QB365
Important Questions - Trianlges
10th Standard CBSE

Maths

Reg.No. : \square
Time : 01:00:00 Hrs

Total Marks : 50

Section - A

1) In $\triangle A B C, D E \| B C$, find the value of x.
2) In the given figure, if $\angle A=90^{\circ}, \angle B=90^{\circ}, O B=4.5 \mathrm{~cm}, O A=6 \mathrm{~cm}$ and $A P=4 \mathrm{~cm}$, then find the $Q B$.
3) In $A B C$, if X and Y are points on $A B$ and $A C$ respectively such that $\frac{A X}{X B}=\frac{3}{4}, A Y=5$ and $Y C=9$, then state whether $X Y$ and $B C$ parallel or not.
4) In the figure of $A B C$, the points D and E are on the sides $C A, C B$ respectively such that $D E \| A B, A D=2 x, D C=x+3$, $B \#=2 x-1$ and $C E=x$, then find the value of x.
5) Are two triangle with equal corresponding sides always similar?

Two triangles having corresponding sides equal are similar.
6) If ratio of corresponding sides of two similar triangles is $5: 6$, then find ratio of their areas.
7) In given figure $D E \| B C$. If $A D=3 \mathrm{~cm}, D B=4 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$, then find $E C$.
8) In the given figure, if $D E \| B C$, then calculate x.
9) In the figure, PQ is parallel to MN . If $\frac{K}{P M}=\frac{4}{13}$ and $\mathrm{KN}=20.4 \mathrm{~cm}$, then find KQ .
10) If triangle $A B C$ is similar to triangle $D E F$ such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$, then find $E F$.

Section-B

11) An equilateral triangle is inscribed in a circle of radius 6 cm . Find its side.
12) In the given figure, $P S, S Q, P T$ and $T R$ are $4 \mathrm{~cm}, 1 \mathrm{~cm}, 6 \mathrm{~cm}$ and 1.5 cm respectively.

Prove that $S T \| Q R$. Also, find $\frac{\operatorname{ar}(\triangle P S T)}{\operatorname{ar}(\operatorname{trapezium} \quad Q R T S)}$

13) The sides $A B$ and $A C$ and the perimeter P_{1} of $A B C$ are respectively three times the corresponding sides $D E$ and

DF and the perimeter P_{2} of DEF, Are the two triangles similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$
14) In the given figure, $C B \| Q R$ and $C A \| P R$. If $A Q=12 \mathrm{~cm}, A R=20 \mathrm{~cm}, P B=C Q=15 \mathrm{~cm}$, calculate $P C$ and $B R$.
15) In given figure, D is a point on $A C$ such that $A D=2 C D$, also $D E$ II $A B$.

Find: $\frac{\operatorname{ar}(\triangle A C F)}{\operatorname{ar}(\triangle B C E)}$
16) In a trapezium $A B C D$, diagonals $A C$ and $B D$ intersect at O. If $A B=3 C D$, then find ratio of areas of triangles $C O D$ and AOB.
17) $\triangle A B C$ is right angled at e. If p is the length of the perpendicular from C to $A B$ and a, b, care the lengths of the sides opposite $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively, then prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.
18) In the given figure, $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$. Prove that PQR is an isosceles triangle.
19) In the given figure, if $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.
20) If A be the area of a right triangle and b be one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$

Section - C

21) P and Q are the points on sides AB and AC , respectively of $\triangle A B C$. If $\mathrm{AP}=3 \mathrm{~cm}$. $\mathrm{PB}=6 \mathrm{~cm}, \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=$ 10 cm , show that $B C=3 P Q$.
22) Shweta prepared two posters on National Integration for decoration on Independence day on triangular sheets (say $A B C$ and $D E F$). The sides $A B$ and $A C$ and the perimeter P_{1} of $\triangle A B C$ are respectively four times the corresponding sides $D E$ and $D F$ and the perimeter P_{2} of $\triangle D E F$. Are the two triangular sheets similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$. What values can be indicated through celebration of national festivals?
23) In the figure, $\angle \mathrm{BED}=\angle \mathrm{BDE}$ and E is the middle poi.nt of Be. Prove that $\frac{A F}{C F}=\frac{A D}{B E}$.
24) Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two sides.

Using the above result, prove that, in rhombus $A B C D, 4 A B^{2}=A C^{2}+B D^{2}$.

