QB365

Important Questions - Linear Equations in Two Variables

9th Standard CBSE

	Mathema	tics Reg.	No. :						
Time : 01:00:00 Hrs									
					т	otal N	Marks	· 50	
	Section-A					otati	viai KS	. 50	
1) $\sqrt{2}y+\sqrt{3}=0$ is									1
(a) a linear equation in one variable	e (b) not a linear equa	tion in one variable							
(c) a linear equation in two variable	es (d) none of these								
2) Write a, b, c for the equation 3y+4=0)								1
(a) 0,3,4 (b) 3,0,4 (c) 4,0,3 (c	i) 4,3,0	1-67-)							
3) The equation 2x=3 in two variables i	is of the form:		5						1
(a) 2.x+3.y=0 (b) 2.x+0.y=3 (c)	$\frac{2}{3} \cdot x + 0.y = 3$ (d) 1.3	$(+\frac{2}{3}.y=1)$	0						
4) The salary of Dr.Harikisham is thrice	e the salary of Manish Go	yal.Write a linear equat	ion in tv	vo var	iables	to			1
represent the statement.		1×8'363							
(a) x=3 (b) x+3y=0 (c) <mark>x=3y</mark> +3	(d) x=y+3	10 do							
5) A point on the line x+y=0 is	1 St	ann.							1
(a) (1,1) (b) (1,-1) (c) (0,1) (d) (1,0)	yal.Write a linear equat							
6) The line y=mx passes through	405								1
(a) origin (b) (1,1) (c) (m, 1)	(d) (-1,_1)								
7) Find the value of k if (4, 1) is a solution	on of 3x+2y=k								1
(a) 14 (b) 12 (c) 10 (d) 16									
8) How many linear equations in x and	y can be satisfied by x =	1 and y = 2?							1
(a) only one (b) two (c) infinit	ely (d) three								
9) Any point of the form (q, -q) always	lie on the graph of the ec	uation:							1
(a) x=-a (b) y=a (c) y=x (d) x	(+y=0								
10) The graph of y=6 is a line:									1
(a) parallel to x-axis at a distance 6	units from the origin								
(b) parallel to y-axis at a distance 6	units from the origin (c) passing through the	point (6,0)					
(d) passing through the origin									
	Section-B								
11) Write the following as an equation	in two variables:								2
x=-5									

12) Find the value of a so that the following equation may have x=1, y=1 as a solution 3x+ay=6

2

13) Draw the graph of the linear equation $y = m.x + c$ for $m = 2$ and $c = 1$. Read from the graph the value of y when x $= \frac{3}{2}$	2			
 14) The taxi fare in a city is as follows: for the first kilometer, the fare is Rs.10 and for the subsequent distance it is Rs.6 per km. Taking the distance covered as x km and total fare as Rs.y, write a linear equation for this information, and draw its graph. 				
 15) Express the following linear equation in the form ax+by+c=0 and indicate the values of a, b and c in each case: y-2=0 	2			
16) Check which of the following are solutions of equation x-2y=4 and which are not: $(\sqrt{2}, 4\sqrt{2})$	2			
17) Write 3 different solutions of 2x +y =	2			
 18) Water is following into a water tank at the rate of 10cm³/sec. If the volume of water collected in t seconds is V cm³, write a linear equation to represent the above statement. Draw a graph of the linear equation. 	2			
19) Let y vary directly as x.If y=12 when x=4, then write a linear equation.Draw the graph of this linear	2			
equation.Check if the point (5, 15) lies on the graph.				
20) Express the following statement as a linear equation in two variables by taking present ages (in years) of 2	2			
father and son as x and y, respectively.Age <mark>of father</mark> 5 yea <mark>rs ag</mark> o was two years ago was teo years more than 7				
times the age of his son at that time.				
times the age of his son at that time. Section-C 21) Find the value of 'm' if (-m, 3) is a solution of equation 4x+9y-3=0				
21) Find the value of 'm' if (-m, 3) is a solution of equation 4x+9y-3=0	5			
	5			
23) Draw the graph of the equations $x = 3$ and $4x = 3y$ in the same graph. Find the area of the triangle formed by	5			
these two lines and the x-axis				
24) Give the equations of two lines passing through (1, 2). How many more such lines are there and why?	5			

Section-A				
1) (a) a linear equation in one variable	1			
2) (a) 0,3,4	1			
	1			
	1			

- 5) (b) (1,-1)
- 6) (a) origin
- 7) (a) 14
- 8) (c) infinitely
- 9) (d) x+y=0

1

1

1

1

1

1

10) (a) parallel to x-axis at a distance 6 units from the origin

Section-B

- 14) $y=10+6(x-1) \Rightarrow y=4+6x$
- 15) $y-2=0 \Rightarrow 0.x+1.y-2=0$ Comparing with ax+by+c=0, we get a=0,b=1,c=-2
- 16) The given equation is x-2y=4 Put $x = \sqrt{2}$, $y=4\sqrt{2}$ in (1), we get $x-2y=\sqrt{2}-2(4\sqrt{2})$ $= \sqrt{2}-8\sqrt{2} = -7\sqrt{2}$ which is not 4. $(\sqrt{2}, 4\sqrt{2})$ which is not 4. $(\sqrt{2}, 4\sqrt{2})$ is not a soluton of (1)
- 17) (0,0), (1,-2), (2, -4)
- 18) V=10t
- 19) y=3x; Yes
- 20) Let the present ages of father and son be x years and y year respectively.

QUESTION BANK 365. OUESTION BANK 365. Inttos: III MAN AD A BANK AD

Then, Age of father 5 years ago =(x-5)years

Age of his son 5 years ago(y-5) years

According to the question,

x-5=7(y-5)+2

x-y=7y-35+2

x-7y+28=0

which is the required linear equation in two variables.

Section-C

2 2

2

2

2

2

2

2

2

21) if(-m, 3) is a solution of the equation

```
4x+9y-3=0, then
     4(-m)+9(3)-3=0
     \Rightarrow -4m+27-3=0
     ⇒ -4m+24=0
     ⇒ 4m=24
     \Rightarrow m = \frac{24}{4} = 6
22) 2x+5y=20
     x=rac{5}{2}y
    \therefore 2\left(rac{5}{2},y
ight)+5y=20
     ⇒ 10y=20
     \Rightarrow y=2
     \therefore x = \frac{5}{2}(2) = 5
     Hence the required point is (5, 2).
```

```
23)
```

x = 3 represents a line parallel to y-axis at a distance of 3 units to the right of the origin.

on BANK 30 We plot the points (0,0) and (3, 4) on a graph paper and join the same by a ruler to get the line which is the graph of the equation 4x = 3y.

Area of the triangle GAB formed by the given two lines and the x-axis $=\frac{3\times4}{2}=6$ square units

5

5

24)

Two lines passing through (1, 2) are

x+y=3(1)

and y=2x(2)

Infinitely many more such lines can be found because the general equation of a line is ax + by + c = 0. For a given point (x, y) through which the line passes and for an arbitrary pair of values of a and b, c can be determined so as to satisfy ax + by + c = 0. This holds good for each given point and each arbitrary pair of values of a and b. Hence, infinitely many lines can be found passing through a given point.

