QB365 Important Questions - Sequences and Series

11th Standard CBSE

Mathematics

Reg.No. :			

Time : 01:00:00 Hrs

Total Marks : 50	
Section-A	
1) Find the Sum of all natural numbers between 250 and 1000 which are exactly divisible by 3.	2
2) Find the sum of all natural numbers lying betrween 100 and 1000, which arte multiples of 5.	2
3) In an AP, the pth term is q and the (p+q)th term is 0.Then , find the qth term.	2
4) Find the term of the following GP. (ii) 4th term from the end of the GP.	2
⁵⁾ Insert three numbers between $\frac{1}{3}$ and 432, so that the resulting sequence is a GP.	2
⁶⁾ Show that the ratio of the sum of the first n terms of a GP to the sum of terms form(n+1)th to (2n)th term is $\frac{1}{r^n}$.	2
Section-B	
7) The sum of the some terms of a Gp is 315 whose first term and the common ratio are 5 and 2, respectively.Find	3
the last term and the number of terms.	
8) Find the 20th term a_{20} of the sequence, whose nth term is	3
$a_n = \frac{n(n-2)}{n+3}$	
9) Let the sequence a_n is defined as follows $a_1=2$, $a_n=a_{n-1}+3$ for $n \ge 2$.	3
Find first five terms and write corresponding series.	
10) Write the first five terms of each of the following sequence whose nth terms are	3
(ii) $a_n = (-1)^{n+1} 3^{n+2}$	
11) Find the indicated terms in each of the sequence, where nth terms are given.	3
$a_n = \frac{n^2}{2^n}, a_7$	
12) Write the first five terms of each of the sequence and obtain the corresponding series.	3
(i) $a_1 = 3$, $a_n = 3a_{n-1}+2$, $\forall n > 1$	
Section-C	
13) Between 1 and 31, m AM's have been inserted in such a way that the ratio of the 7th and (m-1)th means is	4
5:9,Find the value of m.	
14) Three numbers are in AP. If their sum is 27 and the product 648, find the numbers.	4
¹⁵⁾ If a,b,c are in AP and b,c,d are in GP and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in AP, then prove that a,c,e are in GP.	4
16) If $x = a + \frac{a}{r} + \frac{a}{r^2} + \dots \infty$, $y = b - \frac{b}{r} + \frac{b}{r^2} + \dots \infty$ and $z = c + \frac{c}{r} + \frac{c}{r^2} + \dots \infty$, then prove that $\frac{xy}{z} = \frac{ab}{c}$.	4
17) Rajeev buys a scooter for Rs.22000.He pays Rs 4000 cash and agrees to pay the balance in annual instalment of Rs 1000 plus 10% interest on the uppaid amount. How much will scooter cost him?	4

of Rs 1000 plus 10% interest on the unpaid amount. How much will scooter cost him?

	Section-A	
1)	156375	2
2)	98450	2
3)	T _q = 9	2
4)	6	2
5)	(2, 12, 72) or (-2, 12, -72)	2
6)	Let the GP is $ar, ar^2, ar^3, ar^4, ar^5,, ar^{n-1}$,	2
	\tilde{n} terms $ar^n, ar^{n+1}, \ldots, ar^{2n-1}$	
	Now, required ratio= $\frac{\frac{n}{n} terms}{\frac{a(r^n-1)}{r-1}}{\frac{ar^n(r^n-1)}{r-1}}$ Section-B	
7)	Given,a=5,r=2 and S _n =315	3
	Therefore, 315 $= \frac{5(2^n-1)}{2-1} \Rightarrow n = 6$	3
	Ans.T ₆ =160	
	Section-B Given, a=5, r=2 and S _n =315 Therefore, $315 = \frac{5(2^n-1)}{2-1} \Rightarrow n = 6$ Ans.T ₆ =160 We have, $a_n = \frac{n(n-2)}{n+3}$ On putting n = 20, we get $a_{20} = \frac{20(20-2)}{20+3}$ $\Rightarrow \qquad a_{20} = \frac{20 \times 18}{23} = \frac{360}{23}$ We have $a_1=2$ and $a_n = a_{n-1}+3$ On putting n=2, we get $a_2 = a_1 + 3 = 2 + 3 = 5$	3
9)	We have $a_1=2$ and $a_n=a_{n-1}+3$	3
	On putting n=3, we get $a_3 = a_2 + 3 = 5 + 3 = 8$	
	On putting n=4, we get $a_4 = a_3 + 3 = 8 + 3 = 11$	
	On putting n=5, we get $a_5 = a_4 + 3 = 11 + 3 = 14$	
	Thus, first five terms of given sequence are 2, 5, 8, 11 and 14. Also, the corresponding series is 2 + 5 + 8 + 11 + 14 +	
	27, -81, 243, -729, 2187	3
	$a_7 = \frac{49}{128}$	3
	120	
12	We have, $a_1 = 3$, $a_n = 3a_{n-1}+2$ for all $n > 1$.	3
	On putting $n = 2$, we get $a_2 = 3a_{2-1} + 2 = 11$	
	On putting n = 3, we get $a_3 = 3a_{3-1} + 2 = 35$	
	On putting $n = 4$, we get $a_4 = 3a_{4-1} + 2 = 107$	
	On putting n = 5, we get a ₅ = 3a ₅₋₁ +2 = 323	
	∴ Sequence is 3, 11, 35, 107, 323,	

:. Series is 3 + 11 + 35 + 107 + 323 + ...

Section-C
13) Let A₁,A₂,A₃,A₄,....,A_m be m AM's between 1 and 31 are in AP.
Therefore, 1,A₁,A₂,A₃,A₄,....,A_m 31 are in AP.
Here, the total number of terms is m+2 and

$$T_{m+2}=31$$

 $\Rightarrow 1+(m+2-1) d=31 \Rightarrow (m+1) d=30$
 $\Rightarrow d=\frac{30}{m+1} \qquad \dots \dots \dots (i)$
 $\therefore A_7=T_8=a+7d$
 $=1+7 \times \frac{30}{m+1} = \frac{m+211}{m+1}$ [from Eq.(i)]
 $A_{m-1}=T_m=1+(m-1) d=1+(m-1) d=1+(m-1) \frac{30}{m+1}$
 $=\frac{m+1+30m-30}{m+1}$ [from Eq.(i)]
 $=\frac{31m-29}{m+1}$
 $\therefore \frac{47}{Am-1} = \frac{(m+211)/(m+1)}{(31m-29)/m+1} = \frac{m+211}{31m-29} \Rightarrow m=14$
14) 6, 9, 12 or 12, 9, 6
15) b,c,d are in GP.
 $\Rightarrow C^2 = bd \qquad \dots (ii)$
Similarly, $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$ are in AP.
 $\Rightarrow \frac{2}{d} = \frac{1}{c} + \frac{1}{e}$
 $\Rightarrow d = \frac{2ce}{c+e}$
On putting the values of b and d from Eq.(i) and (iii), in Eq.(ii), we get

 $\Rightarrow \quad d = \frac{2ce}{c+e}$

On putting the values of b and d from Eq.(i) and (iii), in Eq.(ii), we get

$$c^{2} = \left(\frac{a+c}{2}\right) \times \left(\frac{2ce}{c+e}\right) \Rightarrow c^{2} = ae$$

Therefore, a,c,e are in GP.

16) Clearly, x,y, and z are the sums of inifinite geometric progessions.

$$x = \frac{a}{1 - \frac{1}{r}} = \frac{ar}{r - 1}, y = \frac{b}{1 - \left(-\frac{1}{r}\right)} = \frac{br}{1 + r}$$
$$z = \frac{c}{1 - \frac{1}{r}} = \frac{cr^2}{r^2 - 1}$$

and

Now,

$$xy = \left(\frac{ar}{r-1}\right) \left(\frac{br}{r+1}\right) = \frac{abr^2}{r^2 - 1}$$

$$\Rightarrow \frac{xy}{z} = \left\{ \left(\frac{abr^2}{r^2 - 1}\right) \div \frac{cr^2}{(r^2 - 1)} \right\} = \frac{ab}{c}$$

Δ

4