QB365
 Important Questions - Conic Sections

11th Standard CBSE
Mathematics
Reg.No.:

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) The focal distance of a point on the parabola $y^{2}=12 x$ is 4 . Find the abscissa of this point.
2) Find the equation of ellipse, if foci are $(\pm 5,0)$ and $\mathrm{a}=6$.
3) Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13 .
4) Find the area of the circle which touches the both axes in the first quadrant and whose radius is a
5) A circle of radius 5 units touches the coordinate axes in the first quadrant.If the circle makes one complete roll on X -axis along the positive direction of X -axis, then find its equation in the new position
6) Find the equation of a circle whose center is $(2,0)$ and touches Y-axis.

Section-B

7) Find the centre and radius of the circle given by the equation $2 x^{2}+2 y^{2}+3 x+4 y+\frac{9}{8}=0$
8) Find the equation of the ellipse, whose distance between directrices is 5 and distance between foci is 4 .
9) Prove that the line $l x+m y+n=0$ will touch the parabola $y^{2}=4 a x$, if $\ln =a m^{2}$
10) In each of the following questions, find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latusrectum.. $y^{2}=12 x$
11) If e and e^{\prime} are the eccentricities of the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its conjugate hyperbola, then prove that $\frac{1}{e^{2}}+\frac{1}{e^{\prime^{2}}}=1$
12) Find the equation of the ellipse referred to its axis as the axes of coordinates with latusrectum of length 4 and distance between foci $4 \sqrt{2}$

Section-C

13) Find the equation of the circle whose center is (a, b) and passes through the origin
14) Draw the shape of $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$ and find their vertices, major axis, minor axis, eccentricity, foci, and length of latusrectum. deep, then find the distance LM.

15) Draw the shape of ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$ and find the foci.
16) The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 10 m from the middle.

Section-A

1) Given parbola is $y^{2}=12 x$

Here, $\quad 4 a=12 \Rightarrow a=3$ Focus: $F=(3,0)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the parabola, then $\mathrm{PF}=4$
$\Rightarrow \quad(x-3)^{2}+(y-0)^{2}=$
$\Rightarrow \quad x^{2}+9-6 x+12 x=16$

$$
\begin{equation*}
\left[y^{2}=12 x\right] \tag{4}
\end{equation*}
$$

$\Rightarrow \quad x^{2}+6 x-7=0$
$\Rightarrow \quad x=1 \quad[x \neq-7]$

Ans 1
2) $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$
3) $2 \mathrm{~b}=5$ and $2 \mathrm{c}=13$
$\Rightarrow b=\frac{5}{2}$ and $\quad c=\frac{13}{2}$
$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \Rightarrow \frac{169}{4}=\frac{25}{4}+b^{2} \Rightarrow a^{2}=\frac{12}{2}$
$\frac{x^{2}}{144}-\frac{y^{2}}{25}=\frac{1}{4}$
4) Required equation of circle is $(x-a)^{2}+(y-a)^{2}=a^{2}$
$x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$
5) Let C be the centre of the circle in its initial position and D be its centre in the new position,

Then $C \equiv(5,5)$ and $D=(5+10 \pi, 5)$
Now, centre of the circle in the new position is $(5+10 \pi, 5)$ and its radius is 5 , therefore its equation will be

$$
\begin{aligned}
& (x-5-10 \pi)^{2}+(y-5)^{2}=5^{2} \\
& x^{2}+25+100 \pi^{2}-10 x-20 \pi x+100 \pi+y^{2}+25-10 y=25 \\
& x^{2}+y^{2}-10(2 \pi+1) x-10 y+100 \pi^{2}+100+25=0
\end{aligned}
$$

6) Given, center $(h, k)=(2,0)$ and circle touches Y-axis.

Radius(r)=x-coordinate of center=2 so, the equation of circle is
$(x-2)^{2}+(y-0)^{2}=2^{2}\left[(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
$x^{2}+4-4 x+y^{2}=4 \quad\left[(A-B)^{2}=A^{2}+B^{2}-2 A B\right]$
$x^{2}+y^{2}-4 x+4=4$
$x^{2}+y^{2}-4 x=0$
which is the required equation of circle

Section-B

7) Given equation is $2 x^{2}+2 y^{2}+3 x+4 y+\frac{9}{8}=0$

On dividing both sides by 2 , we get

$$
\begin{equation*}
x^{2}+y^{2}+\frac{3}{2} x+2 y+\frac{9}{16}=0 \tag{i}
\end{equation*}
$$

From Eq.(i) we have coefficient of $x=\frac{3}{2}$
and coefficient of $y=2$

$$
\begin{aligned}
& \alpha=\frac{-1}{2}\left(\frac{3}{2}\right)=-\frac{3}{4} \\
& \beta=\frac{-1}{2}(2)=-1 \\
& \text { centre }=\left(-\frac{3}{4},-1\right)
\end{aligned}
$$

From Eq. (i) we have constant term $=\frac{9}{16} \quad$ Radius $=\sqrt{\left(\frac{-3}{4}\right)^{2}+(-1)^{2}-\frac{9}{16}}$

$$
=\sqrt{\frac{9}{16}+1-\frac{9}{16}}=1
$$

8) Let the equation of ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$
Thus, equation of directrices are
$x= \pm \frac{a^{2}}{c}= \pm \frac{a^{2}}{a e}= \pm \frac{a}{e}$
i.e $\quad x=\frac{a}{e}$ and $\quad x=-\frac{a}{e}$

Distance between directrices $=\frac{2 a}{e}=5$
$e=\frac{2 a}{5}$
Also, its foci are $(\pm c, 0)$ or $\quad(\pm a e, 1)$.
Distance between foci $=2 a e=4 \Rightarrow a e=2$
$\Rightarrow a\left(\frac{2 a}{5}\right)=2 \Rightarrow a^{2}=5$
$e=\frac{2 \sqrt{5}}{5}=\frac{2}{\sqrt{5}}$ and $\quad b^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow b^{2}=5\left(1-\frac{4}{5}\right)=5 \times \frac{1}{5}$
$b^{2}=1$
Hence, the equation of ellipse is
$\frac{x^{2}}{5}+\frac{y^{2}}{1}=1$
9) Given equation of line is $l x+m y+n=0$.
$\Rightarrow \quad y=\frac{-l x-n}{m}$
and equation of parabola is $y^{2}=4 a x$
From Eqs. (i) and (ii), we get

$$
\left(\frac{-l x-n}{m}\right)^{2}=4 a x
$$

$$
\Rightarrow \quad l^{2} x^{2}+2 l x n+n^{2} \quad=4 m^{2} a x
$$

$\Rightarrow \quad l^{2} x^{2}+2 l x n-4 a m^{2} x+n^{2}=0$
$\Rightarrow l^{2} x^{2}=x\left(2 l n-4 a m^{2}\right) \quad=\quad n^{2}=0$
Since, the line $l x+m y=n$ touches the parabola.
So, Eq.(iii) have equal roots.
i.e discriminant $(D)=0 \quad \Rightarrow \quad B^{2}-4 A C=0$
$\Rightarrow \quad\left(2 l n-4 a m^{2}\right)^{2}-4 l^{2} n^{2}=0$
$\Rightarrow 4 l^{2} n^{2}-16 \operatorname{lnam}{ }^{2}=16 a^{2} m^{4}-4 l^{2} n^{2}=0$

$$
\ln =a m^{2} \quad \text { Hence Proved }
$$

10)

Given, equation of parabola is $. y^{2}=12 x$, which is of the form $. y^{2}=4$ ay i.e focus lies on the positive direction of x-axis

Here, $\quad 4 a=12 \Rightarrow a=3$
$\therefore \quad$ Focus $=(a, 0)=(3,0)$

$$
\text { Axis }=X \text {-axis }
$$

Directrix, $x=-a \Rightarrow x=-3$ and length of latusrectum $=4 a=4 \times 3=12$
11) Given hyperbola is $\frac{1}{e^{2}}+\frac{1}{e^{\prime^{2}}}=1$

The eccentricity e of this hyperbola is
$e^{2}=1+\frac{b^{2}}{a^{2}} \Rightarrow e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$
$\Rightarrow \frac{1}{e^{2}}=\frac{a^{2}}{a^{2}+b^{2}}$
The equation of the conjugate hyperbola is $\frac{y^{2}}{b^{2}}+\frac{x^{2}}{a^{2}}=1$
The eccentricity e' of this hyperbola is
$e^{\prime 2}=1+\frac{a^{2}}{b^{2}} \quad \Rightarrow \quad e^{\prime 2}=\frac{b^{2}+a^{2}}{b^{2}}$
$\Rightarrow \frac{1}{e^{e^{\prime 2}}}=\frac{b^{2}}{a^{2}+b^{2}}$
On adding Eqs.(i) and (ii) we,get
$\frac{1}{e^{2}}+\frac{1}{e^{\prime 2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1$
$\frac{1}{e^{2}}+\frac{1}{e^{\prime^{2}}}=1$
Hence proved.
12) Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$

Length of latusrectum $=\frac{2 b^{2}}{a}=4$
$\Rightarrow b^{2}=2 a$
Distance between the foci $=2 a e=4 \sqrt{2}$
$a e=2 \sqrt{2}$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$2 a=a^{2}-a^{2} e^{2}$
$\Rightarrow 2 a=a^{2}-(2 \sqrt{2})^{2}$
$\Rightarrow 2 a=a^{2}-8 \Rightarrow a^{2}-2 a-8=0$
$\Rightarrow(a-4)(a+2)=0 \Rightarrow a=4$ or $\quad-2$
But a cannot be negative.
$a=4$
from eqn(i) we get $b^{2}=2 \times 4=8$
Hence, equation of ellipse is

$$
\frac{x^{2}}{16}+\frac{y^{2}}{8}=1 \Rightarrow x^{2}+2 y^{2}=16
$$

Section-C

13)

We know that,circle passes through the origin,so radius of circle will be equal to the distance between poin (a, b) and origin
\therefore Radius of circle=Distancen between points $(0,0)$ and (a, b)
$=\sqrt{(0-a)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$ [by distance formula]
\because Centre $=(\mathrm{h}, \mathrm{k})=(\mathrm{a}, \mathrm{b})$
On putting these values in equation of circle

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \text { we get } \\
& \begin{array}{l}
(x-a)^{2}+(y-b)^{2}=\left(\sqrt{a^{2}+b^{2}}\right)^{2} \\
\Rightarrow x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y=a^{2}+b^{2} \\
\quad\left[\because(A-B)^{2}=A^{2}-2 A B+B^{2}\right] \\
\Rightarrow x^{2}+y^{2}-2 a x-2 b y=0
\end{array}
\end{aligned}
$$

Which is the required equation of circle
14) Vertices $=(0, \pm 20), \quad$ Major axis $=12$,

Minor axis $=20, \quad$ Eccentricity $=\frac{\sqrt{3}}{2}$
Foci $=(0, \pm 10 \sqrt{3}), \quad$ Latusrectum $=10$
15) $\sqrt[8]{30} \mathrm{~cm}$
16) Given equation of ellipse is $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$.

On comparing with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get $a=7, b=4$

Here, $\mathrm{a}>\mathrm{b}$, so major axis is along X -axis.
Foci, $(\pm c, 0)=(\pm \sqrt{33}, 0)$
17)

Here, wire are vertical.
Let equation of the parabola be in the form

$$
\begin{equation*}
x^{2}=4 a y \tag{i}
\end{equation*}
$$

Focus is at the middle of the cable and shortest and longest vertical supports are 6 m and 30 m and roadway in 100 m long.
Clearly, the coordinates of $\mathrm{Q}(50,24)$ will satisfy Eq.(i)
$\therefore \quad(50)^{2}=4 a \times 24 \Rightarrow 2500=96 a \Rightarrow a=\frac{2500}{96}$
Hence, from $\quad E q .(i), \quad x^{2}=4 \times \frac{2500}{96} y \Rightarrow x^{2}=\frac{2500}{24} y$
Let $\quad P R=k m$
Then, point $P(18, k)$ will satisfy the equation of parabola.
$\therefore \quad$ From Eq. $(i), \quad(18)^{2}=\frac{2500}{24} \times k$
$\Rightarrow \quad 324=\frac{2500}{24} k \Rightarrow k=\frac{324 \times 24}{2500}=\frac{324 \times 6}{625}=\frac{1944}{625}$
$\Rightarrow \quad k=3.11$
\therefore Required length $=6+k=6+3.11=9.11 m$ (approx.)

