QB365
 Important Questions - Probabitily

11th Standard CBSE
Mathematics
Reg.No.:

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) A coin tossed. If it shows tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows for this experiment.
2) In any school examination, probability that Mohan passed in Chemistry is $\frac{1}{3}$ and the probability that he passed in Physics is $\frac{2}{5}$. If the probability of passing in both subjects is $\frac{1}{6}$, then what is the probability that Mohan will pass in atleast one of these subjects?
3) A bag contains 5 green and 7 red balls, Two balls are drawn. What is the probability that one is green and other is red?
4) Two cards are drawn without replacement from a well-shuffled pack of 52 cards. What is the probability that one is red queen and the order is a king of black colour?
5) If A and B are mutually exclusive events, such that $P(A)=0.28$ and $P(B)=0.38$, then $P\left(A^{\prime} \cap B^{\prime}\right)$
6) Suppose that each child born is equally likely to be a boy or a girl. Consider a family with exactly three children. Write each of the following events as a set and find its probability.
(a) The event that exactly one child is a girl.
(b) The event that atleast two children are girls.
(c) The event that no child is a girl.

Section-B

7) A and B are two events that $\mathrm{P}(\mathrm{A})=0.54, \mathrm{P}(\mathrm{B})=0.69$ and $P(A \cap B)=0.35$. Find $P\left(A^{\prime} \cap B^{\prime}\right)$
8) Two dice are thrown once. The events A, B, E are as follows

A: Getting an even number on the first die.
B: Getting on the odd number on the first die.
E : Getting the sum of numbers on the dice ≥ 10.
Describe the events
iii)E'
9) If the odds against the occurrence of an event are $4: 7$; find the probability of occurrence of the event.
10) Three coins are tossed once. Find the probability of getting at least 2 heads
11) A card is drawn from an ordinary pack and a gambler bets that it is spade or an ace. What are the odds against the winning his bet?
12) Probability that Ram passed in Mathematics is $\frac{2}{3}$ and the probability that he passed in English is $\frac{4}{9}$. If the probability of passing in both subjects is $\frac{1}{4}$, then what is the probability that Ram will pass in atleast one of these subjects?

Section-C

13) In a large metropolitan area, the probabilities are $0.87,0.36,0.30$ that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?
14) Let A, B and C be three events. If the probability of occurring exactly one event out of A and B is 1-x, out of B and C is $1-2 x$, out of C and A is $1-x$, and that of occurring three events simultaneously is x^{2}, then prove that the probability that at least one out of A, B, C will occur is greater than $1 / 2$.
15) Three coins are tossed once.Find the probability of getting 2 heads
16) The probabilities of three events shown in the Venn diagram is shown below

Determine
$P\left(E_{2}\right)$
17) The probabilities of three events shown in the Venn diagram is shown below

Determine
$P\left(E_{1} \cap \bar{E}_{2}\right)$

Section-A

1) Let the balls in the box be represented by R_{1}, R_{2}, and B_{1}, B_{2}, B_{3} $\left\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6),\left(T, R_{1}\right),\left(T, R_{2}\right),\left(T, B_{1}\right),\left(T, B_{2}\right),\left(T, B_{2}\right),\left(T, B_{3}\right)\right\}$
2) $\frac{17}{30}$
3) $\frac{35}{36}$
4) Number of ways of possible outcomes $=26 \times 51$

We know that, there are 2 red queen and 2 kings of black colour in apack of 52 cards Number of favourable outcomes
$={ }^{2} C_{1} \times{ }^{2} C_{1}=2 \times 2=4$
Hence, required probability $=\frac{4}{26 \times 51}=\frac{2}{663}$
5) $P\left(A^{\prime} \cap B^{\prime}\right)=P(A \cup B)^{\prime}=1-P(A \cup B)$
6) (a) Let E_{1} denotes the event that exactly one child is a girl.

Then, $\quad E_{1}=\{B B G, B G B, G B B\}$
$\Rightarrow \quad P\left(E_{1}\right)=\frac{3}{8}$
(b) Let E_{2} denotes the event that atleast two children are girls.

Then, $\quad E_{2}=\{B G G, G B G, G G B, G G G\}$
$\Rightarrow \quad P\left(E_{2}\right)=\frac{4}{8}=\frac{1}{2}$
(c) Let E_{3} denotes the event that no child is a girl.
then, $\quad E_{3}=\{B B B\}$
$\Rightarrow \quad P\left(E_{3}\right)=\frac{1}{8}$

Section-B

7) $P\left(A^{\prime} \cap B^{\prime}\right)=P\left((A \cup B)^{\prime}\right)=1-P(A \cup B)$ $=1-0.88=0.12$
8) On throwing of two dice, we have sample space
$s=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)$,
E : Getting the sum of numbers on the dice ≥ 10
E Getting the sum of numbers on the dice <10
$=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(5,1)$,
$(5,2),(5,3),(5,4),(6,1),(6,2),(6,3)\}$
9) We know that, if odds against of an event are $n: m$, then
probability of occurrence of this event is $\frac{m}{m+n}$
\therefore Required probability $=\frac{7}{7+4}=\frac{7}{11}$
10) In random experiment of tossing three coins, the sample space is
$\mathrm{S}=(\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

$$
\Rightarrow \quad \mathrm{n}(\mathrm{~S})=8
$$

Let E_{2} be the event of getting atleast 2 heads.
Then, outcome favourable to E_{2} are $\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}$, and HHH$\}$
Thus,

$$
\mathrm{n}\left(\mathrm{E}_{2}\right)=4
$$

$$
\therefore \quad P\left(E_{2}\right)=\frac{n\left(E_{2}\right)}{n(S)}=\frac{4}{8}=\frac{1}{2}
$$

Let be the sample space associated with the given random experiment. Then, $\mathrm{n}(\mathrm{S})=52$
Now, let A be the event of getting a spade and B be the event of getting an ace. $A \cap B$ denote the event of getting an ace of spade.
Then,
$\mathrm{n}(\mathrm{A})=13$ and $\mathrm{n}(\mathrm{B})=4$
$\mathrm{n}(A \cap B)=1$
$P(A)=\frac{13}{52} ; P(B)=\frac{4}{52} \quad$ and $\quad P(A \cap B)=\frac{1}{52}$
Now, P (winning the bet) $=\mathrm{P}$ (getting a spade or an ace)
$=P(A \cap B)=P(A)+P(B)-P(A \cap B)$
$=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}$
$\mathrm{P}($ not winning the bet $)=1-\frac{4}{13}=\frac{9}{13}$
Hence, odds against the winning his bet

$$
=\frac{P(\text { not winning the bet })}{P(\text { winning the bet })}=\frac{\frac{9}{13}}{\frac{4}{13}}=\frac{9}{4}=9: 4
$$

12)

Let M be the event that Ram passed in Mathematics, E be the event that Ram passed in English and $M \cap E$ be the event that Ram passed in both subjects
Now, $\mathrm{P}($ Ram pass in atleast one subject $)=P(M \cup E)$
$=P(M)+P(E)-P(M \cap E)=\frac{2}{3}+\frac{4}{9}-\frac{1}{4}=\frac{24+16-9}{36}=\frac{31}{36}$

Section-C

13)

Let A be the event that the family owns a colour television set and B be the event that the family owns a
black and white television.Then, we have $P(A)=0.87, P(B)=0.36, P(A \cap B)=0.30$
Ans. 0.93
14) $P(A \cup B \cup C)=\frac{3-4 x}{2}+x^{2}=x^{2}-2 x+\frac{3}{2}$
$=(x-1)^{2}+\frac{1}{2}>\frac{1}{2}$
15) $\frac{3}{8}$
16) 0.39
17) 0.12

