Physics

Reg.No.

Time : 01:00:00 Hrs

Section-A

1) Under what conditions, real gases behave as an ideal gas ?
2) According to kinetic theory of gases, explain absolute zero.
3) What is the number of degree of freedom of a bee flying in a room?
4) The specific heat of argon at constant volume is $0.075 \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, then what will be its atomic weight? [Given, $\mathrm{R}=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$]
5) Name an experimental evidence in support of random motion of gas molecules.
6) What is mean free path of a gas?
${ }^{7)}$ Calculate the ratio of the mean free paths of the molecules of two gases having molecular diameters 1 A and 2 A . The gases may be considered under identical conditions of temperature, pressure and volume.
7) If there are f degrees of freedom with n moles of a gas, then find the internal energy possessed at a temperature T.
8) What is the rms speed of hydrogen gas molecules at STP. Given, density is $0.09 \mathrm{~kg} \mathrm{~m}^{-3}$.
9) Find the temperature at which rms speed of a gas is half of its value of $0^{\circ} \mathrm{C}$, pressure remaining constant.

Section-B

11) What will be the internal energy of 8 g of oxygen at STP?
12) What is basic law followed by equipartition of energy?
13) Calculate the temperature at which the rms speed of CO_{2} gas molecule will be $1 \mathrm{kms}^{-1}$. Given that molecular mass of $\mathrm{CO}_{4}=44 \mathrm{u}$
14) What is the kinetic energy of translation of one molecule of a gas at 300 K ? Gas is having three degree of freedom. $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$.
15) One mole of a monoatomic gas is mixed with three moles of a diatomic gas. What is the molar specific heat of the mixture at constant volume. $\left(R=8.31 \mathrm{~J}^{\mathrm{m}} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
16) At what temperature, will the molecules in a sample of helium gas have an rms speed of $0.1 \mathrm{~km} / \mathrm{s}$?
17) If the pressure of a gas filled in closed container is increased by 0.2%. When temperature is increased by 1 K , calculate the initial temperature of the gas.
18) If the ratio of molecular weights of two gases is 4 . What will be ratio of the $V_{r m s}$ values for the molecules of those two gases?
19) Write the difference between ideal gas and real gas.
20) If one mole of a monoatomic gas is mixed with three moles of a diatomic gas.What is the molar specific heat of mixture at constant value? $\left[\right.$ Take, $R=8.31 \mathrm{~J}$ mol $\left.{ }^{-1} \mathrm{~K}^{-1}\right]$

Section-C

21) A vessel contains two non-reacting gases, i.e. neon (monoatonic) and oxygen (diatomic). The ratio of their partial pressures is $3: 2$. Estimate the ration of number of molecules
22) A vessel contains two non-reacting gases, i.e. neon (monoatonic) and oxygen (diatomic). The ratio of their partial pressures is $3: 2$. Estimate the ration of
23) Calculate the mean free path of nitrogen gas at STP. Given the diameter of nitrogen molecule is $4 \AA$.
24) An electric bulb of volume $250 \mathrm{~cm}^{3}$ was sealed off during manufacture at a pressure of $10^{-3} \mathrm{~mm}$ of mercury at $27^{\circ} \mathrm{C}$. Compute the number of air molecule contained in the bulb.Given that, molecules contained in the bulb. Given that, $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}{ }^{-1}$.

Section-A

1) At low pressure and high temperature, real gases behave as an ideal gas.
2) Absolute zero is the temperature at which the molecules of a gas becomes motionless .i.e. $\bar{V}_{r m s}=0$
3) Three, because bee is free to move along x-direction or y-direction or z-direction.
4) Argon is a monoatomic gas, so $C_{v}=\frac{3}{2} R=\frac{3}{2} \times 2=3$ calmol $^{-1} K^{-1} C_{v}=M c_{v} M=\frac{C_{v}}{c_{v}}=\frac{3}{0.075}=40$
5) Brownian motion and diffusion of gases provide experimental evidence in support of random motion of gas molecules.
6) The average distance travelled by molecules between two successive collisions is known as mean free path of the molecule.
7) As, we know, mean free path, $\lambda \propto \frac{1}{d^{2}}$ Given, $\quad d_{1}=\frac{0}{1 A} \quad$ and $\quad d_{2}=2 A \Rightarrow \lambda_{1}: \lambda_{2}=4: 1$
8) For 1 mole with f degrees of freedom, Internal energy, $\mathrm{U}=1 \mathrm{XC}_{\mathrm{v}} \mathrm{xT}=\frac{f}{2} R T$ For n moles, $\mathrm{U}=\mathrm{nC}_{\mathrm{v}} \mathrm{T}=\frac{n f}{2} R T$
9) $1.8 \times 10^{3} \mathrm{~ms}^{-1}$
10) 68.25 K

Section-B

Oxygen is a diatomic gas.
Number of moles of O_{2} gas
$=\frac{\text { Atomic wt. }}{\text { Molecular } w t .}=\frac{8}{32}=\frac{1}{4}=0.25 \therefore \quad$ Energy associated \quad with $\quad 1 \quad$ mole of oxygen $U=\frac{5}{2} R T \therefore \quad$ Internal enreyg of $\quad 8 g \quad$ of \quad oxygen $=0.25 \times \frac{5}{2} \times 8.31 \times 273=1417.9 J$
12) The law of equipartition of energy for any dynamical system in thermal equilibrium, the total energy is distributed q=equally amongst all the degrees of freedom.

The energy associated with each molecule per degree of freedom is $\frac{1}{2} k_{B} T$, where K_{B} is Boltzmann's constant and T is temperature of the system.
13) $1.8 \times 10^{3} \mathrm{~K}$
14) $6.21 \times 10^{-21} \mathrm{~J}$
15) 2.25 R
16) Ans. 160 K
17) Ans .500 K
18) Ans.0.5
19)

Ideal Gas
 Real Gas

(i)It obeys ideal gas equation , $\mathrm{pV}=\mu \mathrm{RT}$ at all temperatures and pressures
(ii) The volume of the molecules of an ideal gas is zero.
(iii)there is no intermolecular force between the molecules.
(iv) There is no intermolecular potential energy(U) because intermolecular force (F) is zero
(v) It has only kinetic energy.
(vi) At absolute zero, the volume , pressure and internal energy become zero.

It does not obey, $\mathrm{pV}=\mu \mathrm{RT}$

The volume of the molecules of a real gas is non zero.
There is intermolecular force of attraction or repulsion depending on whether intermolecular seperation is larger or small.

Potential energy (U) does not equal to zero as intermolecular force (F) is not zero.
It has both kinetic and potential energy.
All real gases st liquified before reaching the absolute zero.The internal energy of the liquified gas is not zero.

Given, for monoatomic gas,

Section-C

21) As V and T are same for the two gases, we can write

$$
{ }_{\rho \mathrm{Nc}} V={ }_{\mu \mathrm{Nc}} \text { RTand } \quad \rho_{\mathrm{O}_{2}} V={ }_{\mu \mathrm{O}_{2}} \text { RTor } \quad \frac{p_{\mathrm{Ne}}}{p_{\mathrm{O}_{2}}}=\frac{\mu_{\mathrm{Ne}}}{\mu_{\mathrm{O}_{2}}} \therefore \quad \frac{p_{\mathrm{Ne}}}{p_{\mathrm{O}_{2}}}=\frac{2}{3} \Rightarrow \frac{\mu_{\mathrm{Ne}}}{\mu_{\mathrm{O}_{2}}}=\frac{3}{2}
$$

In N_{Ne} and $N_{\mathrm{O}_{2}}$ are the number of molecules of the two gases and N_{A} is Avogadro's number, then

$$
\frac{\mu_{N e}}{\mu_{O_{2}}}=\frac{N_{N e} / N_{A}}{N_{O_{2}} / N_{A}}=\frac{3}{2} \Rightarrow \frac{N_{N e}}{N_{O_{2}}}=1.5
$$

22) Now, $\mu_{O_{2}}=\frac{m_{O_{2}}}{M_{O_{2}}}$ and $\mu_{N e}=\frac{m_{N e}}{M_{N e}}$
$\therefore \frac{\rho_{\mathrm{Ne}}}{\rho_{\mathrm{O}_{2}}}=\frac{m_{\mathrm{Ne}} / V}{m_{\mathrm{O}_{2}} / V}=\frac{m_{\mathrm{Ne}}}{m_{\mathrm{O}_{2}}}=\frac{\mu_{\mathrm{Ne}} M_{\mathrm{Ne}}}{\mu_{\mathrm{O}_{2} M_{O_{2}}}} \quad=\frac{3}{2} \times \frac{20.2}{32}=0.947$
23) $5 \times 10^{-8} \mathrm{~m}$
