QB365

Important Questions - Thermodynamics		
11th Standard CBSE		
Chemistry Reg.No.:		
Time : 01:00:00 Hrs		
т	otal Marks : 50	
Section-A		
1) Heat capacity (Cp) is an extensive property but specific heat (C) is an intensive property. What will be the relation between Cp and C for 1mole of water?	1	
2) Identify the state functions and path functions out of the following. Enthalpy, entropy, heat, temperature, work, free energy.	1	
3) Predict the change in internal energy for an isolated system at constant volume.	1	
4) What an ideal gas expands into vacuum, there is neither adsorption nor evolution of heat. Why?	1	
5) How can you say that universe is going towards chaos?	1	
6) Why in some reactions heat is evolved while some reactions take place only on absorption of heat?	1	
7) The molar enthalphy of vaporisation of acetone is less than that of water. Why?	1	
8) One mole of acetone requires less heat to vaporise than 1 mole of water. Which of the two liquids has higher enthalpy of vaporisation?	1	
9) If enthalpy of fusion and enthalpy of vaporisation of sodium metals are 2.6 and 98.2KJ mol ⁻¹ respectively, what is the enthalpy of sublimation of sodium.	1	
10) At 1 atm will the $\triangle_{\mathcal{H}}^{\mathcal{H}}$ be zero for Cl ₂ (g) and Br ₂ (g)? Explain.	1	
Section-B		
11) Comment on the thermodynamic stability of NO(g), given	2	
$\frac{1}{2}N_{\gamma}(g) + \frac{1}{2}O_{\gamma}(g) \rightarrow NO(g); \Delta_{\nu}H^{\circ} = 90kJmol^{-1}NO(g) + \frac{1}{2}O_{\gamma}(g) \rightarrow NO_{\gamma}(g)\Delta_{\nu}H^{\circ} = -74kJmol^{-1}$		
12) The enthalpy of reaction	2	
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ is $\triangle H^{\Theta} = -572 \text{ KJ mol}^{-1}$	-	
What will be standard enthalpy of formation of $H_2O(I)$?		
13) Δ_{H^0} of Fe ₂ O ₃ is -825kJ. What is the enthalpy change for the reaction?	2	
$4Fe_2O_3 \rightarrow 8Fe + 6O_2$		
14) A swimmer coming out from a pool is covered with a film of water weighing about 18g. How much heat must be supplied to evaporate this water at 298 K? Calculate internal energy of vaporisation at 100°C?	the 2	
$\Delta_{\rm sym}H^{\Theta}$ for water at 373 K = 40.66 kJ mol ⁻¹		
 15) 18.0 g water completely vaporises at 100 °C and 1 bar pressure and the enthalpy change in the process is 40.79 KJ mol⁻¹. What will be the enthalpy change for vapori 	sing 2	
two moles of water under the same conditions? What is the standard enthalpy of vaporisation for water?	U U	
16) The enthalpy change for the reaction,	2	
$Zn(s) + 2H^+(aq) \rightarrow Zn^2(aq) + H_2(g)$, is $-154.40kJmol^{-1}$. The formation of 2g of hydrogen expands the system by 22.4L at 1atm pressure.		
What is the internal energy change of the reaction?		
17) There are two crystalline forms of PbO; one is yellow and the other is red. The standard enthalpies of formation of these two forms are -217.3 kJ/mol and -219.0 kJ/mol enthalpies of formation of these two forms are -217.3 kJ/mol and -219.0 kJ/mol enthalpies of formation of these two forms are -217.3 kJ/mol and -219.0 kJ/mol enthalpies of formation of these two forms are -217.3 kJ/mol and -219.0 kJ/mol enthalpies of formation of these two forms are -217.3 kJ/mol enthalpies of the solid-solid phase transition. PbO (yellow) \rightarrow PbO (red)	10l 2	
18) Predict in which of the following, entropy increases/decreases. Give reason.	2	
Temperature of crystalline solid is raised from 0 K to 115K.		
19) When 0.532 g of benzene (C ₆ H ₆), boiling point 353 K, is burt with excess of oxygen in a constant volume system, 22.3 KJ of heat is given out.Calculate △H for the combustion process(R=8.31 J K ⁻¹ mol ⁻¹)	2	
20) Predict in which of the following, entropy increases/decreases. Give reason.	2	
$H_2(g) \rightarrow 2H(g)$		
Section-C		
21) Compound with carbon-carbon double bond, such as ethylene, C ₂ H ₄ , add hydrogen in a reaction called hydrogenation,	5	
$C_2H_4(g) + H_2(g) \to C_2H_6(g)$		
Calculate enthalpy change for the reaction, using the following combustion data		
$C_{2}H_{4}(g) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 2H_{2}O(l); \\ \Delta_{c}H^{o} = -1401 kJmol^{-1}(i)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)\Delta_{c}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H^{o} = -1550 kJmol^{-1}(ii)C_{2}H^{o} = -1500 kJmol^{-1}.$	$H_2(g) + \frac{7}{2}O_2(g) -$	
22) Write expression for the work done by 1 mole of the gas in each of the following case.	- 5	
(i) For irreversible expansion of the gas from volume V_1 and v_2 .		
(ii) For reversible isothermal expansion of the gas from volume V_1 and v_2 .		
(iii) For expansion of the gas into an evaluated vessel.		

5

(iv) For reversibl isothermal compression of the gas from pressure p_1 and p_2

(v) For adiabatic expansion resulting into change of temperature from T_1 and T_2

23) The standard Gibbs energy change for the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is -33.2KJ mol⁻¹ at 298 K.

What would be the equilibrium constant if the reaction is written as $\frac{1}{2}H_2(g)+\frac{3}{2}H_2(g)\rightleftharpoons NH_3(g)$

24) The figure given below represents pV diagram of different stages of a thermodynamic process. Calculate the work done in each stage and also the network done in the

5

	Section-A	
1)	Specific heat, $C = 4.18Jg^{-1}K^{-1}$ (for water)Heat capacity, $C_p = 18 \times 4.18JK^{-1} = 75.24JK^{-1}$	1
2)	State function Enthalpy, entropy, temperature, free energy. Path function Heat, work.	1
3)	For isolated system there is no transfer of energy as heat or work, so according to the first law of thermodynamics, $\Delta U = q + W \Delta U = 0 + 0 = 0$	1
4)		1
	In an ideal gas, there are no intermolecular forces of attraction. Hence, no energy is required to overcome these forces. Moreover, when a gas expands aganist vacuum, work done is Zero (because $p_{ext} = 0$). Hence, internal energy of the system does not change, i.e. there is neither absorption nor evolution of heat.	
5)		1
	Most of the naturally occurring processes are accompanied by increase of randomness. Hence, randomness of the universe is continuously increasing. Thus, we are going towards chaos	
6)		1
	Every substance has energy stored in it in the form of heat content. If heat content of reactants (H _R) is greater than that of products (H _P), heat is evolved. If H _R < H _P , heat is absorbed.	
7)	Enthalpy of vapourisation of water is more than that of acetone because there is strong hydrogen bonding in H_2O molecules.	1
8)	Less the heat required to vaporise 1 mole of a liquid, less is its enthalpy of vaporisation. Hence, water has higher enthalpy of vaporisation.	1
9)	$\Delta_{sub}H^{\circ} = \Delta_{fus}H^{\circ} + \Delta_{vap}H^{\circ} = 2.6+98.2 = 100.8 \text{KH mol}^{-1}$	1
10	$\int \Delta_{f} H^{\circ}$ for Cl ₂ (g) will be zero but $\Delta_{f} H^{\circ}$ for Br ₂ (g) will not be zero because liquid bromine is its elementry state and not gaseous bromine.	1
	Section-B	
11		2
	NO(g) is unstable because formation of NO is endothermic (energy is absorbed), but NO ₂ (g) is formed because its formation is exothermic (energy is released). Therefore, unstable NO(g) converts into stable NO ₂ (g).	
12		2
	Enthalpy of formation is the enthalpy change of the reaction when 1 mole of the compound is formed from its elements, i.e. we aim at	
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l), \Delta_r H^\circ = ?$ This can be obtained by dividing the given equation by 2. Hence, $\Delta_f H^\circ (H_2O) = \frac{-5/2 - KJmol^{-1}}{2}$ = -286 KJ	
	mol ⁻¹	
13		2
14) The process of evaporation can be represented as	2
	$18g H_2O(l) \longrightarrow 18g H_2O(g)$	
	Number of moles in $18g H_2O(l) = \frac{18 g}{18 g mol^{-1}} = 1 mol$	
	and $\Delta_{vap}H^{\Theta}$ is the amount of heat required to vaporise 1 mole of a substance. Thus, 40.66 kJ mol ⁻¹ heat is required for evaporation of 18 g of water.	
	Further, we know that $\Delta_{vap}U = \Delta_{vap}H^{\Theta} - p\Delta V = \Delta_{vap}H^{\Theta} - \Delta_{n_g}RT$	
	(assuming steam behaving as an ideal gas).	
	$\therefore \{ \text{Velta} \}_{\text{var}} \{ var \} U = 40.66 \text{ kJ mol}^{-1} - (1) (8.314 \text{ JK}^{-1} \text{ mol}^{-1}) (373 \text{ K}) (10^{-3}) $	
	{ \perta }_{ vap } v }"{ \ineta } = 40.66 KJ { moi }"{ -1 }-3.10 KJ { moi }"{ -1 } = 37.56 kJ mol ⁻¹	
15) 18.0 g H ₂ O = 1 mol H ₂ O	2
	Enthalpy change for vaporising 1 mole of H ₂ O =40.79 KJ	-

\therefore Enthalpy change for vaporising 2 moles of

H₂O=2x40.79 KJ =81.58 KJ

Standard enthalpy of vaporisation at 100°C and 1 bar pressure,

{ \triangle }_{ vap }{ H }^{ \circ }=+40.79 \quad KJ \quad { mol }^{ -1 }

16)

, Taking the initial as negligible (as no gaseous reaction is present), change in volume during expansion (\triangle V)=22.4L. External pressure ({ p }_{ ext })=1atm. \triangle H=\triangle U+p\triangle V\quad or\quad \triangle U=\triangle H-p\triangle V\\ p\triangle V=1atm\times 22.4L=22.4Latm\\ \quad \quad =22.4\times 101.3J\\ \quad \quad =2307J=2.31kJ\\ \therefore \quad \triangle U=-154.4-2.31=-156.71kJ 2

2

2

2

2

5

5

5

5

17) -1.7 kJmol⁻¹

18)

Entropy will increase on increasing the temperature since the particles of solid move with greater speed at higher temperature. At 0 K, there is perfect order of the constituent particles, entropy is minimum, tends to zero.

- 19) \Delta H=-3269 KJ
- 20) $H_{2}(g)$ rightarrow 2H(g)

Entropy will increase because the number of particles of product are double than that of reactant.

Section-C

21)

Adding Eqs.(i) and (iii) and subtract Eq.(ii),

 $\{C \}_{2}H_{4}(g)+\{30 \}_{2}(g)+\{H \}_{2}(g)+\{rac \{1\}_{2}_{0}_{2}(g)-\{C \}_{2}H \}_{6}(g)-\{rac \{7\}_{2}_{0}_{2}(g)+[rac \{7\}_{2}_{0}_{2}(g)+[H]_{2}(g)+[H]_{2}(g)+[H$

22)

23)

For the given reaction,

24)

 $\label{eq:process} (10)^{5}$