QB365 Important Questions - Waves

11th Standard CBSE

Physics

Reg.No. :

Total Marks : 50

Time : 01:00:00 Hrs

	Section-A	
1)	A wave pulse is described by y (x,t) = ae $(bx - at)^2$ where a, b and c are positive constants. What is the speed of	1
	this wave?	
2)	The density of oxygen is 16 times the density of hydrogen.Whta is the relation between the speed of sound in	1
	two gases?	
3)	The velocity of sound in a tube conatining air at 27ºC and a pressure of 76 cm of mercury is 330 m / s. What will	1
	it be when pressure is increased to 100 cm. of mercury and the temperature is kept constant?	
4)	Does a vibrating source always produce sound?	1
5)	How speed of sound waves in air varies with humidity?	1
6)	The displacement of an elastic wave is given by the function y =3sin ω t + 4cos ω t	1
	Where, y is in cm and t is in second.Calculate the resultant amplitude.	
7)	If the speed of a transverse wave on a stret <mark>ched stri</mark> ng of length 1 m is 60 m/s.What is the fundamental	1
	frequency of vibration?	
8)	A progressive wave of frequency 500 Hz is travelling with a velocity of 360 m/s. How far particles are two points	1
	60° out of phase?	
9)	Third overtone of a closed organ pipe is in unison with fourth harmonic of an open organ pipe. Find the ration	1
	of lengths of the pipes.	
10	0) What frequency of the sound you hear coming directly from the siren?	1
	Section-B	
11	1) A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this	2
	wire when a tension of 2.06×10^4 N is applied?	
12	2) A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a source of	2
	1237.5 Hz? (sound velocity in air =330ms ⁻¹)	
13	3) What is the amplitude of a point 0.375 m away from one end?	2
14	4) A narrow sound pulse (e.g. a short pip by a whistle) is sent across a medium.	2
	(i) Does the pulse have a definite (a) frequency, (b) wavelength, (c) speed of propagation?	
	(ii) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the	
	frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz?	
15	5) At what temperature (in ⁰ C) Will be speed of sound air be 3 times its value at 0 ⁰ C?	2

16) A standing wave is formed by two harmonic waves, $Y_1 = Asin(kx - arpi t)$ and	2
$Y_2=Asin(kx-arpi t)$ travelling on a string in opposite directioons. Mass density of the string is $ ho$ and area of	
cross-section is s. Find the total mechanical energy between two adjacent nodes on the string.	
17) A stone dropped from the top of a tower of height 300m in high splashes into the water of pond near the base	2
of the tower. When is the splash heard at the top, given that the speed of sound in air $$ is 340ms $^{-1}$	
18) If C is rms speed of molecules in a gas and V is the speed of sound waves in the gas, show that c/v is constant	2
and independent of temperature for all diatomic gases.	
19) A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. What is	2
the speed of sound in each case? The speed of sound in still air can be taken as 340ms ⁻¹ .	
20) A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz	2
source? Will the same source be in resonance with the pipe if both ends are open? (speed of sound in air 340	
ms ⁻¹)	
Section-C	
21) Wave function	5
The two individual wave functions are	
$y_1 = (5 \text{ cm}) \sin(4x - t) \text{ and } y_2 = (5 \text{ cm}) \sin(4x + t)$	
Where x and y are in centimetres.Find out th <mark>e maximum displacemen</mark> t of the motion at x = 2.0 cm. Also, find	
the positions of nodes and antinodes.	
22) Estimate the speed of sound in air at STP. The mass of 1 mole of air is 29.0×10^{-3} kg.	5
23) Two waves of equal frequencies have their amplitudes in the ration of 3:5. They are superimposed on each	5
other.Calculate the ratio of I _{max} /I _{min} .	
24) An Amazing Sitar	5
Two sitar strings A and B playing the note 'Dha' are slightly out of tune and produce beats of frequency 5 Hz.	
The tension of string B is slightly increased and the frequency is found to decrease to 3 Hz. What is the original	
frequency of B, if the frequency of A is 427 Hz?	

Section-A

1)	c / b	1
2)	$vH_2 = 4vO_2$	1
3)	will remain same	1
4)		1
	A vibrating source produced when it vibrates in a medium and frequency of vibration lies within the	
	audible range (20 Hz to 20 KHz).	

5)

Speed of sound waves in air increases with increases with increase in humidity. This is because presence of moisture decreases the density of air.

6) The resultant amplitude will be
$$y=\sqrt{y_1^2+y_2^2}=\sqrt{9+16}=\sqrt{25}=5cm$$
 1

1

7)	30 Hz	1
8)	0.12m	1
9)	7:8	1
10)	1031.25 Hz	1
	Section-B	
11)	I = 12m. M = 2.10 kg. T = 2.06 × 10 ⁴ N. v =?	2
,	$\mu = \frac{M}{M} = \frac{2.10}{10} kg/m$	-
	$v=\sqrt{rac{T}{\mu}}=\sqrt{rac{2.06 imes 10^4}{2.10/12}}=3.43 imes 10^2 m/s$	
12)	Length of pipe(l) =20 cm= 20×10^{-2} m	2
	$v_{funda} = rac{v}{4L} = rac{330}{4\times90 imes10^{-2}}$	
	$v_{funda} = rac{330 imes 100}{20} = 412.5$ Hz	
	$\frac{v_{given}}{v_{given}} = \frac{1237.5}{120.7} = 3$	
	v_{funda} 412.5 Hence, 3rd harmonic mode of the pipe is resonantly excited by the source of given frequency.	
13)	Given $Y = 0.06 \sin \frac{2\pi}{x} cos(120\pi)$	2
,	Putting x= 0.375 m	-
	Amplitude, $Y = 0.06 \sin \frac{2\pi}{2} \times (0.375)$	
	$= 0.06 \sin \frac{\pi}{4} = \frac{0.06}{\sqrt{2}} = 0.042$ m	
14)	(i) A short pip by a whistle	2
	(a) will not have a fixed frequency.	_
	(b) will not have fixed wavelength.	
	(c) will have the definite speed that will be equal to the speed of sound in air.	
	(ii) 0.05 Hz will be the frequency of repetition of the short pip.	
15)	We know that, speed, $v\infty\sqrt{T}$	2
	By formula v = $\frac{xRT}{p}$ Where T is in kelvin	
	$rac{v_t}{v_0} = \sqrt{rac{273 + t}{273 + 0}} = 3$	
	$\Rightarrow rac{273+t}{273}=9 \Rightarrow \hspace{1em} t=9 imes 273-273=2184^0 C$	
16)	$\frac{ ho A^2 \varpi^2 \pi s}{k}$	2
17)	Given, h=300m, g=9.8m/s ² , v=340ms ⁻¹	2
	t ₁ = time taken by stone to strike the water surface	
	$t_1 = \sqrt{rac{2h}{g}} = \sqrt{rac{300}{49}} = 7.82 s \left(as h = 0 + rac{1}{2} g t_1^2 ight)$	
	t ₂ = time taken by the splash's sound to reach top of the tower	
	$t_2=rac{h}{v}=rac{300}{340}=0.882$ $\left\lfloor v=rac{h}{t_2} ight floor$	
	Total time, t = time to hear splash of sound	
	$= t_1 + t_2 = 7.82 + 0.882 = 8.702$	

18) From Kinetic theory of gases,

$$p = \frac{1}{3}pc^2$$
, where c is rms speed of molecules of gas
 $\Rightarrow c = \sqrt{\frac{3p}{p}}$
v = speed of sound in the gas = $\sqrt{\frac{p}{\Upsilon\rho}}$
 $\Rightarrow from \ eqs.(i) \ and \ (ii)$
 $c = \sqrt{\frac{3p}{\Upsilon\rho}} \sqrt{\frac{3}{2}}$

 $\frac{c}{v} = \sqrt{\frac{3p}{\rho} \times \frac{\rho}{\Upsilon \rho}} = \sqrt{\frac{3}{\Upsilon}}$

Fer diatomic gases,

$$egin{array}{ll} \Upsilon = 1.4 = & constant \ \Rightarrow rac{c}{v} = \sqrt{rac{3}{1.4}} = 1.46 = & constant \end{array}$$

- 19) The speed of sound wave in each case will be same and is 340 m/s.
- 20) Given L=20 cm =0.2 m, v_n =430 Hz, v=340 m/s

It will behave as closed organ pipe

$$egin{aligned} &v_n = (2n-1) \, rac{v}{4L}, & where \quad n=1,2,3..., \ &\Rightarrow & 430 = (2n-1) \, rac{v}{4L} = (2n-1) imes rac{340}{4 imes 0.2} \ &\Rightarrow & (2n-1) = rac{430 imes (0.8)}{340} \Rightarrow 2n = rac{(430)(0.8)}{340} + 1 \ &\Rightarrow & n = rac{43 imes 4}{340} + rac{1}{2} = rac{2 imes 172 + 340}{340 imes 2} = rac{684}{680} = 1.006 \end{aligned}$$

Hence, it will be the 1st normal mode or harmonic mode of vibration.

In a pipe open at both ends,
$$v_n = n \times \frac{v}{2l} = \frac{n \times 340}{2 \times 0.2} = 430$$

 $\Rightarrow n = \frac{430 \times 2 \times 0.2}{340} = \frac{43 \times 2 \times 2}{340} = 0.5$

As n is not integer, hence, open organ pipe cannot be in resonance with the source.

Section-C

2 2 $y_2 = (5 \text{ cm}) \sin(4x + t)$

the resulting wave

 $y = (2 A \sin kx) \cos \omega t$

the resulting wave (2A sin kx) $\cos \omega$ t

Now, compare the given equation

 $y_1 = (5 \text{ cm}) \sin(4x - t) \text{ with } y_1 = A \sin(kx - \omega t)$

A = 5 cm, k = 4 and ω 1 rad / s

 $y = (2A \sin kx) \cos \omega t$

 $y = (10 \sin 4x) \cos t$

the maximum displacement of the motionat a position

x = 2.0 cm

 $y_{max} = 10 \sin 4 x | x = 2.0$

=10 sin (
$$4 \times 2$$
)

=10 sin (8 rad)

y _{max} = 9.89 cm

ourstion abases in The wavelegth by using the relation between wavelegth and the wave number.

$$k = \frac{2\pi}{\lambda} = 4$$

$$\Rightarrow \quad \lambda = \frac{2\pi}{4} = \frac{\pi}{2} \text{ cm}$$

The nodes and anitinodes can be given as

Nodes at x = $\frac{n\lambda}{2}$

$$=$$
 n $\times \left(\frac{\pi}{4}\right)$ cm,

where n = 0,1,2,....

Antinodes at x = (2n+1) $\frac{\lambda}{4}$

$$=(2n+1)\times(\frac{\pi}{2})$$
cm,

where n = 0,1,2,...

22) We know that volume of any gas at is 22.4 litre.

Density of air at STP is

$$egin{aligned}
ho_0 &= \left(rac{mass}{volume \ at \ STP}
ight)_{for \ one \ mole \ of \ air} \ &= rac{29.0 imes 10^{-3} kg}{22.4 imes 10^{-3}} = 1.29 \ kgm^{-3} \end{aligned}$$

According to Newton's formula,

Speed of sound, v =
$$\left[\frac{1.01 \times 10^5 Nm^{-2}}{1.29 kgm^{-3}}\right]^{1/2} = 280 ms^{-1}$$

23)
$$\frac{A_1}{A_2} = \frac{3}{5} \Rightarrow \sqrt{\frac{I_1}{I_2}} = \frac{3}{5}$$

Now,
$$\frac{I_{max}}{I_{min}} = \left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - I_2}\right) = \left(\frac{\sqrt{I_1/I_2} + 1}{\sqrt{I_1}/I_2 - 1}\right)^2$$
$$= \left(\frac{3/5 + 1}{3/5 - 1}\right)^2 = \frac{64}{4} = \frac{16}{1}$$

5

24) Here, frequency of A = 427 Hz

As number of beats/sec (m) = 5 Hz Possible frequencies of B are = 432 Hz or 422 Hz When tension of B is increased, its frequency increases. Number of beats/s decreases to 3. Therefore, m is negative. Hence, original frequency of B = 427-5 = 422 Hz.

