QB365

Important Questions - Equilibrium

11th Standard CBSE
Chemistry
Reg.No.

Time : 01:00:00 Hrs

Section-A

1) A tank is full of water. Water is coming in as well as going out at same rate. What will happen to level of water in a tank? What is name given to such a state?
2) Explain, why pure liquids and solids can be ignored while writing the equilibrium constant expression?
3) What will be the pH of $1 \mathrm{MNa} \mathrm{SO}_{4}$ solution?
4) What is the expression for $k_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
5) Is it possible to get a precipitate of $\mathrm{Fe}(\mathrm{OH})_{3}$ at $\mathrm{pH}=2$? given reason.
6) Will AgCl be more soluble in aqueous solution or NaCl solution and why?
7) Why pH of our blood remains almost constant at 7.4 though we quite often eat spicy food?
8) the ionization constant of formic acid is 1.8×10^{-4}. Calculate the ratio of sodium formate and formic acid in a buffer of pH4.25
9) Identify the substance that get reduced in the following reaction.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)
$$

10) Write the conjugate acids for the following Bronsted bases $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}.

$$
\text { Base }+\mathrm{H}^{+} \rightleftharpoons \text { Conjugate acid }
$$

Section-B

11) Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium?

$$
\mathrm{Ag}_{2} \mathrm{O}(s)+2 \mathrm{HNO}_{3}(a q) \rightleftharpoons 2 \mathrm{AgNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

12) Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium?

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})
$$

13) What will be the PH of 0.1 M ammonium acetate solution? $P k_{a}=P k_{b}=4.74$
14) For the reaction $N_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$, the partial pressure of N_{2} and H_{2} are 0.80 and 0.40 atmosphere respectively at equilibrium. The total pressure of the system is 2.80 atmosphere. What is K_{p} for the above reaction?
15) One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . At equilibrium, 40% of water (by mass) reacts with CO according to the equation, $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$

Calculate the equilibrium constant for the reaction.
16) Urine has a pH of 6.0.If a patient eliminates 1300 mL of urine per day, how many gram equivalents of the acid the eliminates per day?
17) Calculate the percentage hydrolysis of sodium acetate in 0.1 M solution at $25^{\circ} \mathrm{C}$ assuming the salt to be completely dissociated. $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$.
18) Blood has pH of 7.40. Calculate the ratio of hydrogen carbonate ion HCO_{3}^{-}to $\mathrm{H}_{2} \mathrm{CO}_{3}$ carbonic acid in blood to maintain its pH value. $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=6.37$.
19) One of the reaction that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and $C O_{2}$

$$
\mathrm{Feo}(s)+\mathrm{CO}(g) \leftrightharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(g) ; \quad K_{p}=0.265 \text { atm at } 1050 \quad \mathrm{~K}
$$

What are the equilibrium partial pressure of CO and CO_{2} at 1050 K if the initial partial pressure are $P_{c o}=1.4 \mathrm{~atm}$ and $\mathrm{PCO}_{2}=0.80$ atm? First Q_{p} by the given initial partial pressures of $[\mathrm{CO}]$ and $\left[\mathrm{CO}_{2}\right]$.
20) What is the minimum volume of water required to dissolved 1 g of calcium sulphate at 298 K ? (For calcium sulphate, K_{sp} is 9.1×10^{-6})

Section-C

21) Which of the following reactions involve homogeneous equilibrium and which ones involve heterogeneous equilibrium? $2 \mathrm{NH}_{2}(g) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
22) $K_{a_{1}}, K_{a_{2}}$ and $K_{a_{3}}$ are the respective ionisation constants for the following reactions.
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-} \mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-} \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$
Write the correct relationship $K_{a_{1}}, K_{a_{2}}, K_{a_{3}}$.
To find out the correct relationship between three ionisation constants ($K_{a_{1}}, K_{a_{2}}$ and $K_{a_{3}}$) this must be keep in mind that when two reactions are added, their equilibrium constants are multiplied.
23) Calculate the pH of a buffer which is 0.1 M in acetic acid and 0.15 M in sodium acetate. Given that the ionisation costants of acetic acid is 1.75×10^{-5}. Also calculate the change in pH of the buffer if to 1 L of the buffer
1 cc of 1 M HCl are added. Assume that the charge in volume is negligible.
24) The first ionisation constant on $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of HS^{-}ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1

M in HCl also? If the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.
$\mathrm{H}_{2} \mathrm{~S}$ being a weak acid, dissociates as
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-} \therefore \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
HCl being a strong acid dissociates completely, so calculate [HS-] in the presence of 0.1 M HCl by taking [HS+] concentration as 0.1 M .
Calculate [S2-] ion concentration by using the equation,
$\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{2-}$
Calculate the [S2-] ion concentration in the presence of 0.1 M HCl .

Section-A

1) It will remain the same because rate of inflow is equal to rate of outflow. The state is called of 'equilibrium'.
2)

Molar concentration of pure solid or liquid (if in excess) is constant (i.e. independent of the amount present). That's why pure liquids and solids can be ignored while the equilibrium constant expression.
3) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a salt of the strong acid and strong base, thus its aqueous solution will be neutral. Therefore,its pH wii be 7
4) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \stackrel{\rightharpoonup}{-} 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) ; \mathrm{K}_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=(2 s)^{2}(s)=4 s^{3}$
5) No, because $\mathrm{Fe}(\mathrm{OH})_{3}$ will dissolve in the strongly acidic medium.
6)

In NaCl Solution, the Cl^{-}ions will increase.Since solubility product, $k_{s p}=\left[\mathrm{Ag}^{+}\left[\mathrm{cl}^{-}\right]\right.$remains constant. $[\mathrm{Ag}]^{+}$will decrease. therefore, the solubility of AgCl will be less in NaCl solution than in water
7)

Blood is a buffer containing carbonic acid $\left(\mathrm{H}_{2} \mathrm{Co}_{3}\right)$ and bicarbonate ions $\left(\mathrm{H}_{2} \mathrm{Co}_{3}\right)$. Small amounts of the acid or base produced from the spicy food do not disturb its pH.
8)

$$
P k_{a}=-\log \left(1.8 \times 10^{-4}\right)=3.74 \left\lvert\, \log \frac{[\text { salt }]}{[\text { Acid }]}=p H-p K_{a}=4015-3.75=0.51\right. \text { or } \quad \frac{[\text { salt }]}{[\text { Acid }]}=\text { Anrilog } \quad 0.51=3.24
$$

9) In the reaction, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ loses oxygen and is reduced to Fe .
10) The conjugate acid should have one extra proton in each case and therefore the corresponding conjugate acid are $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and HCOOH respectively

Section-B

11) Heterogeneous equilibrium

Homogeneous equilibrium
13) $\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$
$p H=\frac{-p}{2} p k_{w}+\underset{2}{-p k_{a}}-\frac{-p}{2} p K_{b}=-(14)+\underset{2}{-(4.75)}-\frac{-}{2}(4.74)=7$
14) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$,

Given, at equilibrium, $P N_{2}=0.80$ atmosphere
$\mathrm{PH}_{2}=0.40$ atmosphere
$P_{N_{2}}+P_{H_{2}}+P_{N_{3}}=2.80$ atmosphere
$\therefore P_{N H_{3}}=2.80-(0.80+0.40)=1.60$ atmosphere
From, $\mathrm{K}=\frac{\stackrel{2}{2}^{2 N H_{3}}}{P_{N_{2}} \times \mathrm{PH}_{2}}=\frac{(1.60)^{2}}{0.80 \times(0.40)^{3}}=50.0$
15) $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$

Initial conc. 1	1	00

Equili.conc. (1-x) (1-x) $\mid \mathrm{xx}$
$\mathrm{H}_{2} \mathrm{O}$ reacted $=40 \%$ of 1 mole of $\mathrm{H}_{2} \mathrm{O}=0.4 \mathrm{~mol}$
$\therefore \quad x=0.4 \mathrm{~mol}$
$(1-x)=1-0.4=0.6 \mathrm{~mol}$
$K_{c}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{0.4 \times 0.4}{0.6 \times 0.6}=0.444$
16) $\mathrm{pH}=6.0$

$$
2
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{M}$
[Acid] $=10^{-6} \mathrm{M}=10^{-6} \mathrm{~N}$
Thus, 1000 mL of the urine contain acid $=10^{-6} \mathrm{~g}$ eq.
1300 mL of the urine will contain acid $=1.3 \times 10^{-6} \mathrm{~g}$ eq.
17) Ans. 0.00075%
$\mathrm{FeO}(s)+\mathrm{co}(g) \leftrightharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2} \quad(\mathrm{~g}) ;$
Initial pressure 1.4 atm 0.80 atm $\left(\mathrm{K}_{\mathrm{p}}=.265\right.$ at 1050 K$)$
$Q_{p}=\frac{P C O_{2}}{P C O}=\frac{0.80}{1.4}=0.571[\because \mathrm{Fe}$ and Feo are solids $]$
$\because Q_{p}>K_{p}$, the reaction will go in reverse direction. Due to this, pressure of CO_{2} will decrease and that of CO will increase to attain equilibrium.
Suppose p is the decrease in pressure of CO_{2} and p is the increase in pressure of CO . Hence,

20) $\mathrm{CaSO}_{4} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{SO}_{4}^{2-} ; K_{s p}=9.1 \times 10^{-6}$

$$
\begin{array}{lll}
\mathrm{S} & \mathrm{~S} & \mathrm{~S}
\end{array}
$$

Where s is the solubility of CaSO_{4}

$$
K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[S \mathrm{O}_{4}^{2-}\right]=S . S=S^{2} S=\sqrt{K_{s p}}=\sqrt{9.1 \times 10^{-6}} \Rightarrow S=3.017 \times 10^{-3} M
$$

Solubility of $\mathrm{CaSO}_{4}=3.017 \times 10^{-3} \mathrm{~mol}^{-1}$
$=3.017 \times 10^{-3} \times 136 \mathrm{gL}^{-1}$
(Molar mass of $\mathrm{CaSO}_{4}=136 \mathrm{~g} \mathrm{~mol}^{-1}$)
$=410.3 \times 10^{-3} \mathrm{gL}^{-1}$
$410.3 \times 10^{-3} \mathrm{~g} \mathrm{CaSO}_{4}$ is dissolved in $=1 \mathrm{~L}$
$1 \mathrm{~g} \mathrm{CaSO}_{4}$ is dissolved in $=\frac{1 \times 1}{410.3 \times 10^{-3}}=2.437 \mathrm{~L}$

Section-C

21) Homogeneous equilibrium
22) For the reaction
$H_{2} S \rightleftharpoons H^{+}+H S^{-} K_{a_{1}}=\frac{\left[H^{+}\right]\left[H S^{-}\right]}{\left[H_{2} s\right]}$ For the reaction, $H S^{-} \rightleftharpoons H^{+}+S^{2-} K_{a_{2}}=\frac{\left[H^{+}\right]\left[S^{2-}\right]}{\left[H S^{-}\right]}$
When the above two reactions are added, their equilibrium constants are multiplied, thus
$K_{a_{3}}=\frac{\left[H^{+}\right]^{2}\left[S^{2-}\right]}{\left[H_{2} s\right]}=K_{a_{1}} \times K_{a_{2}}$ Hence, $K_{a_{3}}=K_{a_{1}} \times K_{a_{2}} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
23) 1 cc of 1 M HCl contains $\mathrm{HCl}=10^{-3} \mathrm{~mol}$. This will convert $10^{-3} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COONa}$ into $\mathrm{CH}_{3} \mathrm{COOH}$.

Now, $[$ Acid $]=0.10+0.001=0.101 \mathrm{M}$
[Salt] $=0.15-0.001=0.149 \mathrm{M}$

$$
\mathrm{pH}=4.757+\log \frac{0.149}{0.101}
$$

$$
=4.757+0.169
$$

$$
=4.925
$$

Decrease in $\mathrm{pH}=4.933=0.007$ which is again negligible .
24) In the presence of 0.1 M HCl ,

