Important Questions - Thermodynamics

11th Standard CBSE
Chemistry
Reg.No.

Time : 01:00:00 Hrs

Section-A

1) Heat capacity $(C p)$ is an extensive property but specific heat (C) is an intensive property. What will be the relation between $C p$ and C for 1 mole of water?
2) Identify the state functions and path functions out of the following. Enthalpy, entropy, heat, temperature, work, free energy.
3) Predict the change in internal energy for an isolated system at constant volume.
4) What an ideal gas expands into vacuum, there is neither adsorption nor evolution of heat. Why?
5) How can you say that universe is going towards chaos?
6) Why in some reactions heat is evolved while some reactions take place only on absorption of heat?
7) The molar enthalphy of vaporisation of acetone is less than that of water. Why?
8) One mole of acetone requires less heat to vaporise than 1 mole of water. Which of the two liquids has higher enthalpy of vaporisation?
9) If enthalpy of fusion and enthalpy of vaporisation of sodium metals are 2.6 and $98.2 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively, what is the enthalpy of sublimation of sodium.
10) At 1 atm will the $\Delta_{f} H^{\circ}$ be zero for $\mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{Br}_{2}(\mathrm{~g})$? Explain.

Section-B

11) Comment on the thermodynamic stability of $\mathrm{NO}(\mathrm{g})$, given
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g) ; \Delta_{r} H^{\circ}=90 \mathrm{kJmol}^{-1} \mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) \Delta_{r} H^{\circ}=-74 \mathrm{kJmol}^{-1}$
12) The enthalpy of reaction for the reaction
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ is $\quad \Delta_{r} H^{\Theta}=-572 \quad \mathrm{KJ} \quad \mathrm{mol}^{-1}$
What will be standard enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$?
13) $\Delta_{f} H^{0}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is -825 kJ . What is the enthalpy change for the reaction?

$$
4 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 8 \mathrm{Fe}+6 \mathrm{O}_{2}
$$

14) A swimmer coming out from a pool is covered with a film of water weighing about 18 g . How much heat must be supplied to evaporate this water at 298 K ? Calculate the internal energy of vaporisation at $100^{\circ} \mathrm{C}$?
$\Delta_{\text {vap }} H^{\Theta}$ for water at $373 \mathrm{~K}=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$
15) 18.0 g water completely vaporises at $100^{\circ} \mathrm{C}$ and 1 bar pressure and the enthalpy change in the process is 40.79 KJ mol ${ }^{-1}$. What will be the enthalpy change for vaporising two moles of water under the same conditions? What is the standard enthalpy of vaporisation for water?
16) The enthalpy change for the reaction,
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$, is $-154.40 \mathrm{kJmol}^{-1}$. The formation of 2 g of hydrogen expands the system by 22.4 L at 1 atm pressure. What is the internal energy change of the reaction?
17) There are two crystalline forms of PbO ; one is yellow and the other is red. The standard enthalpies of formation of these two forms are $-217.3 \mathrm{~kJ} / \mathrm{mol}$ and $-219.0 \mathrm{~kJ} / \mathrm{mol}$ respectively.Calculate the enthalpy change for the solid-solid phase transition. PbO (yellow) $\rightarrow \mathrm{PbO}$ (red)
18) Predict in which of the following, entropy increases/decreases. Give reason.

Temperature of crystalline solid is raised from 0 K to 115 K .
19) When 0.532 g of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, boiling point 353 K , is burt with excess of oxygen in a constant volume system, 22.3 KJ of heat is given out.Calculate $\Delta \mathrm{H}$ for the

2 combustion process ($\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
20) Predict in which of the following, entropy increases/decreases. Give reason.

$$
H_{2}(g) \rightarrow 2 H(g)
$$

Section-C

21) Compound with carbon-carbon double bond, such as ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, add hydrogen in a reaction called hydrogenation,
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)$
Calculate enthalpy change for the reaction, using the following combustion data

22) Write expression for the work done by 1 mole of the gas in each of the following case.
(i) For irreversible expansion of the gas from volume V_{1} and v_{2}.
(ii) For reversible isothermal expansion of the gas from volume V_{1} and v_{2}.
(iii) For expansion of the gas into an evaluated vessel.
(iv) For reversibl isothermal compression of the gas from pressure p_{1} and p_{2}
(v) For adiabatic expansion resulting into change of temperature from T_{1} and T_{2}
23) The standard Gibbs energy change for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is $-33.2 \mathrm{KJ} \mathrm{mol}^{-1}$ at 298 K .

What would be the equilibrium constant if the reaction is written as
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})$

Section-A

1) Specific heat, $C=4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ (for water)Heat capacity, $C_{p}=18 \times 4.18 \mathrm{JK}^{-1}=75.24 \mathrm{JK}{ }^{-1}$
2) State function Enthalpy, entropy, temperature, free energy. Path function Heat, work.
3) For isolated system there is no transfer of energy as heat or work, so according to the first law of thermodynamics, $\Delta U=q+W \Delta U=0+0=0$
4)

In an ideal gas, there are no intermolecular forces of attraction. Hence, no energy is required to overcome these forces. Moreover, when a gas expands aganist vacuum, work done is Zero (because $p_{\text {ext }}=0$). Hence, internal energy of the system does not change, i.e. there is neither absorption nor evolution of heat.
5)

Most of the naturally occurring processes are accompanied by increase of randomness. Hence, randomness of the universe is continuously increasing. Thus, we are going towards chaos
6)

Every substance has energy stored in it in the form of heat content. If heat content of reactants $\left(H_{R}\right)$ is greater than that of products (H_{P}), heat is evolved. If $H_{R}<H_{P}$, heat is absorbed.
7) Enthalpy of vapourisation of water is more than that of acetone because there is strong hydrogen bonding in $\mathrm{H}_{2} \mathrm{O}$ molecules.
8) Less the heat required to vaporise 1 mole of a liquid, less is its enthalpy of vaporisation. Hence, water has higher enthalpy of vaporisation.
9) $\Delta_{\text {sub }} H^{\circ}=\Delta_{\text {fus }} H^{\circ}+\Delta_{\text {vap }} H^{\circ}=2.6+98.2 \quad=100.8 \mathrm{KH} \mathrm{mol}^{-1}$
10) $\Delta_{f} H^{\circ}$ for $\mathrm{Cl}_{2}(\mathrm{~g})$ will be zero but $\Delta_{f} H^{\circ}$ for $\mathrm{Br}_{2}(\mathrm{~g})$ will not be zero because liquid bromine is its elementry state and not gaseous bromine.

Section-B

11)

$\mathrm{NO}(\mathrm{g})$ is unstable because formation of NO is endothermic (energy is absorbed), but $\mathrm{NO}_{2}(\mathrm{~g})$ is formed because its formation is exothermic (energy is released). Therefore, unstable $\mathrm{NO}(\mathrm{g})$ converts into stable $\mathrm{NO}_{2}(\mathrm{~g})$.
12)

Enthalpy of formation is the enthalpy change of the reaction when 1 mole of the compound is formed from its elements, i.e. we aim at $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta_{r} \mathrm{H}^{\circ}=$? This can be obtained by dividing the given equation by 2 . Hence, $\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{-572 \quad \mathrm{KJmol}^{-1}}{2}$ $=-286 \mathrm{KJ}$

$$
\mathrm{mol}^{-1}
$$

13)
14) The process of evaporation can be represented as
$18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{ } \quad 18 \mathrm{~g} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Number of moles in $18 \mathrm{~g} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\frac{18 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}}{ }^{-1}=1 \mathrm{~mol}$
and $\Delta_{\text {vap }} H^{\Theta}$ is the amount of heat required to vaporise 1 mole of a substance. Thus, $40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$ heat is required for evaporation of 18 g of water.
Further, we know that $\Delta_{\text {vap }} U=\Delta_{\text {vap }} H^{\Theta}-p \Delta V=\Delta_{\text {vap }} H^{\Theta}-\Delta_{n_{g}} R T$
(assuming steam behaving as an ideal gas).
$\therefore\{\backslash$ Delta $\} _\{\text {vap }\} U=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}-(1)\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(373 \mathrm{~K})\left(10^{-3}\right)$
$\{\backslash$ Delta $\} _\{\text {vap }\}\{U\}^{\wedge}\{\backslash$ Theta $\} \backslash q u a d=\backslash q u a d ~ 40.66 \backslash q u a d k J \backslash q u a d ~\{\operatorname{mol}\}^{\wedge}\{-1\}-3.10 \backslash q u a d k J \backslash q u a d\{\operatorname{mol}\}^{\wedge}\{-1\}$ $=37.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
15) $18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Enthalpy change for vaporising 1 mole of $\mathrm{H}_{2} \mathrm{O}=40.79 \mathrm{KJ}$
\therefore Enthalpy change for vaporising 2 moles of

$$
\mathrm{H}_{2} \mathrm{O}=2 \times 40.79 \mathrm{KJ}=81.58 \mathrm{KJ}
$$

Standard enthalpy of vaporisation at $100^{\circ} \mathrm{C}$ and 1 bar pressure, $\{\backslash$ triangle $\} _\{\operatorname{vap}\}\{\mathrm{H}\}^{\wedge}\{\backslash \operatorname{circ}\}=+40.79 \backslash$ quad $\mathrm{KJ} \backslash$ quad $\{\operatorname{mol}\} \wedge\{-1\}$

Taking the initial as negligible (as no gaseous reaction is present), change in volume during expansion (\triangle V)=22.4L. External pressure (\{p\}_\{ ext \})=1atm . \backslash triangle $\mathrm{H}=$ =triangle $\mathrm{U}+\mathrm{p} \backslash$ triangle $\mathrm{V} \backslash$ quad or \backslash quad \backslash triangle $\mathrm{U}=$ =triangle $\mathrm{H}-\mathrm{p} \backslash$ triangle $\mathrm{V} \backslash \backslash \mathrm{p} \backslash$ triangle $\mathrm{V}=1$ atm times $22.4 \mathrm{~L}=22.4 \mathrm{Latm} \backslash \backslash \backslash$ quad \backslash quad $=22.4 \backslash$ times $101.3 \mathrm{~J} \backslash \backslash$ \backslash quad \backslash quad $=2307 \mathrm{~J}=2.31 \mathrm{~kJ} \backslash \backslash$ therefore \backslash quad \backslash triangle $\mathrm{U}=-154.4-2.31=-156.71 \mathrm{~kJ}$
17) $-1.7 \mathrm{kJmol}^{-1}$
18)

Entropy will increase on increasing the temperature since the particles of solid move with greater speed at higher temperature. At 0 K , there is perfect order of the constituent particles, entropy is minimum, tends to zero.
19) \Delta $\mathrm{H}=-3269 \mathrm{KJ}$

H_\{ 2 \}(g) \rightarrow $2 \mathrm{H}(\mathrm{g})$
Entropy will increase because the number of particles of product are double than that of reactant.

Section-C

21)

Adding Eqs.(i) and (iii) and subtract Eq.(ii),
$\{\mathrm{C}\}_{-}\{2\} \mathrm{H}_{-}\{4\}(\mathrm{g})+\{3 \mathrm{O}\}_{-}\{2\}(\mathrm{g})+\{\mathrm{H}\}_{-}\{2\}(\mathrm{g})+\backslash$ frac $\{1\}\{2\}\{\mathrm{O}\}_{-}\{2\}(\mathrm{g})-\{\mathrm{C}\}_{-}\{2\}\{\mathrm{H}\} _\{6\}(\mathrm{g})-\backslash$ frac $\{7\}\{2\}\{\mathrm{O}\} _\{2\}(\mathrm{g}) \backslash$ rightarrow $2\{\mathrm{CO}\} _\{2\}(\mathrm{g})+2\{\mathrm{H}\} _\{2\} \mathrm{O}(\mathrm{l})+\{\mathrm{H}\} _\{$
 These \backslash quad equations \backslash quad give, $\backslash \backslash\{\mathrm{C}\} _\{2\}\{\mathrm{H}\} _\{2\}(\mathrm{g})+\{\mathrm{H}\} _\{2\}(\mathrm{g}) \backslash$ rightarrow $\{\mathrm{C}\} _\{2\}\{\mathrm{H}\} _\{6\}(\mathrm{g}) ; \backslash \backslash\{$ triangle $\} _\{r\}\{\mathrm{H}\} \wedge\{\mathrm{o}\}=-137 \backslash q u a d \mathrm{~kJ}\{\operatorname{mol}\} \wedge\{-1\}$
22)
23)

For the given reaction,
\triangle $\{\mathrm{G}\}^{\wedge}\{\mathrm{o}\}=\backslash$ frac $\{1\}\{2\} \mathrm{X}-33.2=16.6 \mathrm{Kj}\{\operatorname{mol}\}^{\wedge}\{-1\} \backslash \backslash \operatorname{or} \backslash q u a d \operatorname{logK}=-\backslash$ frac $\left\{-16.6 \mathrm{X} 1\{0\}^{\wedge}\{3\} \mathrm{J}\{\mathrm{mol}\} \wedge\{-1\}\right\}\{2.303 \mathrm{X}(8.314 \mathrm{~J}\{\mathrm{~K}\} \wedge\{-1\}\{\operatorname{mol}\} \wedge\{-1\}) \mathrm{X}(298 \mathrm{~K})\} \backslash \backslash$ \quad \backslash quad $=\backslash$ quad $2.91 \backslash \backslash$ or $\backslash q u a d ~ K=8.1 X\{10\} \wedge\{2\}$
24)

 Process \quad $B \backslash$ quad \longrightarrow \quad C.No\quad change\quad in\quad volume,i.e\quad \triangle V=0 $\backslash \backslash \backslash$ therefore Work \backslash quad done\quad $=\backslash q u a d ~ 0 \backslash \backslash$ Process \quad C\longrightarrow \quad D (contraction)
\triangle V=8-2=6L=6\times $\{10\}^{\wedge}\{-3\} m^{\wedge}\{3\}, p=4 \backslash$ times $\{10\}^{\wedge}\{5\}\{N m\}^{\wedge}\{-2\} \backslash \backslash$ Work $\backslash q u a d$ done $\backslash \backslash p \backslash$ triangle $V=\backslash$ left ($4 \backslash$ times $\{10\}^{\wedge}\{5\} \backslash$ right) $\backslash \operatorname{left}(6 \backslash$ times $\{10\} \wedge\{-3\} \backslash$ right $)=2400 \backslash q u a d J \backslash \backslash$ Process $\backslash q u a d D \backslash$ longrightarrow A. $\backslash q u a d$ No $\backslash q u a d$ change $\backslash q u a d$ in $\backslash q u a d$ volume, \quad i.e.\quad \triangle V=0
\therefore Work\quad done=0
\therefore Net\quad work\quad done\quad in\quad the\quad complete\quad cyclic\quad process $\backslash \backslash=-7200+2400 \backslash q u a d J=-4800 \backslash q u a d J \backslash \backslash$ Minus $\$ \quad sign\quad shows\quad that\quad net\quad work\quad has\quad been\quad done\quad by $\backslash q u a d$ the\quad gas.

