Important Questions - Areas of Parallelograms and Triangles

9th Standard CBSE

Mathematics
Reg.No.

Time : 01:00:00 Hrs

Section-A

1) Area of a parallelogram is equal to

1
(a) $\frac{1}{2} \times$ Base \times Corresponding altitude
(b) $\frac{1}{3} \times$ Base \times Corresponding altitude
(c) $\frac{1}{4} \times$ Base \times Corresponding altitude
(d) Base \times Corresponding altitude
2) Area of a triangle is equal to
(a) $\frac{1}{2} \times$ Base \times Corresponding altitude
(b) $\frac{1}{4} \times$ Base \times Corresponding altitude
(c) $\frac{1}{3} \times$ Base \times Corresponding altitude
(d) Base \times Corresponding altitude
3) The areas of a parallelogram and a triangle are equal and they lie on the same base. If the altitude of the parallelogram is 2 cm , then the altitude of triangle is
(a) 4 cm
(b) 1 cm
(c) 2 cm
(d) 3 cm
4) In the figure, the area of parallelogram $P Q R S$ is:

5) If length of the diagonal of a square is 8 cm , then its area will be

(a) $P Q \times Q B$
(b) $Q R \times Q C$
(c) $S R \times Q C$
(d) $P S \times S A$
(a) $64 \mathrm{~cm}^{2}$
(b) $32 \mathrm{~cm}^{2}$
(c) $16 \mathrm{~cm}^{2}$
(d) $48 \mathrm{~cm}^{2}$
6) Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
-
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$ (d) $3: 1$
7) If a rectangle and a square stand on the same base and between the same parallels, then the ratio of their areas is
(a) $1: 2$
(b) $1: 4$
(c) $1: 1$
(d) $2: 1$
8) $A B C D$ is a quadrilateral whose diagonal $A C$ divides it into two parts equal in area, then $A B C D$ is

(a) a rhombus
(b) a parallelogram
(c) a kite (d) a trapezium
9) In which of the following figures, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ lie on the same base and between the same parallels?
(a)

(a)

(b)

(c)

(d)
10) In $\triangle A B C, E$ is the mid-point of median $A D$. Then the ratio of areas of $\triangle B E D$ to area of $\triangle A B C$ is:
(a) $1: 2$
(b) $2: 1$
(c) $4: 1$
(d) $1: 4$

Section-B

11) In the given figure, $A B C$ and $D B C$ are triangles on the same base and between parallel lines I and m . If $A B=3 \mathrm{~cm}, B C=5 \mathrm{~cm}, \angle A=90^{\circ}$, find area of $\triangle D B C$.

12) In a parallelogram $A B C D, A B=8 \mathrm{~cm}$. The altitudes corresponding to sides $A B$ and $A D$ are respectively 4 cm and 5 cm . Find measure of $A D$.
13) In the given figure:
(a) name the two triangles on the same base $A B$ and between the same parallels.
(b) name a triangle and a parallelogram on the same base $B C$ and between the same parallels.

14) P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that $\operatorname{ar}(\triangle \mathrm{APB})=\operatorname{ar}(\triangle \mathrm{BQC})$
15) Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than the rectangle.
16) A farmer was having a field in the form of a parallelogram PQRS. She took any point A on $R S$ and joined it "to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
17) Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at O. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.
18) D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(\triangle D B C)=\operatorname{ar}(\triangle E B C)$. Prove that $D E \| B C$.
19) $A B C D$ is a' trapezium with $A B \| D C A$ line parallel to $A C$ intersects $A B$ at X and

Section-C

21) Prove that the area of a trapezium is equal to half of the product of its height and sum of parallel sides.
22) Given two points A and B and a positive real number k. Find the locus of a point P such that $\operatorname{ar}(\triangle P A B)=k$.
23) $A B C D$ is a quadrilateral and $B D$ is one of its diagonals as shown in figure. Show that $A B C D$ is a parallelogram and find its area.

24) $A B C D$ is a parallelogram whose diagonals intersect at o. If P is any point on $B O$, prove that
(i) $\operatorname{ar}(\triangle \mathrm{ADO})=\operatorname{ar}(\triangle \mathrm{CDO})$
(ii) $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{CBP})$

Section-A

1) (d) Base \times Corresponding altitude
2) (a) $\frac{1}{2} \times$ Base \times Corresponding altitude
3) (a) 4 cm
4) (c) $S R \times Q C$
5) (b) $32 \mathrm{~cm}^{2}$
6) (b) $1: 1$
7) (c) $1: 1$
8) (b) a parallelogram
9)

(d)
10) (d) $1: 4$

Section-B

11) $7.5 \mathrm{~cm}^{2}$
12) 6.4 cm
13) (a) $\triangle D A B, D C A B(b) \triangle D A B,| | g m \quad A B C D$
14) $10 \mathrm{~cm}^{2}$
15) Given: P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$.

To Prove: $\operatorname{ar}(\triangle \mathrm{APB})=\operatorname{ar}(\triangle \mathrm{BQC})$.
Proof: $\triangle A P B$ and $\| g m A B C D$ are on the same base $A B$ between the same parallels $A B$ and $D C$.

$$
\operatorname{ar}\left({ }_{\Delta} \mathrm{APB}\right)=\frac{1}{2} \operatorname{ar}(| | \quad g m \quad A B C D) \quad \cdots \ldots . .(\mathrm{i})
$$

($\triangle \mathrm{BQC}$) and \| gm ABCD are on the same parallels $B C$ and AD.

$$
\operatorname{ar}\left({ }_{\triangle} \mathrm{BQC}\right)=\frac{1}{2} \operatorname{ar}(| | \quad g m \quad A B C D) \quad \cdots(\mathrm{ii})
$$

from (1) and (2),
$\operatorname{ar}(\triangle \mathrm{APB})=\operatorname{ar}(\triangle \mathrm{BQC})$
16)

Given: Parallelogram ABCD and rectangle ABEF are on the same base $A B$ and have equal areas

To Prove: The perimeter of the parallelogram $A B C D$ is greater than that of rectangle $A B E F$
Proof: Let $A B C D$ be the parallelogram and $A B E F$ be the rectangle on the same base $A B$ and between the same parallels $A B$ and $F e$. Then, perimeter of the parallelogram $A B C D=2(A B+A D)$ and, perimeter of the rectangle $A B E F=2(A B+A F)$.
In \triangle ADF,
$\angle A F D=90^{\circ}$
$\angle A D F$ is an acute angle. $\left(<90^{\circ}\right)$
|Angle sum property of a triangle
$\angle A F D>\angle A D F A D>A F$
|Side opposite to greater angle of a triangle is longer
$A B+A D>A B+A F$
$2(A B+A D)>2(A B+A F)$
Perimeter of the parallelogram $A B C D>$ Perimeter of the rectangle ABEF.
17)

$\triangle \mathrm{APQ}, \triangle \mathrm{APS}$ and $\triangle \mathrm{A} Q \mathrm{R}$ lie between the same parallels.

Their altitudes are same. Let it be x . Then,

$$
\begin{aligned}
\operatorname{ar}(\triangle \quad A P Q)= & \frac{(P Q)(x)}{2} \quad \ldots \ldots(1) \operatorname{ar}(\Delta \quad A P S)+\operatorname{ar}\left(\begin{array}{ll}
\Delta & A Q R)
\end{array}\right. \\
& \mid \mathrm{SR}=\mathrm{PQ}(\text { Opposite sides of } \\
& \text { parallelogram are equal) }
\end{aligned}
$$

Therefore, either the farmer should sow wheat in $\triangle A P Q$ and pulses in the other two triangles APS and AQR or pulses in $\triangle A P Q$ and wheat in the other two triangles APS and AQR.
18) Given: Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B 11 D C$ intersect each other at 0 .

To Prove: $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.
Proof: $\triangle A B D$ and $\triangle A B C$ are on the same base $A B$ and between the same parallels $A B$ and $D C$. $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B C)$
|Two triangles on the same base
(or equal bases) and between the
same parallels are equal in area
$\Rightarrow \operatorname{ar}(\triangle A B D)-\operatorname{ar}(\triangle A O B)$
$\Rightarrow \operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A O B)$
I Subtracting $\operatorname{ar}(\triangle A O B)$ from both sides
$\Rightarrow \operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.
19) Given: D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(\triangle D B C)=\operatorname{ar}(\triangle E B C)$.

To Prove DE || BC.
Proof: '.' $\triangle D B C$ and $\triangle E B C$ are on the same base $B C$ and have equal areas.
Their altitudes must be the same.
$D E \| B C$.
20) Given: $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y.

To Prove: $\operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C Y)$.
Construction: Join CX.
Proof: $\triangle A D X$ and $\triangle A C X$ are on the same base $A X$ and between the same parallels $A B$ and $D C$.
$\operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C X) \quad \ldots(1)$
|Two triangles on the same base
(or equal bases) and between the
same parallels are equal in area
$\triangle A C X$ and $\triangle A C Y$ are on the same base $A C$ and between the same parallels $A C$ and $X Y$.
$\operatorname{ar}(\triangle \mathrm{ACX})=\operatorname{ar}(\triangle \mathrm{ACY}) \quad \ldots(2)$
|Two triangles on the same base
(or equal bases) and between the
same parallels are equal in area
From (1) and (2), we get
$\operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C Y)$.

Section-C

21) Given: $A B C D$ is a trapezium with $A B \| C D . A M$ is its height.

To Prove: $\operatorname{ar}($ trapezium ABCD$)$

$$
=\frac{1}{2}(A B+D C)(A M)
$$

Construction: Join AC
Proof:ar(trapezium ABCD)

$$
\operatorname{ar}(\Delta \quad A D C)+\operatorname{ar}(\Delta \quad A B C)=\frac{1}{2} \times D C \times A M+\frac{1}{2} \times A B \times A M=\frac{1}{2} \times(D C+A B) \times A M=\frac{1}{2}(A B+D c)(A M)
$$

22) Given: Two points A and B and a positive real number k.

To find: The locus of a point P such that $\operatorname{ar}(\triangle \mathrm{PAB})=k$.
Construction: Draw $P M \perp A B$
Determination: Let PM $=\mathrm{h}$
$\operatorname{ar}(\triangle \mathrm{PAB})=k \quad \mid$ Given
$\Rightarrow \frac{1}{2}(A B)(P M)=k \Rightarrow \frac{1}{2}(A B)(h)=k \quad h=\frac{2 k}{A B}$

Points A and B are given. $A B$ is fixed.
Also, k being a positive real number k is fixed.
h is a fixed positive real number.
The locus of P is a line parallel to the line
AB at a fixed distance of $h=\frac{2 k}{A B}$ on either side of it.
23) Given: $A B C D$ is a quadrilateral and $B D$ is one of its diagonals.

To Prove: $A B C D$ is a parallelogram and to determine its area.
Proof: $\angle A B D=\angle B D C\left(=90^{\circ}\right) \quad \mid$ Given
But these angles form a pair of equal alternate.interior angles for lines $A B, D C$ and a transversal $B D$ AB || DC
Also, $\quad A D=D C(=3 \mathrm{~cm})$ I Given
Hence, quadrilateral $A B C D$ is a parallelogram.
I A quadrilateral is a parallelogram if its one pair of opposite sides are parallel and equal
Now,
$\operatorname{ar}\left(|\mid g m \quad A B C D)=\right.$ base \times Corresponding altitude $=3 \times 4=12 \mathrm{~cm}^{2}$

To prove:
(i) $\operatorname{ar}(\triangle \mathrm{ADO})=\operatorname{ar}($ Delta CDO)

Proof:
i) Diagonals of a parallelogram bisect each other $A O=O C$
O is the midpoint of $A C$
DO is a median of \Delta DAC
$\operatorname{ar}(\backslash$ Delta ADO) $=\operatorname{ar}(\backslash$ Delta CDO)
|A median of a triangle divides it into two triangles of equal areas
(ii) BO is a median of \Delta BAC
$\operatorname{ar}(\backslash$ Delta BOA $)=\operatorname{ar}($ Delta BOC)(1)
|A median of a triangle divides it into two triangles of equal areas
PO is a median of \Delta PAC $\operatorname{ar}(\backslash$ Delta POA $)=\operatorname{ar}(\backslash$ Delta POC $)$ \qquad
|A median of a triangle divides it into two triangles of equal areas
Subtracting (2) from (1), we get $\operatorname{ar}($ Delta BOA $)-\operatorname{ar}($ Delta POA $)=\operatorname{ar}($ DDelta BOC $)-\operatorname{ar}(\backslash$ Delta POC $)$ $\operatorname{ar}($ (Delta $A B P)=\operatorname{ar}($ (Delta $C B P)$

