QB365

Important Questions - Thermodynamics

11th Standard CBSE

Physics

Reg.No.:

1

1

1

1

1

1

Total	Marks : 50
Section-A	
1) A refrigerator is to maintain eatables kept inside at 10°C . If room temperature is 36° C, then calculate the coefficient of performance.	1
2) Temperature in the freezer of a refrigerator is being maintained at -13° C and room temperature on a particular day was 42° C. Calculate the coefficient of performance of	1
the refrigerator.	
3) Is reversible process possible in nature?	1
4) On what factors, the efficiency of a Carnot engine depends?	1
5) If the temperature of the sink is increased, what will happen to the efficiency of Carnot engine?	1
6) Find the efficiency of the Carnot engine working between boiling point and freezing point of water.	1
7) Which thermodynamic law put restrictions on the complete conversion of heat into work?	1
8) A steam engine delivers 5.4 X 10 ⁸ J of work per min and services 3.6 X 10 ⁹ J of heat per min from its boiler.	1
What is the efficiency of engine?	
9) A steam engine delivers 5.4 X 10 ⁸ J of work per min and services 3.6 X 10 ⁹ J of heat per min from its boiler.	1
How much heat is wasted per min?	
10) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at 827° C and exhausts it to a sink at 27° C.	1
How much work does it perform?	
Section-B	
11) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at 827° C and exhausts it to a sink at 27° C.	2
What is the efficiency of the engine?	
12) A person of mass 60 kg wants to lose 5 kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is	2
burnt on expending 7000 kcal calories, how many times must he go up and down to reduce his weight by 5 kg?	
13) What amount of heat must be supplied to 2.0×10^{-2} kg of nitrogen (at room temperature) to raise its temperature by 45°C at constant	2
pressure? (Molecular mass of $N_2 = 28$, R = 8.3 J mol ⁻¹ K ⁻¹)	
14) A geyser heats water flowing at the rate of 3.0 L/min from 27 °C to 77°C. If the geyser operates on a gas burner, what is the rate of	2
consumption of the fuel if its heat of combustion is 4.0 x 10 ⁴ J/g?	
15) Consider a Carnot cycle operating between T ₁ =500K and T ₂ =300K producing 1kJ of mechanical work per cycle. Find the heat transferred to the engine by the reservoirs.	2
16) Under what condition, an ideal Carnot engine has 100% efficiency?	2
17) The efficiency of a heat engine is more in hilly area than in plain.Explain it.	2
18) Is the coefficient of performance of a refrigerator, a constant quantity?	2
19) Calculate the work done for adiabatic expansion of a gas.	2
20) A Carnot engine absorbs 6 X 10 ⁵ cal at 227 ° C. Calculate work done per cycle by the engine if its sink is maintained at 127° C.	2
Section-C	
21) Give an example of each of given below	5
Isobaric process	
22) Give an example of each of given below	5
Isochoric process	
23) A cylinder containing one gram molecule of the gas was compressed adiabatically the work done and heat produced in the gas. Take γ as 1.5	5
24) A Carnot cycle is performed by 1 mole of air (r = 1.4) initially at 327° C. Each stage represents a compression or expansion in the ratio 1:6 Calculate network done during	5
each side	

Take R = 8.31 J/ mol^{-K}

Time : 01:00:00 Hrs

Section-A

1) 10.9

2) 4.73

- 3) A reversible process is never possible in nature because of dissipative forces and condition for a quasi-static process is not practically possible.
- 4) The efficiency of a carnot engine depends, on the temperature of source of heat and the sink.

5) Efficiency, $\eta = 1 - \frac{T_2}{T_1}$ By increasing(T_2), the efficiency of the Carnot engine will decrease.

6) Efficiency of Carnot engine, $\eta = 1$	$-\frac{T_2}{T_1} = 1 -$	$-\frac{273K}{373K} =$	$\frac{100}{373}$ =0.268=26.8%
--	--------------------------	------------------------	--------------------------------

8) 15%	1
9) 3 X 10 ⁹ J / min	1
10) 2.720 X 10 ⁵ cal	1
Section-B	
11) 72.72%	2
12) Here, m=60kg, g =10m/s ² , h=10m	2
In going up and down once, number of kilocalories burnt	
$=(mgh+mgh/2)=\frac{3}{2}mgh$	
$=\frac{3}{2} \times \frac{60 \times 10 \times 10}{42 \times 1000} = \frac{15}{7} kcal$	
$2 = 4.2 \times 1000$ 7 mm Total number of kilocalories to be burnt for losing 5 kg of weight = 5 × 7000 = 35000 kcal	
 Number of times of the person has to go up and down the stairs 	
$=\frac{35000}{15/7} = \frac{35\times7}{15} \times 10^3 = 16.3 \times 10^3 times$	
13) Here, mass of gas, m = 2×10^{-2} kg = 20g	2
Rise in temperature, $\Delta T = 45^{\circ}C$	
Heat required, $\Delta Q = ?$	
Molecular mass, M = 28	
Number of moles, $n = \frac{m}{n} = \frac{20}{28} = 0.714$	
As nitrogen is a diatomic gas, molar specific heat at constant pressure is	
$C_{p} = \frac{7}{2}R = \frac{7}{2} \times 8.3J mol^{-1}K^{-1}As \Delta Q = nC_{p}\Delta T \therefore \Delta Q = 0.714 \times \frac{7}{2} \times 8.3 \times 45J = 933.4 J$	
14) Here, volume of water heated = 3.0 L/min	2
Mass of water heated, m = 3000 g/min	
Rise in temperature, $\Delta T = 77 - 27 = 50^{\circ}C$	
Specific heat of water, C = 4.2 J g^{-1} °C ⁻¹	
Amount of heat used, $\Delta Q = mC\Delta T = 3000 \times 4.2 \times 50 = 63 \times 10^4 J/min$	
Heat of combination = 4×10^4 J/g	
Rate of combustion of fuel = $\frac{63 \times 10^4}{4 \times 10^4}$ = 15.75g / min	
15) As we know,	2
$Q_2 T_2 3 Q_2 T_2 Q_1 - Q_2 500 - 300 W 2 55$	2
$\frac{1}{Q_1} = \frac{1}{T_1} = \frac{1}{5} : 1 - \frac{1}{Q_1} = 1 - \frac{1}{T_1} \Rightarrow \frac{1}{Q_1} = \frac{1}{500} \Rightarrow \frac{1}{Q_1} = \frac{1}{5} : Q_1 = \frac{10^3 \times 1}{2} = 2500J$	
16) Efficiency of a Carnot engine is given by ()	2
$\eta = \left(1 - \frac{T_2}{T}\right)$	
Where, T ₂ = temperature of sink	
and $I_1 = 1$ emperature of sink source	
14) Here, volume of water heated = 3.0 L/min Mass of water heated, m = 3000 g/min Rise in temperature, $\Delta T = 77 \cdot 27 = 50^{\circ}C$ Specific heat of water, C = 4.2 J g ⁻¹ °C ⁻¹ Amount of heat used, $\Delta Q = mC\Delta T = 3000 \times 4.2 \times 50 = 63 \times 10^{4}$ J/min Heat of combination = 4×10^{4} J/g Rate of combustion of fuel = $\frac{63 \times 10^{4}}{4 \times 10^{4}} = 15.75$ g/min 15) As we know, $\frac{Q_{2}}{Q_{1}} = \frac{T_{2}}{T_{1}} = \frac{3}{5} \because 1 - \frac{Q_{2}}{Q_{1}} = 1 - \frac{T_{2}}{T_{1}} \Rightarrow \frac{Q_{1} - Q_{2}}{Q_{1}} = \frac{500 - 300}{500} \Rightarrow \frac{w}{Q_{1}} = \frac{2}{5} \div Q_{1} = 10^{3} \times \frac{5}{2} = 2500J$ 16) Efficiency of a Carnot engine is given by $\eta = \left(1 - \frac{T_{2}}{T_{1}}\right)$ Where, T ₂ = temperature of sink and T ₁ = Temperature of sink source So for $\eta = 1$ or 100% T ₂ = 0 K or heat is rejected into a sink at 0 K temperature. 17) Because in the hilly area, temp of surrounding is lower than that of plains.	
17) Because in the hilly area, temp of surrounding is lower than that of plains. T	2
As $\eta = 1 - \frac{T_2}{T_1}$	
18) No, it is not constant quantity, as inside, temperature of the refrigerator decreases, it is coefficient of performance also decreases.	2
19)	2
Consider (say μ mole) an ideal gas, which is undergoing an adiabatic expansion. Let the gas expands by an infinitesimally small volume dV, at pressure p,	
dW=pdV	,
The net work done from an initial volume V ₁ is given by	
$W = \int_{V_1}^{V_2} p dV$	
For an adiabatic process,	

$$pV^{\gamma} = constant = Kp = \frac{K}{V^{\gamma}} = KV^{-\gamma} : \quad W = \int_{V_1}^{V_2} (KV^{-\gamma}) dV = k \left[\frac{p^{-\gamma+1}}{-\gamma+1} \right]_{V_1} = \frac{K_2 \cdot K_1^{-\gamma}}{(1-\gamma)} For an adiabatic process, K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \Rightarrow W = \frac{p_2 \cdot 2 \cdot V_2^{-\gamma} - p_1 v_1 \cdot V_2^{-\gamma}}{(1-\gamma)} = \frac{1}{(1-\gamma)}$$
20) 5.04 X 10⁵
21) Isobaric process Cooking in an open lid container.
22) Isochoric process Cooking in a pressure cooker.
23)
Given, $T_i = 27^0 C = 27 + 273 = 300K$
 $T_f = 97^0 C = 97 + 273 = 370K$, $\gamma = 1.5Work$ done in adiabatic compression is given by
 $W = \frac{R}{1-\gamma} (T_i - 24)$
457232 J
5

22) **Isochoric process** Cooking in a pressure cooker.

23)

Given,
$$T_i = 27^0C = 27 + 273 = 300K$$
 $T_f = 97^0C = 97 + 273 = 370K$, $\gamma = 1.5Work$ done in adiabatic compression is given by

24) 457232 J