QB365
 Important Questions - Linear Equations in Two Variables
 9th Standard CBSE

Mathematics
Reg.No.:

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) $\sqrt{2} y+\sqrt{3}=0$ is
(a) a linear equation in one variable
(b) not a linear equation in one variable
(c) a linear equation in two variables
(d) none of these
2) Write a, b, c for the equation $3 y+4=0$
(a) $0,3,4$
(b) 3,0,4
(c) $4,0,3$
(d) $4,3,0$
3) The equation $2 x=3$ in two variables is of the form:
(a) $2 . x+3 . y=0$
(b) $2 . x+0 . y=3$
(c) $\frac{2}{3} \cdot x+0 \cdot y=3$
(d) $1 . x+\frac{2}{3} \cdot y=1$
4) The salary of Dr.Harikisham is thrice the salary of Manish Goyal. Write a linear equation in two variables to represent the statement.
(a) $x=3$
(b) $x+3 y=0$
(c) $x=3 y+3$
(d) $x=y+3$
5) A point on the line $x+y=0$ is
(a) $(1,1)$
(b) $(1,-1)$
(c) $(0,1)$
(d) $(1,0)$
6) The line $y=m x$ passes through
(a) origin
(b) $(1,1)$
(c) $(m, 1)$
(d) $\left(-1, _1\right)$
7) Find the value of k if $(4,1)$ is a solution of $3 x+2 y=k$
(a) 14
(b) 12
(c) 10
(d) 16
8) How many linear equations in x and y can be satisfied by $x=1$ and $y=2$?
(a) only one
(b) two
(c) infinitely
(d) three
9) Any point of the form ($q,-q$) always lie on the graph of the equation:
(a) $x=-a$
(b) $y=a$
(c) $y=x$
(d) $x+y=0$
10) The graph of $y=6$ is a line:
(a) parallel to x-axis at a distance 6 units from the origin
(b) parallel to y-axis at a distance 6 units from the origin
(c) passing through the point $(6,0)$
(d) passing through the origin

Section-B

11) Write the following as an equation in two variables:
$x=-5$
12) Find the value of a so that the following equation may have $x=1, y=1$ as a solution $3 x+a y=6$
13) Draw the graph of the linear equation $y=m \cdot x+c$ for $m=2$ and $c=1$. Read from the graph the value of y when x
14) The taxi fare in a city is as follows: for the first kilometer, the fare is Rs. 10 and for the subsequent distance it is

Rs. 6 per km. Taking the distance covered as $x \mathrm{~km}$ and total fare as Rs.y, write a linear equation for this information, and draw its graph.
15) Express the following linear equation in the form $a x+b y+c=0$ and indicate the values of a, b and c in each case: $y-2=0$
16) Check which of the following are solutions of equation $x-2 y=4$ and which are not: $(\sqrt{2}, 4 \sqrt{2})$
17) Write 3 different solutions of $2 x+y=$
18) Water is following into a water tank at the rate of $10 \mathrm{~cm}^{3} / \mathrm{sec}$.If the volume of water collected in seconds is V cm^{3}, write a linear equation to represent the above statement.Draw a graph of the linear equation.
19) Let y vary directly as x.If $y=12$ when $x=4$, then write a linear equation.Draw the graph of this linear equation.Check if the point $(5,15)$ lies on the graph.
20) Express the following statement as a linear equation in two variables by taking present ages (in years) of father and son as x and y, respectively.Age of father 5 years ago was two years ago was teo years more than 7 times the age of his son at that time.

Section-C

21) Find the value of ' m ' if $(-m, 3)$ is a solution of equation $4 x+9 y-3=0$
22) Determine the point on the graph of the equation $2 x+5 y=20$ where x-coordinate is $\frac{5}{2}$ times its ordinate.
23) Draw the graph of the equations $x=3$ and $4 x=3 y$ in the same graph. Find the area of the triangle formed by these two lines and the x-axis
24) Give the equations of two lines passing through (1, 2). How many more such lines are there and why?

Section-A

1) (a) a linear equation in one variable
2) (a) $0,3,4$
3) (b) $2 \cdot x+0 \cdot y=3$
4) (a) $x=3$
5) (b) $(1,-1)$
6) (a) origin
7) (a) 14
8) (c) infinitely
9) (d) $x+y=0$
10) (a) parallel to x-axis at a distance 6 units from the origin
11) 3
12)

15) $y-2=0 \Rightarrow 0 . x+1 . y-2=0$

Comparing with $a x+b y+c=0$, we get $a=0, b=1, c=-2$
16) The given equation is $x-2 y=4$

Put $x=\sqrt{2}, \mathrm{y}=4 \sqrt{2}$ in (1), we get
$\mathrm{x}-2 \mathrm{y}=\sqrt{2}-2(4 \sqrt{2})$
$=\sqrt{2}-8 \sqrt{2}=-7 \sqrt{2}$ which is not 4 .
$(\sqrt{2}, 4 \sqrt{2})$ which is not 4 .
$(\sqrt{2}, 4 \sqrt{2})$ is not a soluton of (1)
17) $(0,0),(1,-2),(2,-4)$
18) $V=10 t$
19) $y=3 x$; Yes
20) Let the present ages of father and son be x years and y year respectively.

Then, Age of father 5 years ago $=(x-5)$ years
Age of his son 5 years ago($y-5$) years
According to the question,
$x-5=7(y-5)+2$
$x-y=7 y-35+2$
$x-7 y+28=0$
which is the required linear equation in two variables.

Section-C

21) if(-m, 3$)$ is a solution of the equation
$4 x+9 y-3=0$, then
$4(-m)+9(3)-3=0$
$\Rightarrow-4 m+27-3=0$
$\Rightarrow-4 m+24=0$
$\Rightarrow 4 \mathrm{~m}=24$
$\Rightarrow m=\frac{24}{4}=6$
22) $2 x+5 y=20$
$x=\frac{5}{2} y$
$\therefore 2\left(\frac{5}{2}, y\right)+5 y=20$
$\Rightarrow 10 y=20$
$\Rightarrow \mathrm{y}=2$
$\therefore x=\frac{5}{2}(2)=5$
Hence the required point is $(5,2)$.
23)

$x=3$ represents a line parallel to y-axis at a distance of 3 units to the right of the origin.
$4 x=3 y$
$\Rightarrow \quad y=\frac{4 x}{3}$ Table of solution

\mathbf{x}	03	
\mathbf{y}	0	4

We plot the points $(0,0)$ and $(3,4)$ on a graph paper and join the same by a ruler to get the line which is the graph of the equation $4 x=3 y$.

Area of the triangle GAB formed by the given two lines and the x-axis $=\frac{3 \times 4}{2}=6$ square units

Two lines passing through $(1,2)$ are
$x+y=3 \quad(1)$
and $y=2 x$
Infinitely many more such lines can be found because the general equation of a line is $a x+b y+c=0$. For a given point (x, y) through which the line passes and for an arbitrary pair of values of $a \operatorname{and} b, c$ can be determined so as to satisfy $a x+b y+c=0$. This holds good for each given point and each arbitrary pair of values of a and b. Hence, infinitely many lines can be found passing through a given point.

