Important Questions - Thermodynamics

11th Standard CBSE

Physics

Reg.No.

Time : 01:00:00 Hrs

Section-A

1) A refrigerator is to maintain eatables kept inside at $10^{\circ} \mathrm{C}$. If room temperature is $36^{\circ} \mathrm{C}$, then calculate the coefficient of performance.
2) Temperature in the freezer of a refrigerator is being maintained at $-13^{\circ} \mathrm{C}$ and room temperature on a particular day was $42^{\circ} \mathrm{C}$. Calculate the coefficient of performance of the refrigerator.
3) Is reversible process possible in nature?
4) On what factors, the efficiency of a Carnot engine depends?
5) If the temperature of the sink is increased, what will happen to the efficiency of Carnot engine?
6) Find the efficiency of the Carnot engine working between boiling point and freezing point of water.
7) Which thermodynamic law put restrictions on the complete conversion of heat into work?
8) A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per min and services $3.6 \times 10^{9} \mathrm{~J}$ of heat per min from its boiler. What is the efficiency of engine?
9) A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per min and services $3.6 \times 10^{9} \mathrm{~J}$ of heat per min from its boiler. How much heat is wasted per min?
10) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at $827^{\circ} \mathrm{C}$ and exhausts it to a sink at $27^{\circ} \mathrm{C}$. How much work does it perform?

Section-B

11) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at $827^{\circ} \mathrm{C}$ and exhausts it to a sink at $27^{\circ} \mathrm{C}$. What is the efficiency of the engine?
12) A person of mass 60 kg wants to lose 5 kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000 kcal calories, how many times must he go up and down to reduce his weight by 5 kg ?
13) What amount of heat must be supplied to $2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room temperature) to raise its temperature by $45^{\circ} \mathrm{C}$ at constant pressure? (Molecular mass of $\mathrm{N}_{2}=28, \mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
14) A geyser heats water flowing at the rate of $3.0 \mathrm{~L} / \mathrm{min}$ from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$.If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$?
15) Consider a Carnot cycle operating between $T_{1}=500 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$ producing 1 kJ of mechanical work per cycle. Find the heat transferred to the engine by the reservoirs.
16) Under what condition, an ideal Carnot engine has 100% efficiency?
17) The efficiency of a heat engine is more in hilly area than in plain.Explain it.
18) Is the coefficient of performance of a refrigerator, a constant quantity?
19) Calculate the work done for adiabatic expansion of a gas.
20) A Carnot engine absorbs 6×10^{5} cal at $227^{\circ} \mathrm{C}$. Calculate work done per cycle by the engine if its sink is maintained at $127^{\circ} \mathrm{C}$.

Section-C

21) Give an example of each of given below Isobaric process
22) Give an example of each of given below Isochoric process
23) A cylinder containing one gram molecule of the gas was compressed adiabatically the work done and heat produced in the gas. Take γ as 1.5
24) A Carnot cycle is performed by 1 mole of air ($r=1.4$) initially at $327^{\circ} \mathrm{C}$. Each stage represents a compression or expansion in the ratio 1:6 Calculate network done during each side Take R $=8.31 \mathrm{~J} / \mathrm{mol}^{-\mathrm{K}}$

Section-A

1) 10.9
2) 4.73
3) A reversible process is never possible in nature because of dissipative forces and condition for a quasi-static process is not practically possible.
4) The efficiency of a carnot engine depends, on the temperature of source of heat and the sink.
5) Efficiency, $\eta=1-\frac{T_{2}}{T_{1}}$ By increasing(T_{2}), the efficiency of the Carnot engine will decrease.
6) Efficiency of Carnot engine, $\eta=1-\frac{T_{2}}{T_{1}}=1-\frac{273 K}{373 K}=\frac{100}{373}=0.268=26.8 \%$
7) According to second law of thermodynamics, heat energy cannot converted into work completely.
8) 15%
9) $3 \times 10^{9} \mathrm{~J} / \mathrm{min}$
10) $2.720 \times 10^{5} \mathrm{cal}$

Section-B

11) 72.72%
12) Here, $m=60 \mathrm{~kg}, g=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~h}=10 \mathrm{~m}$

In going up and down once, number of kilocalories burnt

$$
\begin{aligned}
& =(\mathrm{mgh}+\mathrm{mgh} / 2)=\frac{3}{2} \mathrm{mgh} \\
& =\frac{3}{2} \times \frac{60 \times 10 \times 10}{4.2 \times 1000}=\frac{15}{7} \mathrm{kcal}
\end{aligned}
$$

Total number of kilocalories to be burnt for losing 5 kg of weight $=5 \times 7000=35000 \mathrm{kcal}$
\therefore Number of times of the person has to go up and down the stairs

$$
=\frac{35000}{15 / 7}=\frac{35 \times 7}{15} \times 10^{3}=16.3 \times 10^{3} \quad \text { times }
$$

13) Here, mass of gas, $\mathrm{m}=2 \times 10^{-2} \mathrm{~kg}=20 \mathrm{~g}$

Rise in temperature, $\Delta \mathrm{T}=45^{\circ} \mathrm{C}$
Heat required, $\Delta \mathrm{Q}=$?
Molecular mass, $M=28$
Number of moles, $\mathrm{n}=\frac{m}{n}=\frac{20}{28}=0.714$
As nitrogen is a diatomic gas, molar specific heat at constant pressure is

$$
C_{p}=\frac{7}{2} R=\frac{7}{2} \times 8.3 J \quad \mathrm{~mol}^{-1} K^{-1} A s \quad \Delta Q=n C_{p} \Delta T \therefore \quad \Delta Q=0.714 \times \frac{7}{2} \times 8.3 \times 45 \mathrm{~J}=933.4 \quad \mathrm{~J}
$$

14) Here, volume of water heated $=3.0 \mathrm{~L} / \mathrm{min}$

Mass of water heated, $m=3000 \mathrm{~g} / \mathrm{min}$
Rise in temperature, $\Delta \mathrm{T}=77-27=50^{\circ} \mathrm{C}$
Specific heat of water, $\mathrm{C}=4.2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
Amount of heat used, $\Delta \mathrm{Q}=m C \Delta T=3000 \times 4.2 \times 50=63 \times 10^{4} \mathrm{~J} / \mathrm{min}$
Heat of combination $=4 \times 10^{4} \mathrm{~J} / \mathrm{g}$
Rate of combustion of fuel $=\frac{63 \times 10^{4}}{4 \times 10^{4}}=15.75 \mathrm{~g} / \mathrm{min}$
15) As we know,
$\frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}}=\frac{3}{5} \because \quad 1-\frac{Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}} \Rightarrow \frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{500-300}{500} \Rightarrow \frac{W}{Q_{1}}=\frac{2}{5} \therefore \quad Q_{1}=10^{3} \times \frac{5}{2}=2500 \mathrm{~J}$
16) Efficiency of a Carnot engine is given by

$$
\eta=\left(1-\frac{T_{2}}{T_{1}}\right)
$$

Where, $\mathrm{T}_{2}=$ temperature of sink
and $T_{1}=$ Temperature of sink source
So for $\eta=1$ or $100 \% \mathrm{~T}_{2}=0 \mathrm{~K}$ or heat is rejected into a sink at 0 K temperature.
17) Because in the hilly area, temp of surrounding is lower than that of plains.

$$
\text { As }_{\eta=1-\frac{T_{2}}{T_{1}}}
$$

18) No, it is not constant quantity, as inside, temperature of the refrigerator decreases, it is coefficient of performance also decreases.

Consider (say μ mole) an ideal gas, which is undergoing an adiabatic expansion. Let the gas expands by an infinitesimally small volume dV , at pressure p , then the infinitesimally sm dW=pdV
The net work done from an initial volume V_{1} is given by
$W=\int_{v_{1}}^{\nu_{2}} p d V$
For an adiabatic process,
$p V^{\gamma}=$ constant $=K p=\frac{K}{V^{\gamma}}=K V^{-\gamma}: \quad W=\int_{v_{1}}^{\nu_{2}}\left(K V^{-\gamma}\right) d V=k\left[\frac{V^{-\gamma+1}}{-\gamma+1}\right]_{v_{1}}^{\nu_{2}}=\frac{K V_{2}^{-\gamma+1}-K V_{1}^{-\gamma+1}}{(1-\gamma)}$ For an adiabatic process, $K=p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma} \Rightarrow W=\frac{p_{2} V_{2}^{\gamma} \cdot V_{2}^{-\gamma+1}-p_{1} V_{1}^{\gamma} \cdot V_{2}^{-\gamma+1}}{(1-\gamma)}=\frac{1}{(1-\gamma)}$
20) 5.04×10^{5}

Section-C

21) Isobaric process Cooking in an open lid container.

Isochoric process Cooking in a pressure cooker.
23)

Given, $\quad T_{i}=27^{0} \mathrm{C}=27+273=300 K$

$$
T_{f}=97^{\circ} C=97+273=370 K, \quad \gamma=1.5 \text { Work done in adiabatic compression is given by }
$$

$$
W=\frac{R}{1-\gamma}\left(T_{i}-\right.
$$

24) 457232 J
