QB365
 Important Questions - Straight Lines

11th Standard CBSE

Mathematics

Reg.No.:

Time : 01:00:00 Hrs

Total Marks: 50

Section-A

1) Show that the points $A(4,-1), B(6,0), C(7,2)$ and $D(5,1)$ are the vertices of a rhombus.
2) If the points $A(-2,-1), B(1,0), C(x, 3)$ and $D(1, y)$ are the verues of x and y (without using distance formula).
3) Find the area of $\triangle A B C$, the mid-points of whose sides $A B, B C$ and $C A$ are $D(3,-1), E(5,3)$ and $F(1,-3)$, respectively.
4) the length of the perpendicular from the origin to a line is 7 and the line makes an angle of 120° with the positive direction of Y - axis. Find the equation of the line.
5) Find the coordinates of the foot of perpendiculars from the point $(2,3)$ on the line $y=3 x+4$
6) In which quadrant, the following points lie?

$(6,-3)$

Section-B

7) In which quadrant, the following points lie? (iv) $(5,4)$
8) Find the new coordinates of point (3,-4), if the origin is shifted to $(1,2)$ by a translation.
9) Find the equation of the lines parallel to the axes and passing through the point(-3,5)
10) A point moves, so that the sum of its distances from (ae,0) and $(-\mathrm{ae}, 0)$ is 2 a , prove that the equation to its locus is $\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{b^{2}}=1$, where $\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$.
11) Find the distance of the point $(2,-3)$ from the line $2 x-3 y+6=0$.
12) Check whether the points $(1,-3),(5,2)$ and $(9,5)$ are collinear or not

Section-C

13) A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points $(2,0),(0,2)$ and $(1,1)$ on the line is zero. Find the coordinates of the point P.
14) Find the area of a square, if two sides of a square are $x+2 y+3=0$ and $x+2 y=5$.
15) If four points $A(6,3), B(3,5), C(4,-2)$ and $D(x, 3 x)$ are given in such a way that $\frac{\triangle D B C}{\triangle A B C}=\frac{1}{2}$, then find x.
16) Find the points on the line $x+y=4$ which lie at a unit distance from the line $4 x+3 y=10$.
17) Prove that the following lines are concurrent. $5 x-3 y=1,2 x+3 y=23$ and $42 x+21 y=257$

Section-A

1) Show that $A B=C D=B C=D A$
2) Mid-point of $A C=$ Mid-point of $B D$

Ans $x=4, y=2$
3) Since, D, E and the F are the mid-points of sides $A B, B C$ and $C A$, respectively of a $\triangle A B C$.
$\operatorname{ar}(\triangle A B C)=4 \times \operatorname{ar}(\triangle D E F)$
8 sq units
4) $x+\sqrt{3} y=14$
5) $\left(\frac{-1}{10}, \frac{37}{10}\right)$
6) Let $A=(6,-3)$

Since x-coordinate of A is positive and its y-coordinate is negative, therefore A lies in the fourth quadrant.

Section-B

7)

Let $D=(5,4)$
Since, x-coordinate of D is positive and its y-coordinate is also positive, therefore D lies in the first quadrant.
8) The coordinates of the new origin are $h=1, k=2$ and the original coordinates are given point are $x=3, y=-4$.
The transformation relation between the old coordinates (x, y) and the new coordinates (X, Y) are given by $x=X+h$,i.e. $X=x-h$.....(i)
$y=Y+k$,i.e. $Y=y-k$ \qquad
On substituting the values $x=3, y=4, h=1$ and $k=2$ ineqs (i) and (ii), we get
$X=3=2$ and $Y=42=6$
Hence the coordinates of point $(3,-4)$ in the new system are $(2,-6)$.
9) Clearly, the equation of a line parallel to the x-axis and passing through($-3,5$) is $y=5$

The equation of a line parallel to the y-axis and passing through($-3,5$) is $x=-3$.
10) Let, $P(h, k)$ be the moving point such that the sum of its distances from $A(a e, 0)$ and $B(-a e, 0)$ is $2 a$.

Then, $P A+P B=2 a$
$\Rightarrow \sqrt{(h-a e)^{2}+(k-0)^{2}}+\sqrt{(h+a e)^{2}+(k-0)^{2}}=2 a$ [by distance formula]
$\Rightarrow \sqrt{(h-a e)^{2}+k^{2}}+2 a-\sqrt{(h+a e)^{2}+k^{2}}$
$\Rightarrow(h-a e)^{2}+k^{2}=4 a^{2}+(h+a e)^{2}+k^{2}-4 a \sqrt{(h+a e)^{2}+k^{2}}$
[squaring on both sides]
$h^{2}+a^{2} e^{2}-2 h a e+4 a^{2} h^{2}+a^{2} e^{2}+2 h a e-4 a \sqrt{(h+a e)^{2}+k^{2}}$
$\Rightarrow-4 a e h-4 a^{2}=-4 a \sqrt{(h+a e)^{2}+k^{2}}$
$\Rightarrow(e h+a)=\sqrt{(h+a e)^{2}+k^{2}}$
$\Rightarrow(e h+a)^{2}=(h+a e)^{2}+k^{2}$ [again squaring on both sides]
$\Rightarrow e^{2} h^{2}+2 a e h+a^{2}=h^{2}+a^{2} e^{2}+2 a e h+k^{2}$
$\Rightarrow h^{2}(1-e)^{2}+k^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow \frac{h^{2}}{a^{2}}+\frac{k^{2}}{a^{2}\left(1-e^{2}\right)}=1$
Hence, locus of point $P(h, k)$ is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$ or $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $\mathrm{b}_{2}=\mathrm{a}_{2}\left(1-\mathrm{e}_{2}\right)$
11) Given equation of line is
$2 x-3 y+6=0$
\therefore Required distance of the point from the line $=$ The perpendicular distance from point to the line

$$
=\frac{|2 \times 2-3(-3)+6|}{\sqrt{2^{2}+(-3)^{2}}}=\frac{|4+9+6|}{\sqrt{4+9}}=\frac{19}{\sqrt{13}}
$$

12) Let $\mathrm{A}=(1,-1), \mathrm{B}(5,2)$ and $\mathrm{C}(9,5)$

Now, distance between A and B

$$
A B=\sqrt{(5-1)^{2}+(2+1)^{2}}[\text { By distance formula }]=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

Distance between B and $C, B C=$

$$
\sqrt{(5-9)^{2}+(2-5)^{2}}=\sqrt{(-4)^{2}+(-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

Distance between A and C

$$
A C=A C=\sqrt{(1-9)^{2}+(-1-5)^{2}}=\sqrt{(-8)^{2}+(-6)^{2}}=\sqrt{64+36}=10
$$

Clearly, $A C=A B+B C$ ence $, A, B$ and C are collinear points

Section-C

13) Let slope of the line be m and the coordinates of fixed point P be $\left(x_{1}, y_{1}\right)$.

Then, equation of line is $y-y_{1}=m\left(x-x_{1}\right) \quad \ldots$ (i)
Let the given points be $A(2,0), B(0,2)$ and $C(1,1)$.
Now, perpendicular distance from A

$$
=\frac{0-y_{1}-m\left(2-x_{1}\right)}{\sqrt{1+m^{2}}}
$$

Perpendicular distance from B $=\frac{2-y_{1}-m\left(0-x_{1}\right)}{\sqrt{1+m^{2}}}$
and perpendicular distance from $\mathrm{C}=\frac{1-y_{1}-m\left(1-x_{1}\right)}{\sqrt{1+m^{2}}}$
Now, $\frac{\left[-y_{1}-2 m+m x_{1}+2-y_{1}+m x_{1}+1-y_{1}-m+m x_{1}\right]}{\sqrt{1+m^{2}}}=0$
$\Rightarrow \quad-3 y_{1}-3 m+3 m x_{1}+3=0$
$\Rightarrow \quad-\mathrm{y}_{1}-\mathrm{m}+\mathrm{mx}_{1}+1=0$
$\Rightarrow \quad y_{1}=-\mathrm{m}+\mathrm{mx}_{1}+1$
On substituting this value in Eq. (i), we gwt
$y+m-m x_{1}-1=m x-m x_{1} \Rightarrow y-1=m(x-1)$
Thus, $\quad\left(x_{1}, y_{1}\right)=(1,1)$
14) Given sides of a square are parallel lines.
\therefore The distance between two parallel lines $x+2 y+3=0$ and $x+2 y-5=0$ is
$d=\frac{|-5-3|}{\sqrt{1^{2}+2^{2}}} \quad\left[\because d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}\right]=\frac{8}{\sqrt{ } 1+4}=\frac{8}{\sqrt{5}}$
\therefore Length of side a square, $\mathrm{a}=\mathrm{d}=\frac{8}{\sqrt{5}}$

$$
\therefore \quad \text { Area of a square }=\mathrm{a}_{2}=\left(\frac{8}{\sqrt{5}}\right)^{2}=\frac{64}{5}^{\text {sq units }}
$$

15) $\frac{11}{8}$
16) Let the required point be (h, k).

Since, point (h, k) lies on the line $x+y=4$,
therefore $\quad h+k=4$
Also, the distance of the point (h, k) from the line
$4 x+3 y=10 \quad$ is $\quad\left|\frac{4 h+3 k-10}{\sqrt{16+9}}\right|=1 \Rightarrow \quad 4 h+3 k-10= \pm 5$
Ans. $(3,1)$ and $(-7,11)$
17) Prove that point of intersection of any two lines lies on the third line.

