QB365
 Important Questions - Introduction to Three Dimensional Geometry
 11th Standard CBSE

Mathematics

Reg.No.

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) Let L, M, N be the feet of the perpendiculars drawn from a point $P(3,4,5)$ on the X, Y and Z-axes respectively. Find the coordinates of L, M and N .
2) If A, B and C are the feet of perpendiculars from a point P on $X Y, Y Z$ and $Z X$-planes respectively, then find the coordinates of A, B and C, where the point P is $(-5,3,7)$
3) If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{27}$, then find the value of a.
4) By using distance formula, show that the points (2,-1,0), (-2,3,-2) and ($0,3,0$) are collinear
5) A point is on the X-axis, What are its y and z-coordinates?
6) If the origin is the centroid of the $\triangle P Q R$ with vertices $\mathrm{P}(2 \mathrm{a}, 2,6), \mathrm{Q}(-4,3 \mathrm{~b},-10)$ and $\mathrm{R}(8,14,2 \mathrm{c})$, then find the values of a, b and c.

Section-B

7) Find the distance between the points $A(2,3,1)$ and $B(1,-2,0)$
8) Find the coordinates of a point equidistant from the four points $O(0,0,0), A(l, 0,0), B(0, m, 0)$, and $C(0,0, n)$
9) In the given figure, if the coordinates of point P are (a, b, c), then write the coordinates of A, D, B, C and E.
10) What are the conditions of the vertices of a cube whose edge is 5 units, one of whose vertices coincides with
the origin and threee edges passing through the origin coincides with the positive direction of the axes through the origin?
11) If a parallelopiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then the length of edges and diagonal of the parallelpiped by using distance formula.
12) Show that the points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled isosceles triangle.

Section-C

13) Show that the points $(-2,6,-2),(0,4,-1),(-2,3,1)$ and $(-4,5,0)$ are the vertices of a squre.

14) Show that $\triangle A B C$ with vertices
$A(0,4,1), B(2,3,-1)$, and $C(4,5,0)$ is right angled.
15) Show that the points $P(0,7,10), Q(-1,6,6)$ and $R(-4,9,6)$ form a right angled isosceles triangle.
16) The mid-points of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices
17) Using the section formula, show that the points, $(2,-3,4),(-1,2,1)$ and $\left(0, \frac{1}{3}, 2\right)$ are collinear.

Section-A

1) $L(3,0,0), M(0,4,0)$ and $N(0,0,5)$
2) $A(-5,3,0), B(0,3,7), C(-5,0,7)$
3) $A B=\sqrt{(a-0)^{2}+(0-1)^{2}+(1-2)^{2}}$
$\Rightarrow \sqrt{27}=\sqrt{a^{2}+1+1}$
Ans. $a=+5$
4) To prove, collinear, $A B+B C=A C$
5) Coordinates of any point on the X-axis is ($x, 0,0$).

Because at X-axis, both y and z-coordinates are zero.
So, y and z-coordinates of points are zero.
6) Given vertices of $\triangle P Q R$ are $\mathrm{P}(2 \mathrm{a}, 2,6), \mathrm{Q}(-4,3 \mathrm{~b},-10)$ and $\mathrm{R}(8,14,2 \mathrm{c})$. Centroid of $\triangle P Q R$ is $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$

$$
=\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)
$$

Also, given that centroid of triangle is origin i.e. $(0,0,0)$

$$
\begin{array}{ll}
\therefore & \frac{2 a+4}{3}=0 \Rightarrow 2 a+4=0 \quad \Rightarrow a=-2 \\
& \frac{3 b+16}{3}=0 \Rightarrow 3 b+16=0 \quad \Rightarrow b=\frac{-16}{3}
\end{array}
$$

and $\frac{2 c-4}{3}=0 \Rightarrow 2 c-4=0 \quad \Rightarrow c=2$
Hence $\quad a=-2, \quad b=\frac{-16}{3}, \quad c=2$

Section-B

7) Given points are $A(2,3,1)$ and $B(-1,2,0)$

Here, $x_{1}=2, y_{1}=3, z_{1}=1$
and $x_{2}=1, y_{2}=-2, z_{2}=0$
\therefore The distance between the points A and B
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}+z_{1}\right)^{2}}$
$=\sqrt{(1-2)^{2}+(-2-3)^{2}+(0-1)^{2}}$
$=\sqrt{(-1)^{2}+(-5)^{2}+(-1)^{2}}$
$=\sqrt{1+25+1}$
$=\sqrt{27}=3 \sqrt{3}$ units
8) Let $P(x, y, z)$ be required point.

Then, $\quad O P=P A=P B=P C$
Now, $\quad O P=P A \Rightarrow O P^{2}=P A^{2}$
$\Rightarrow(0-x)^{2}+(0-y)^{2}+(0-z)^{2}=x-1^{2}+y-0^{2}+(z-0)^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}=x^{2}-2 l x+l^{2}+y^{2}+z^{2}$
$\Rightarrow \quad 2 l x=l^{2} \Rightarrow x=\frac{1}{2}$
Similarly, $\quad O P=P B \Rightarrow y=\frac{m}{2}$ and $\quad O P=P C \Rightarrow x=\frac{n}{2}$
Hence, the coordinates of the required point are $\left(\frac{1}{2}, \frac{m}{2}, \frac{n}{2}\right)$.
9)

Given, the coordinates of point P are (a,b,c).
Which shows that, $O A=a, O B=b$ and $O C=c$.
Now, point A lies on X -axis, so its coordinates are ($\mathrm{a}, \mathrm{0}, 0$). Point D lies in XY -plane, so its coordinates are $(a, b, 0)$. Point B lies on Y -axis, so its coordinates are ($0, \mathrm{~b}, 0$).
Point C lies on Z - axis, so its coordinate are ($0,0, \mathrm{c}$) and point E lies in YZ-plane, so its coordinate are ($0, \mathrm{~b}, \mathrm{c}$).
Hence, the coordinates of required points are
$\mathrm{A}(\mathrm{a}, 0,0), \mathrm{D}(\mathrm{a}, \mathrm{b}, 0), \mathrm{B}(0, \mathrm{~b}, 0), \mathrm{C}(0,0, c)$ and $\mathrm{E}(0, \mathrm{~b}, \mathrm{c})$.
10) Given, edge of a cube is 5 unit. It is clear that

Coordinate of $\mathrm{G}=(0,5,0) \quad$ Coordinate of $\mathrm{D}=(0,0,5)$
Coordinate of $\mathrm{B}=(5,5,0) \quad$ Coordinate of $\mathrm{F}=(5,5,5)$
Coordinate of $\mathrm{E}=(5,0,5) \quad$ Coordinate of $\mathrm{C}=(0,5,5)$

11) Let $\mathrm{P}=(3,6,8)$ and $\mathrm{Q}=(5,8,10)$

Now, PE=Distance between parallel planes ABCP and FQDE $=|10-8|$ [therefore these planes are perpendicular to Z-axis]
$=2$ units

PA=Distance between parallel planes ABQF and PCDE
$=|5-3|$ [because these planes are perpendicular to X-axis]
$=2$ units
PC=Distance between parallel planes APEF and BCDQ
$=|8-6|$ [because these planes are perpendicular to Y-axis]
$=2$ unis
Therefore Length of diagonal $=$ Distance between Pand Q
$=\sqrt{(5-3)^{2}+(8-6)^{2}+(10-8)^{2}}$ [using the distance formula]
$=\sqrt{2^{2}+2^{2}+2^{2}} \quad$ units
$=\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}$
Hence the length of each edge of parallelopiped is 2 units and the length of its diagonal is $2 \sqrt{3}$ units.
12) Let $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$ be the given points.

Then $A B=\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}}$
[using the distance formula]
$=\sqrt{1+1+16}=\sqrt{18}=3 \sqrt{2}$ units

$B C=\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}}$
$=\sqrt{9+9+0}=\sqrt{18}=3 \sqrt{2}$ units
and $A C=\sqrt{(-4-0)^{2}+(9-7)^{2}+(6-10)^{2}}=\sqrt{16+4+16}$
$\Rightarrow A C=\sqrt{36}=6 \quad$ units
Now, $\quad A B^{2}+B C^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=18+18=36^{-}$units
$\therefore A B^{2}+B C^{2}=A C^{2}$
Also, $\quad A B=B C^{2}=A C^{2}$
Hence, $A B C$ is a right angled isosceles triangle.

Section-C

$\therefore B=\sqrt{(0+2)^{2}+(4-6)^{2}+(1+2)^{2}} \quad$ [Using the distance formula]
$=\sqrt{4+4+1}=\sqrt{9}=3$ units
$B C=\sqrt{(-2-0)^{2}+(3-4)^{2}+(1+1)^{2}}$
$\sqrt{4+1+4}=\sqrt{9}=3 \quad$ units
$C D=\sqrt{(-4+2)^{2}+(5-3)^{2}+(0-1)^{2}}$
$=\sqrt{4+4+1}=\sqrt{9}=3 \quad$ units
$A D=\sqrt{(-4+2)^{2}+(5-6)^{2}+(0+2)^{2}}$
$=\sqrt{4+1+4}=\sqrt{9}=3$ units
Here, $A B=B C=C D=D A$
Now, $A C=\sqrt{(-2+2)^{2}+(3-6)^{2}+(1+2)^{2}}$
$\left[\because \quad\right.$ distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
$=\sqrt{0+9+9}=\sqrt{18 \text { units }}$
and $B D=\sqrt{\left.(-4-0)^{2}+5-4\right)^{2}+(0-1)^{2}}$
$=\sqrt{16+1+1}=\sqrt{18}$ units
Sine, diagonal $\mathrm{AC}=$ diagonal BD
Hence, $A B C D$ is a square.
14) Show that $A B^{2}+B C^{2}=A C^{2}$
15) $P Q=Q R$ and $P Q^{2}+Q R^{2}=P R^{2}$
16) $(1,2,3),(3,4,5)$ and $(-1,6,-7)$
17)
7)

Let $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ divides the joint of $\mathrm{A}(2,-3)$ and $\mathrm{B}(-1,2,1)$ in the ratio $\mathrm{k}: 1$
Then coordinates of C are

$$
\begin{aligned}
& \left(\frac{-k+2}{k+1}, \frac{2 k-3}{k+1}, \frac{k+4}{k+1}\right) \\
& \quad \text { [using internal ratio formula] }
\end{aligned}
$$

But coordinates of C are ($0, \frac{1}{3}, 2$)
On comparing Eqs.(i) and (ii) we get

$$
\begin{array}{ll}
& \begin{aligned}
\frac{-k+2}{k+1} & =0 \Rightarrow-k+2=0 \Rightarrow 2 \\
& \\
\text { and } \quad & \frac{2 k-3}{k+1}=\frac{1}{3} \Rightarrow 6 k-9=k+1 \Rightarrow 5 k=10 \Rightarrow k=2 \\
\frac{k+4}{k+1} & =2 \Rightarrow k+4=2 k+2 \Rightarrow k=2
\end{aligned}
\end{array}
$$

From each of these equations, we get $k=2$ Since, from each equation, we get the same value of k.
Therefore, the given points are collinear nad C divides AB internally in the ratio 2:1.

