QB365
 Important Questions - Some Basic Concept of Chemistry
 11th Standard CBSE

Chemistry

Reg.No.: | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) Calculate the mass of a sample of iron metal that contains 0.250 moles of iron atoms.
2) Describe the difference between the mass of mole of oxygen atom (0) and the mass of a mole of oxygen molecule (0) ${ }_{2}$
3) What do you understand by stoichiometric coefficients in a chemical equation?
4) A black dot used as a full stop at the end of a sentence has a mass of about one attogram.Assuming that the dot is made up of carbon , Calculate the approximate number of carbon atoms present in a dot?
5) What is the mass in gram of one molecule of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$?
6) Round up the following upto three significant figures
38.216
7) Round up the following upto three significant figures
10.4107
8) Convert the following into kg . $0.91 \times 10^{-27} \mathrm{~g}$ (mass of electron)
9) Calculate the number of gram of oxygen in 0.10 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} 0$.
10) Calculate the percentage composition of the various elements in MgSO_{4}

Section-B

11) What will be the molality of the solution contaning 18.25 g of HCl gas in 500 g of water?
12) The reactant which is entirely consumed in reaction is known as limiting reagent. In the reaction $2 \mathrm{~A}+4 \mathrm{~B}-$ $>3 C+4 D$, when 5 moles of A react with 6 moles of B, then Which is the limiting reagent?
13) How are 0.50 mole $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{MNa}_{2} \mathrm{CO}_{3}$ different?
14) How many gram of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ should be dissolved to make $100 \mathrm{~cm}^{3}$ of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution?
15) How amny significant figures are present in the following?
(iii) 5005
16) Describe what you need to do in the laboratory to test (i) the law of conversion of mass, (ii) the law of definite proportion and (iii) the law of multiple proportions
17) Two oxides of a metal contain 27.6% and 30.0% of oxygen respectively. If the formula of the first oxide is $\mathrm{M}_{3} \mathrm{O}$,
18) Dinitrogen and dihydrogen react with ecah other to produce ammonia according to the following chemical
equation,

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)
$$

Calculate the mass of ammonia produced if $2.00 \times 10^{3} g$ dinitrogen reacts with $1.00 \times 10^{3} g$ of dihydrogen.
19) Commercially available concentrated hydrochloric acid contains $38 \% \mathrm{HCl}$ by mass.
(ii) What volume of the above concentrated HCl is required to make 1.0 L of 0.10 M HCl ?
20) Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction,
$4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$
How many gram of HCl reacts with 5.0 g of manganese dioxide?

Section-C

21) Express the following in the scientific notation
0.000968
22) (ii) Perform the following calculation to proper number of significant figures.
(b) $\left(1.6 \times 10^{2}\right)^{2}$
23) A Welding fuel gas contains carbon and hydrogen only. Buring a small sample of it in oxygen gives 3.38 g
carbon dioxide, 0.690 g of water and no other products. A volume 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . Calculate
(ii) Molar mass of the gas and
24) Arrange the following in order of their increasing masses in gram
(i) One atom of silver,

Section-A

1) 14 g
2) $A=14 g$
3)

The coefficients of reactants and products involved in a chemical equation represented by the balanced form are known as stoichiometric coefficients $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}(g)$ The stoichiometric coefficients are 1,2 and 2 respectively.
4)

Mass of carbon in the dot $=1$ attogram $=10^{-18}$ Gram atomic mass of carbon $=12 \mathrm{~g}$, i.e 12 g of carbon contains 6.022×10^{23} atoms of carbon . $\therefore 10^{-18} \mathrm{~g}$ of carbon will contain carbon atoms

$$
=\frac{6.022 \times 10^{23}}{12} \times 10-18
$$

$=5.02 \times 10_{4}$ atoms
5) $A=3.22 \times 10^{-22} \mathrm{~g}$
6) 38.2
7) 10.4
10) $\mathrm{Mg}=20 \%: \mathrm{S}=26.67 ; \mathrm{O}=53.33$

Section-B

11) Molality is defined as the number of moles of solute present in 1 kg of solvent. It is denoted by m .

Thus Molality (m) $=\frac{\text { moles of solute }}{\text { mass of solvent }}$
Given that, Mass of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=500 \mathrm{~g}=0.5 \mathrm{~kg}$
Weight of $\mathrm{HCl}=1 \times 1+1 \times 35.5=36.5 \mathrm{~g}$
Molar of HCl (solute) $=\frac{18.25}{36.5}=0.5$

$$
m=\frac{0.5}{0.5}=1 m \quad[\text { from Eq.(i) }]
$$

12)

$2 A+4 B \rightarrow 3 C+4 D$
According to the given reaction, 2 moles of A rect with 4 moles of B.
Hence, 5 moles of A will react with 10 moles of

$$
b\left(\frac{5 \times 4}{2}=10 \mathrm{moles}\right)
$$

It indicates that recent B is limitng reagent as it will consume first in the reaction because we have only 6 moles of B.
13) Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 22.99)+12.01+(3 \times 16)$

$$
=105.99 \approx 106 \mathrm{gmol}^{-1}
$$

0.5 mole $^{2} \mathrm{Na}_{2} \mathrm{CO}_{3}=0.50 \times 106=53 \mathrm{gNa}_{2} \mathrm{CO}_{3}$
$0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ means $53 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ is present in 1 L of the solution.
14) $1000 \mathrm{~cm}^{3}$ of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=0.15 \mathrm{~mol}$
$100 \mathrm{~cm}^{3}$ of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ will contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=\frac{0.15}{1000} \times 100=0.015 \mathrm{~mol}
$$

Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.015 \times 106=1.59 g$
15) 4
16)
(i) To test the law of conversion of mass, a reaction would have to be carried out in which the mass of the reactants and the mass of the produces are weighted and shown to be the same.
(ii) The law of definite proportions colud be shown by demonstrating that no matter how a compound is obtained, the reactant remains at the same proportions by mass. Th9is can be done by decomposing a compound and showing that the masses of the elements present are always in the same ratio
(iii) To test the law of multiple proportions, two different compounds made up of the same elements would have to be decomposed. If the mass of one of the elements is kept constants the masses of other elements combining with that of the element in different samples would have to be in the small whole number ratio.

In the first oxide,oxygen =27.6
Metal $=100-27.6=72.4$ parts by mass.
As the formula of the oxide is $\mathrm{M}_{3} \mathrm{O}_{4}$, it means 72.4 parts by mass of metal $=3$ atmos of metal and 4 atoms of oxygen $=27.6$ parts by mass.

In the second oxide, oxygen $=30.0$ parts by mass amd metal $=100-30=70$ parts by mass.
But 72.4 parts by mass of metal $=3$ atoms of metal.
$\therefore 70$ parts by mass of metal $=\frac{3}{72.4} \times 70$ atoms of metal

$$
=2.90 \text { atoms of metal }
$$

Also, 27.6 parts by mass of oxygen $=4$ atoms of oxygen.
$\therefore 30$ parts by mass of oxygen $=\frac{4}{27.6} \times 30$ atoms of oxygen

$$
=4.35 \text { atoms of oxygen }
$$

Hence, ratio of M : O in the second oxide

$$
=2.90: 4.35=1: 1.5 \text { or } 2: 3
$$

\therefore Formula of the other metal oxide is $\mathrm{M}_{2} \mathrm{O}_{3}$.
18) $\mathrm{N}_{2}(g)+1 \mathrm{~mol} 28 \mathrm{~g} 3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{~mol} \quad 6 \mathrm{~g} 2 \mathrm{NH}_{3}(\mathrm{~g}) 2 \mathrm{~mol} 34 \mathrm{~g}$
$28 \mathrm{~g} \mathrm{~N}_{2}$ reacts with $6 \mathrm{~g} \mathrm{H}_{2}$.
$\therefore 1 \mathrm{~g} \mathrm{~N}_{2}$ will react with $\frac{6}{28} \mathrm{gH}_{2}$.
$\therefore 2000 \mathrm{~g} \mathrm{~N}_{2}$ will react with $\frac{2000 \times 6}{28}=428.57 \mathrm{~g} \mathrm{H}_{2}$
Hence, N_{2} is the limiting reagent and H_{2} is in excess. N_{2} limits the amount of ammonia produced.
$28 \mathrm{~g} \mathrm{~N}_{2}$ produces $34 \mathrm{~g} \mathrm{NH}_{3}$ and $1 \mathrm{~g} \mathrm{~N}_{2}$ produces $\frac{34}{28} \mathrm{~g} \mathrm{NH}_{3}$
19) From the molarity equation, $M_{1} V_{1}=M_{2} V_{2}$

$$
{\underset{\text { acid }}{1}}^{u_{\text {acid }}^{2}}
$$

$12.38 \mathrm{M} \times \mathrm{V}_{1}=0.10 \mathrm{M} \times 1.0 \mathrm{~L}$
$\therefore \mathrm{V}_{1}=\frac{0.1 \times 1.0}{12.38}=0.00808 \mathrm{~L}=8.08 \mathrm{~cm}^{3}$
20) $4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$4 \times 36.5 \quad 87 \mathrm{~g} \quad+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$
According to the balanced chemical equation,
87 g of MnO_{2} react with $4 \times 36.5 \mathrm{~g} \mathrm{HCl}$
5 g of MnO_{2} will react with $\frac{4 \times 36.5 \times 5}{87}=8.39 \mathrm{~g} \mathrm{HCl}$

Section-C

21) $0.000968=9.68 \times 10^{-4}$
22) 2.56×10^{4}
23) (ii) Calculation for molar of the gas
10.0 L of the given gas at STP weigh=11.6 g
$\therefore 22.4 \mathrm{~L}$ of the given gas at STP will weigh
$\frac{11.6 \times 22.4}{10}=25.984 \quad g$
Molar mass $=25.984=26 \mathrm{~mol}^{-1}$
24) (i) 1 mole of Ag atom $=108 \mathrm{~g}=6.022 \times 10^{23}$ atoms

Mass of 6.022×10^{23} atoms of $\mathrm{Ag}=108 \mathrm{~g}$.
Mass of 1 atom of $\mathrm{Ag}=$

$$
\left(\frac{108}{6.022 \times 10^{23}}\right)=1.793 \times 10^{-22} g
$$

