QB365

Important Questions - Lines and Angles

9th Standard CBSE

	Mathematics	Reg.No.:		
Time : 01:00:00 Hrs				
			Tota	al Marks : 50
Section				
 The minimum number of points required to c (a) 1 (b) 2 (c) 3 (d) 4 	araw a tine is			1
2) An obtuse angle $ (a) \ \ \text{measures between } 0^0 \ \ \text{and } 90^0 \ (b) \ \ \text{is g} $	reater than 00^0 but less	than 180^0 (c) is evar	ntly equal to 00	7 0
(d) is exactly equal to 180^0	reater than 90° but less	than 180° (c) is exac	itty equal to ac	,
3) The complement of an angle m is:		30		
(a) m (b) 90^{0} +m (c) 90^{0} -m (d) mx90	0	365		
4) An right angle		ni 44		
(a) measures between 0^0 and 90^0 (b) is expression.	xactly equal to 90^0 (c)	is greater than 90^0 bu	ıt less than 180) ⁰
(d) is equal to 180^0				
5) The compliment of (90^0-a^0) is	ESN	n.		,
(a) $-a^0$ (b) $90^0 + a^0$ (c) $90^0 - a^0$ (d) a^0	xactly equal to 90^0 (c)			
6) The angle which is equal to 8 times its compl	liment is:			1
(a) 80^0 (b) 72^0 (c) 90^0 (d) 88^0	Wille			
7) In the given figure if AOB is a straight line, the	en $\angle BOC$ is			1
C				
(2x + 30°) (2x + 10°) A O B				
(a) 80^0 (b) 70^0 (c) 60^0 (d) 20^0				
8) If two parallel lines are cut by a transversal th				1
(a) Corresponding angles are equal (b) Alternate interior angles are equal				
(c) Interior angles of the same side of the transversal are supplementary(d) Interior angles on the same side of the transversal are complimentary				
(u) intenor angles on the same side of the ti	ansversat are complime	tillal y		

1

9) In a regular polygon of an sides the measure of each interior angle is

(a) $\frac{360^0}{n}$ (b) $\frac{2n-4}{n}$ (c) n right angles (d) 2n right angles

2

2

- (a) An acute angled triangle (b) An obtuse-angled traingle (c) A right traingle

(d) An isosceles traingle

Section-B

- 11) Find the supplement of $\frac{4}{3}$ of right angle
- 12) If $(3x-58^0)$ and $(x+38^0)$ are supplementary angles, find x and the angles.
- 13) (a) In the figure, what value of x will make POQ a straight line:

(b)In the given figure find the value of x,If AOB is a line

14) In figure if \angle POR and \angle QOR form a linear pair and a-b= 80^{0} then find the values of a and b

2

2

2

2

2

16) In
$$\triangle$$
 ABC if $\angle A=(2Xx-5)^0, \angle B=(5X+5)^0$ $\angle C=(3Xx-50)^0$ then find the values of x, \angle A, $\angle B$ and $\angle C$

- 17) find the angles of a traingle PQR if $\angle p \angle q = 45^0$ and $\angle Q \angle R = 30^0$
- 18) ABCDE is a regular pentagon as shown in the given figure Find the values $\angle x \angle y \angle z$

- 19) It is given that \angle XYZ=64 0 and XY produced to point P. Draw a figure from the given information If ray YQ bisects \angle ZYP , Find \angle ZYP find \angle XYQ and reflex \angle QYP.
- 20) In Figure ,PQ and RS are two mirrors placed parallel to each other An incident ray AB strikes the mirror PQ at B the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB|| CD

Section-C

5

5

1

1

22) In the given figure , two straight lines PQ and RS intersect each other at O If \angle POT =75 0 Find the values of a,b,c

23) In figure if x=y and a=b prove that r || n

24) The side EF,FD and DE of a traingle DEF are produced in order forming three exterior angles DFP,EDQ and FER respectively,Prove that

$$\Rightarrow \angle DFP + \angle EDQ + \angle FER = 360^{0}$$

Section-A

- 1) (b) 2
- 2) (b) is greater than 90^{0} but less than 180^{0}

- 3) (c) 90^{0} -m
 4) (b) is exactly equal to 90^{0} 5) (d) a^{0} 1
- 6) (a) 80^{0} 7) (a) 80^{0}

1

1

2

2

2

2

2

- 8) (d) Interior angles on the same side of the transversal are complimentary
- 9) (b) $\frac{2n-4}{n}$ 10) (a) An acute angled triangle

Section-B

- 11) $\frac{4}{3}$ of a right angle= $\frac{4}{3} \times 90^o = 120^o$ (Sum of supplementary angles is 180°) Supplement of 120°=180°-120°=60°
- 12) x=50, 92⁰ and 88⁰
 13) (a) 28 (b) 26
- 14) a+b=180° (Linear pair)
 a-b=80° (Given)
 Adding, 2a=260°
- a=130°
 and b=180°-a=180°-130°
 =50°
- 15) x=15⁰,y=65⁰ 16) 13;21⁰,70⁰,89⁰
- 17) $100^0, 55^0, 25^0$
- 18) $36^0, 36^0, 72^0$

| Linear pair Axiom

$$\Rightarrow 64^0 + \angle ZYP = 180^0$$

$$\therefore \angle \ \mathsf{PYQ} = \angle \ \mathsf{ZYQ} = = \frac{1}{2} \\ = \frac{1}{2} (116^0) \ | \mathsf{Using} \ (1) = 58^0$$

:. Reflex
$$\angle$$
 QYP= 360^{0} - 58^{0} = 302^{0}

Https://www.ab365.in \therefore The sum of all angles round a point is equal to 360°

$$=64^{0}+58^{0}$$

$$| \because \angle XYZ=64^0 \text{ (Given) and } \angle ZYQ=58^0 = 122^0$$

BL \perp PQ,CM \perp RS and PQ || RS BL||CM

 \angle LBC= \angle MCB

|Alternate Interior Angles

∠ABL=∠LBC

Angle of incidence= Angle of reflection

∠MCB=∠MCD

Angle of incidence= Angle of reflection

From (1),(2) and (3) we get

 $\angle ABL = \angle MCD$

Adding (1) and (4), we get

 \angle LBC+ \angle ABL = \angle MCB+ \angle MCD

 \Rightarrow \angle ABC= \angle BCD

But these form a pair of equal alternate interior angles

So AB || CD.

Section-C

21)
$$\angle FOB + \angle BOE = 180^{\circ} ...(1)$$

| Linear pair Axiom

$$\angle$$
FOA+ \angle AOE= 180^{0} .. (2)

| Linear Pair Axiom

From (1) and (2)

$$\angle$$
FOB+ \angle BOE= \angle FOA+ \angle AOE....(3)

But ∠BOE=∠AOE

|∴ From (3)

⇒ ∠FOB=∠FOA

Prior angles

Coultinum do 365 in Angles in An

5

5

$$\therefore$$
 4b+75⁰+b=180⁰

$$\Rightarrow 5b = 180^0 - 75^0 = 105^0$$

$$\Rightarrow$$
 b= $rac{105^0}{5}=21^0$

$$2c=75^{0}+b$$

|Vertically opposite angles

$$\Rightarrow 2c = 75^0 + 21^0$$

$$\Rightarrow 2c = 96^0$$

$$\Rightarrow c = \frac{96^0}{2} = 48^0$$

a=4b

Vertically opposite angkes

$$\Rightarrow a = 4X21^0 = 84^0$$

Thus
$$a = 84^0, b = 21^0, c = 48^0$$

23) r and m are two lines and a traversal p intersects them such that x=y But these angles form a pair of equal corresponding angles

https://www.ab365.in Again m and n are two lines and a traversal qintersects them such that a=b But these angles form a pair of equal corresponding angles

But

From (1) and (2) we have r||n.

24)
$$\angle DFP + \angle D + \angle E$$

Exterior Angle Theorem

$$\angle EDQ = \angle E + \angle F$$

| Exterior Angle Theoram

$$\angle FER = \angle F + \angle D$$

|Exterior Angle Theoram

Adding (1),(2) and (3) we get

$$\angle DFP + \angle EDQ + \angle FER = 2(\angle D + \angle E + \angle F)$$

$$\angle D + \angle E + \angle F = 180^{\circ}$$

The sum of three angles of a traingle is 180°

$$\therefore \angle DFP + \angle EDQ + \angle FER$$

$$=2(180^0)=360^0$$