QB365
 Important Questions - State of Matter
 11th Standard CBSE

Chemistry

Reg.No.: | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) What is the value of gas constant in SI units?
2) How is the pressure of a gas related to its density at a particular temperature?
3) Name two intermolecular force that exists between HF molecules in a liquid state.
4) Explain the physical significance of van derWaals' parameters
5) How much time would it take to distribute one Avogadro number of wheat grains if 10^{10} grains are distributed each second?
$1 N_{A}=6.022 \times 10^{23}$
where $\mathrm{N}_{\mathrm{A}}=$ Avogadro's number.
Convert time into years
6) What will be the molar volume of nitrogen and argon at 273.15 k and 1 atm ?
7) Name the energy which arises due to a motion of atoms or molecules in a body.How is this energy affected when the temperature is increased?
8) At a particular temperature, why vapour pressure of acetone id less than that of ether?
9) A 2 L vessel contains oxygen at a pressure of 380 mm Hg at $27^{\circ} \mathrm{C} .1 .40 \mathrm{~g}$ of N_{2} gas is introduced in the vessel.Will the pressure of gaseous mixture increase or decrease and to what extent?
10) Use the inforamr=tion and data given below to answer the questions (a) to (c), stronger intermolecular forces result in higher boiling point.
Strength of London forces increases with the number of electrons in the molecules. Boiling point of $\mathrm{HF}, \mathrm{HCl}$, HBr , and HI are $293 \mathrm{~K}, 189 \mathrm{~K}, 206 \mathrm{~K}$ and 238 K respectively.

Section-B

11) Use the inforamr=tion and data given below to answer the questions (a) to (c), stronger intermolecular forces result in higher boiling point.

Strength of London forces increases with the number of electrons in the molecules. Boiling point of $\mathrm{HF}, \mathrm{HCl}$, HBr , and HI are $293 \mathrm{~K}, 189 \mathrm{~K}, 206 \mathrm{~K}$ and 238 K respectively.
(ii) Looking at the trend of boiling points of $\mathrm{HCl}, \mathrm{HBr}$ and HI , explain out of dipole-dipole interaction and London interaction, which one is predominant here.
12) Use the inforamr=tion and data given below to answer the questions (a) to (c), stronger intermolecular forces result in higher boiling point.

Strength of London forces increases with the number of electrons in the molecules. Boiling point of $\mathrm{HF}, \mathrm{HCl}$, HBr , and HI are $293 \mathrm{~K}, 189 \mathrm{~K}, 206 \mathrm{~K}$ and 238 K respectively.
(iii) Why is boiling point of hydrogen fluoride highest while that of hydrogen chloride lowest?
13) Name the energy which arises due to motion of atoms or molecules in a body.How is this energy affected when the temperature is increased?
14) 1 mole of sulphur dioxide occupies a volume of 350 ml at $27^{\circ} \mathrm{C}$ and 5×10^{6} pressure.

Calculate the compressibility factor of the gas.It is less or more compressible than an ideal gas?
15) 150 mL of a gas at NTP were taken to $20^{\circ} \mathrm{C}$ and 0.96 bar pressure. What is the change in volume of the gas?
16) For real gases the relation between p,Vand T is given by van der Waals'equation

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

Where 'a' and 'b' are van der Waals' constants,'nb' is approximately equal to the total volume of the molecules of a gas. 'a' is the measure of magnitude of intermolecular attraction

Arrange the following gases in the increasing order of ' b ' Given reason

$\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{He}$
17) For real gases the relation between p, Vand T is given by van der Waals'equation

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

Where ' a ' and ' b ' are van der Waals' constants,'nb' is approximately equal to the total volume of the molecules of a gas. ' a ' is the measure of magnitude of intermolecular attraction
Arrange the following gases in the decreasing order of magnitude of 'a' .Give reason $\mathrm{CH}_{4} \mathrm{O}_{2}, \mathrm{H}_{2}$
18) Calculate the temperature of 4.0 moles of a gas occupying $5 \mathrm{dm}^{3}$ at 3.32 bar ($\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{k}^{-1} \mathrm{~mol}^{-1}$)
19) 34.05 ml of phosphorus vapor weight 0.0625 g at $546^{\circ} \mathrm{C}$ and 0.1 bar pressure. What is the molar mass of phosphorus?

Pressure cooker is used for cooking food at hill station. Explain in terms of vapour pressure why is it so?
22) What do you understand by term isochore? Given below is the plot of pressure (p) versus temperature (T) for a certain volume of ideal gases I, II and III respectively. Give the correct order of volumes $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3}.

23) Isotherms of carbon dioxide at various temperatures are represented in the figure. Answer the following questions based on the figure.

In which state will CO_{2} exist between the points a and b at temperature T_{1} ? questions based on the figure.

What portion of the isotherm at T_{1} represent liquid and gaseous CO_{2} at equilibrium?

Section-A

1)
2)
3)

HF molecules are polar covalent molecules.In a liquid state, there are dipole-dipole interactions and H bonding.
4)
a is measure of magnitude of intermolecular forces of attraction while b is a measure of the effective volume of the gas molecules.Value of a and b depends upon the characteristics of a gas.
a is measure of magnitude of intermolecular for
volume of the gas molecules.Value of a and b d
5) Time required $=\frac{\text { Total } \text { grains }}{\text { grains } \text { distributed }}=\frac{6.022 \times 10^{23}}{10^{10}}$
$=6.022 \times 10^{13}=\frac{6.022 \times 10^{13}}{365 \times 24 \times 60 \times 60}$
$=1.909 \times 10^{6} y r$
6) Every gas has 22.4 L molar volume at 273.15 K 1 atm pressure(STP)
7)

The energy which arises due to a motion of atoms or molecules in a body is known as thermal energy.It is a measure of the average kinetic energy of the particles.It increases with increase in temperature.
8)
9) $\mathrm{P}_{2}=1.1157 \mathrm{~atm}$ and the pressure will increase
10)

From the information and data given in the question, we concluded that
In $\mathrm{HCl}, \mathrm{HBr}$ and HI dipole-dipole and London forces are present because molecules possess permanent dipole. In HF molecules, dipole-dipole, London forces and hydrogen bonding are present.

Section-B

From the information and data given in the question, we concluded that
Electronegativity of chlorine, bromine, and iodine decreases in the following order.
$\mathrm{Cl}>\mathrm{Br}>$
Therefore, dipole should moment decrease from HCl to HI . As a result, dipole-dipole interaction should also decrease from HCl to HI . But boiling point increases on moving from HCl and HI . This means that London forces are predominant.
This is so because London forces increases as the number of electrons in a molecules increases and in this case, number of electrons is increasing from HCl towards HI .
12)

From the information and data given in the question, we concluded that
Hydrogen fluoride has highest dipole moment is due to highest electronegativity of fluorine as well as due to the presence of hydrogen bonding in HF. Therefore, HF has highest boiling point.
13)

The energy which arises due to motion of atoms or molecules in a body is known as thermal energy.It is a measure of average kinetic energy of the particles.It increases with increases with increase in temperature.
14) Compressibility factor, $Z=\frac{p V}{n R T}$
$n=1 m o l, p=5 \times 10^{6} \quad p a, V=350 \quad m L=0.350 \times 10^{-3} \mathrm{~m}^{3}$
$R=8.314 \quad \mathrm{Nm} \quad K^{-1} \mathrm{~mol}^{-1}, T=27+273=300 \quad K$
$\therefore \quad Z=\frac{5 \times 10^{6} \times 0.350 \times 10^{-3}}{1.0 \times 8.314 \times 300}=0.702$
Thus, SO_{2} is more compressible than an ideal gas (Which has $\mathrm{Z}=1$)
15) $V=169.91 \mathrm{~mL}$
16)

Molar volume occupied by the gas molecules size of the molecules and van der Waals' constant 'b' represents molar volume of the gas molecules. Hence, value of 'b' increases in the following order

$$
H_{2}<H e<O_{2}<\mathrm{CO}_{2}
$$

17)

Van der Waals constant 'a' is the measure of magnitude of intermolecular attraction.The magnitude of intermolecular attraction increases with increase in size of electron cloud in a molecule.Hence,for given gases magnitude of 'a' decreases in the following order $\mathrm{CH}_{4} 2>\mathrm{H}_{2}$
Greater the size of electron cloud, greater is the polarizability of the molecule and greater are the dispersion forces London forces.
18) Apply ideal gas equation, $p V=n R T$
19) $p V=n R T=\frac{m R T}{M}$
($\mathrm{m}=$ =mass of phosphorus (g) and
$\mathrm{M}=$ molar mass of phosphorus)
$M=\frac{m R T}{p V}$
$M=\frac{0.0625 \mathrm{~g} \times 0.0821 \quad L \quad \mathrm{~atm} \quad \mathrm{k}^{-1} \mathrm{~mol}^{-1} \times 819 \mathrm{k}}{0.1 \times 0,987 \quad \mathrm{~atm} \times 0.03405 \mathrm{~L}}$
$M=1250.4 \mathrm{gmol}^{-1}$
20) $\mathrm{pV}=\mathrm{nRT}$
$p V=\frac{m}{M} R T$
Volume occupied by $8.8 \mathrm{~g}_{\mathrm{g}} \mathrm{CO}_{2}$
$V=\frac{m R T}{p M}=\frac{8.8 g \times 0.083 \quad \text { bar } \quad L \quad k^{-1} \text { mol }^{-1} \times 304.1 k}{1 \quad \text { bar } \times 44 g m o l} l^{-1}$
$V=5.048 \mathrm{~L}$

Section-C

21)

A liquid boils when vapour pressure becomes equal to atmospheric pressure. At hill station, atmospheric pressure is low. Therefore, liquid boils at a lower temperature and cooking is not perfect. In a pressure cooker, the pressure inside the cooker increases and the liquid boils at a higher temperature.
22)

Isochore is plot of p vs T for a definite amount of a gas at constant volume. It is a graphical representation of Gay-Lussac or Amonton's law. For different isochores at different volumes, draw a line parallel to the temperature axis representing a constant pressure and cutting the three isochores at T_{1}, T_{2}, T_{3} respectively. From the graph we find that $T_{1}>T_{2}>T_{3}$. As $V \propto T$ at constant p.
Thus, $\quad V_{1}>V_{2}>V_{3}$

23) CO_{2} will exist as gaseous state between 'a' and 'b'.
24) Between 'b' and 'c' is the portion of isotherm at which liquid CO_{2} is in equilibrium with gaseous CO_{2}.

