily onto, if g of is onto?
- 13) Show that subtraction and division are not binary operations on N.
- 14) Show that $+: R \times R \to R$ and $\times: R \times R \to R$ are commutative binary operations but $-: R \times R \to R$ and $\div: R \times R \to R$ are not commutative.

Section-D

- 15) Let T be the set of all triangles in a plane with R a relation in T given by $R=\{(T_1,T_2):T_1 \text{ is conguruent to } T_2 \text{ and } T_1,T_2 \text{ T}\}$. Show that R is an equivalence relation.
- 16) Show that the relation R defined by (a,b) R (c,d) \Rightarrow a+d=b+c on the set N X N is an equivalence relation.
- 17) Show that the relation S in the set R of real numbers, defined as $S=\{(a,b): a,b \in R \text{ and } a \leq b^3\}$ is neither reflexive, nor symmetric nor transitive.

Section-E

- 18) Show that the relation R in the Set $A = \{I, 2, 3, 4, 5\}$ given by $R = \{(a, b) : Ia b \mid is divisible by 2\}$ is an equivalence relation. Write all the equivalence classes of R.
- 19) Show that the function \((f:R[x\in R:1 defined by $f(x) = \frac{x}{1+|x|}, x \in R$ is one-one and onto function Hence find $f^{-1}(x)$

Section-A

Section-A

1)
$$forg = f(g(7)) = f(7-7) = f(0) = 0 + 7 = 7$$

2) $2^* 4 = 2 + 3(4)^2 = 50$

3) $22^* 4 = HCF(22,4) = 2$

4) Given $R = \{(a,b) \in N \times N: a < b\}$. Not reflexive as for $(a,a) \in R$, $a < a$, not true

5)

 $f: N \to Ndefined by f(x) = 3x Let for $y \in N(\text{co-domain})$, threre exists, $x \in N$ of domain such that $f(x) = y \Rightarrow 3x = y \Rightarrow x = \frac{y}{3}$ which may not be a natural number. Hence, not onto.

Section-B

6)

Reflexive Relation : A relation R on a set A is called reflexive relation if aRa for every $a \in A$; if $(a,a) \in R$, for every $a \in A$ Example let

 $A = \{1,2,3\}$
 $A = \{1,1,1,2\}, \{1,1,2\}, \{1,2,2\}, \{2,3\}, \{3,1\}, \{3,2\}, \{3,3\}, \{3,4\}, \{3,2\}, \{3,4\},$$

(iii) Let (a,b) (b,c) $\in R$ then $f(a) = f(b), f(b) = f(c) \Rightarrow f(a) = f(c)$ $(a,c) \in R$ Relation is transitive.

All the three relation are satisfied the relation is equivalence.

$$f(1.1) = (1.1)^2 z$$

$$= 1.21f(1) = (1)^2 = 1\frac{f(1.1) - f(1)}{1.1 - 1} = \frac{1.21}{1.1 - 1} = \frac{0.21}{0.1} = 2.1$$

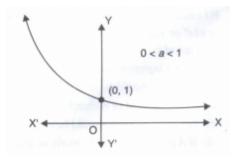
11) Case 1:

$$f(x) = a^x$$

$$0 x < 0 = a^x > 1$$

$$x = 0 \Rightarrow a^x = 1$$

$$x > 0 \Rightarrow a^x < 1$$



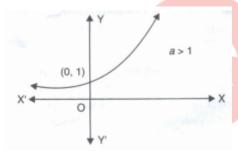
Case II

a>1

$$(x<0=0$$

$$x = 0 \Rightarrow a^x = 1$$

$$x > 0 \Rightarrow a^x < 1$$



Section-C

12) Consider $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$

and $g: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3\}$ defined by:

$$f(1) = 1, f(2) = 2, f(3) = f(4) = 3$$

$$g(1) = 1$$
, $g(2) = 2$, $g(3) = g(4) = 3$.

Clearly g of is onto but f is not onto.

13) (i) $N \rightarrow N$ is given by:

 $(x, y) \rightarrow x - y$, which is not binary operation.

$$\left[: Image \ of \ (4,6) \ under' - is \ 4 - 6 = 2 \notin N \right]$$

(ii) $\div : N \to N$; is given by:

 $(x, y) \rightarrow x \div y$, which is not a binary operation.

2

2

3

3

Hence, '+' and ' × ' are commutative binary operations.

(i) For all $a, b \in R$,

$$a - b \neq b - a$$

[For
$$ex.4 - 5 \neq 5 - 4$$
]

and

$$a \div b \neq b \div a$$

$$\begin{bmatrix} For & ex. \frac{4}{5} \neq \frac{5}{4} \end{bmatrix}$$

Hence, '-' and ' ÷ ' are not commutative binary operations.

Section-D

- 15) Since R is reflexive, symmetric and transitive. Hence R is an equivalence relation.
- 16) R is an equivalence relation.
- 17) For reflexive: Not reflexive

For symmetric: Not symmetric

For transitive: true in both case

Hence, not transitive

18) Given $R = \{(a, b) : |a - b| | \text{ is divisible by 2} \}$

and
$$A = \{1,2,3,4,5\}$$

$$R = \{(I, I), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (1, 5), (2, 4), (3, 5), (3, 1), (5, 1), (4, 2), (5, 3)\}$$

(i)
$$\forall a \in A, (a, a) \in R$$

:. R is reflexive.

[As
$$\{(1, 1), (2,2), (3, 3), (4,4), (5,5)\} \in R$$

(ii)
$$\forall a \in A, (a, a) \in R$$

R is symmetric

[As{(I, 3), (1, 5), (2,4), (3, 5) (3, 1), (5, 1), (4,2), (5, 3)}
$$\in R$$
]

(iii)
$$\forall (a, b)(b, c) \in R, (a, c) \in R$$

R is transitive

[As $\{(1, 3), (3, 1) \in R \sim (1, 1) \in R \text{ and similarly others}\}$

:. R is an equivalence relation.

Equivalence classes are

$$[1] = \{I, 3, 5\}$$

3

6

Such that $f(x_1)f(x_2)$

$$\Rightarrow \frac{x}{1+|x_1|} = \frac{x_2}{1+|x_2|}$$
 Case (i): If $x_1, x_2 > 0$ then

$$\frac{x_1}{1+x_1} = \frac{x_2}{1+x_2}$$

$$\Rightarrow x_1 + x_1 x_2 = x_2 + x_1 x_2$$

$$\Rightarrow x_1, x_2 > 0$$

$$\frac{x_1}{1 - x_1} = \frac{x_2}{1 - x_2}$$

$$x_1 - x_1 x_2 = x_2 - x_1 x_2$$

$$\Rightarrow x_1 = x_2$$

Case (iii) If $x_1 > 0$, $x_2 < 0$ similar for $x_1 < 0$, $x_2 < 0$)

$$x_1 \neq x_2$$

$$\Rightarrow \frac{x_1}{1+x_1} \neq \frac{x_1}{1-x_1}$$

$$\Rightarrow f(x_1) \neq f(x_2)$$

from (i),(ii),(iii) f is a one-one function

Onto: Let any

 $(y \in [x \in R;-1]$

\((-1

such that y=f(x)

$$\Rightarrow y = \frac{x}{1+x}$$

$$\Rightarrow y = \frac{x}{1 \pm x} \Rightarrow x = \frac{y}{1 \pm y}$$

As
$$y \neq -1, y \neq 1$$

$$x = \frac{y}{1 \pm y} \in R$$

f is a onto function

$$f^{-1}(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x < 0\\ \frac{x}{1-x}, & \text{if } x \ge 0 \end{cases}$$