QB365

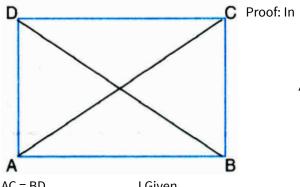
Important Questions - Quadrilaterals

9th Standard CBSE

	Mathematics Reg.No.:						
Ti	me : 01:00:00 Hrs						
				To	otal N	Marks	::50
	Section-A						
1)	What is the number of vertices of a quadrilateral?						
	(a) 1 (b) 2 (c) 4 (d) 3						
2)	If one of a parallelogram is 90 ⁰ and all sides are equal , then it is called a						
	(a) kite (b) rectangle (c) rhombus (d) square						
3)	if both the pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a	3					
	(a) parallelogram (b) trapezium (c) kite (d) rhombus						
4)	A blackboard is						
	(a) a parallelogram (b) a rhombus (c) a trapezium (d) kite.						
5)	ABCD is a rhombus such that ABC=4flen ADC is equal to						
	(a) 40° (b) 45° (c) 50° (d) 20°						
6)	In a parallelogram ABCD, if <u>Æ</u> = 7 then the measure of ⊠is						
	(a) 10° (b) 20° (c) 110° (d) 90°						
7)	In the following figure, ABCD is a parallelogram. The bisectors of angles A and B intersect a	at O.	The	n, the	e ang	le	
	AGB is						
	(a) parallelogram (b) trapezium (c) kite (d) rhombus A blackboard is (a) a parallelogram (b) a rhombus (c) a trapezium (d) kite. ABCD is a rhombus such that ABC=4flen ADC is equal to (a) 40° (b) 45° (c) 50° (d) 20° In a parallelogram ABCD, if A=70 nen the measure of E is (a) 10° (b) 20° (c) 110° (d) 90° In the following figure, ABCD is a parallelogram. The bisectors of angles A and B intersect a AGB is						
	(a) a right angle (b) an acute angle (c) an obtuse angle (d) a straight angle.a strai	ight a	ngle	<u>.</u>			
8) Find the perimeter of quadrilateral BDEF.							
	F C						

(a) 8 cm (b) 11 cm (c) 7 cm (d) 3.5 cm

9) The quadrilateral formed by joining the mid-points of the sides of the rhombus taken in order is a (a) rectangle (b) square (c) trapezium (d) kite 10) The quadrilateral formed by joining the mid-point of the sides of a rectangle taken in order is a 1 (a) rectangle (b) square (c) rhombus (d) kite **Section-B** 11) The angles A, B, C and D of a quadrilateral have measures in the ratio 2:4:5:7. Find the measures of these 2 angles. What type of quadrilateral is it? Give reasons. 12) In a parallelogram PQRS, if QRS=2x, PQS=4x, and PSQ=4x, find the angles of the parallelogram. 2 13) If an angle of a parallelogram in two-third of its adjacent angle then find the measure of all the angles, 2 14) In the figure, ABCD is a parallelogram in which AB is produced to E so that AB = BE 2 (a) Prove that ED bisects BC (b) If AD = 10 cm, find OB. 15) if the diagonals of a parallelogram are equal, then show that it is a rectangle. 16) Show that if the diagonals of a quadrilateral bisect each other at right angles, then 2 it is a rhombus. 17) Show that the diagonals of a square are equal and bisect each other at right angles 2 18) Show that if the diagonals of a quadrilateral are equal and bisect each other at right 2 angles, then it is a square. 19) The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral. 2 20) ABCD is a rectangle with **DEA** on ine 42 DBC 2 **Section-C** 21) Prove that each angle of a rectangle is a right angle. 5 22) "A diagonal of a parallelogram divides it into two congruent triangles:" Prove it. 5 23) ABCD is a parallelogram and line segments AX, CY bisects the angles A and C respectively. Show that AX II CY. 5 24) In the figure ABCD is a parallelogram and E is the midpoint of side BC DE and AB on producing meet at F. 5 Prove that AF = 2AB.


B

Section-A

1) (c) 4	1
2) (b) rectangle	1
3) (a) parallelogram	1
4) (a) a parallelogram	1
5) (a) 40°	1
6) (c) 110°	1
7) (a) a right angle	1
8) (c) 7 cm	1
9) (a) rectangle	1
10) (c) rhombus	1
Section-B	
11) 40°, 80°, 100°, 140°; Trapezium	2
12) 36°,144°,36°, 144°	2
13) 72°, 108°, 72°, 108°	2
11) 40°, 80°, 100°, 140°; Trapezium 12) 36°,144°,36°, 144° 13) 72°, 108°, 72°, 108° 14) 5 cm	2

2

$$\Delta$$
 Δ

ACB and BDA,

$$AC = BD$$

I Given

$$AB = BA$$

I Common

$$BC = AD$$

I Opposite sides of II gm ABCD

$$\triangle ACB = \triangle BDA$$

| SSS Congruence Rule

$$\therefore \angle ABC = \angle BAD$$

$$\dots (1)$$
 $C.P.C.T$

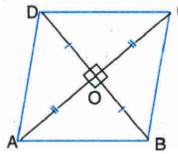
Opp. sides of II gm ABCD

and transversal AB intersects them.

$$\angle BAD + \angle ABC = 180^{\circ}$$

 \dots (2)

|Sum of consecutive interior angles on the same side of a transversal is 180


From (1) and (2),

$$\angle BAD = \angle ABC = 90^{\circ}$$

∴ || gm ABCD is a rectangle.

16) Given: ABCD is a quadrilateral whose diagonals AC and BD bisect each other at right angles at O.

To Prove: Quadrilateral ABCD is a rhombus.

proof: In \triangle AOB and \triangle AOD,

$$AO = AO$$

Common

$$OB = OD$$

| Given

$$\angle AOB = \angle AOD$$

|Each=90°

$$\Delta AOB \cong \Delta AOD$$

|SAS Congruence Rule(1) | C.P.C.T.

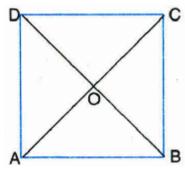
Similarly, we can prove that

$$AB = BC$$
(2)

$$BC = CD$$
(3)

$$CD = AD$$
(4)

In view of (1), (2), (3) and (4) and (4), we obtain


$$AB = BC = CD = DA$$

... Quadrilatrral ABCD is a rhombus.

To Prove:

- (I) AC = BD
- (ii) AC and BD bisect each other at right angles.

Proof: (i) In Δ ABC and Δ BAD,

AB=BA

I Common

BC=AD

I Opp. sides of square ABCD

 \angle ABC = \angle BAD

|ABCD is a square)

 $\therefore \Delta ABC = \Delta BAD$

SAS Congruence Rule

∴ AC = BD

I C.P.C.T.

(ii) In Δ OAD and Δ OCB,

$$AD = CB$$

I Opp. sides of square ABCD

 $\angle OAD = \angle OCB$

AD BC and transversal AC intersects them

 $\angle ODA = \angle OBC$

AD || BC and transversal BD intersects them

 $\Delta OAD \cong \Delta OCB$

ASA Congruence Rule

Similarly, we can prove that

...(2)

In view of (1) and (2),

AC and BD bisect each other.

Again, in \triangle OBA and \triangle ODA,

OB = OD

I From (2) above

BA = DA

I Sides of square ABCD

OA = OA

I Common

 $\Delta OBA \cong \Delta ODA$

|SSS Congruence Rule

$$\angle AOB = \angle AOD$$

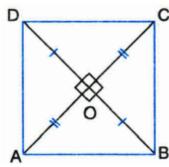
But
$$\angle AOB + \angle AOD = 180\degree$$
 |Linear Pair Axiom

$$\angle AOB = \angle AOD = 90^{\circ}$$

∴ AC and BD bisect each other at right angles.

18)

Given: The diagonals AC and BD of a quadrilateral ABCD are equal and bisect each other at right angles.


To Prove: Quadrilateral ABCD is a square.

Proof: In \triangle OAD and \triangle OCB,

OA=OC I Given
OD=OB I Given

 $\angle AOD = \angle COB$ | Vertically Opposite Angles

 $\therefore \Delta OAD \cong \Delta OCB$ I SAS Congruence Rule

$$\angle ODA = \angle OBC$$

$$\angle BDA = \angle DBC$$

Now, ∵ AD = CB and AD II CB

.:. Quadrilateral ABCD is a II gm. I A quadrilateral is a parallelogram if a pair of opposite sides are parallel and equal.

In \triangle AOB and \triangle AOD,

AO = AO I Common

OB = OD | I Given

 $\angle AOB = \angle AOD$ | Each=90°

 \therefore \triangle AOB \cong \triangle AOD I SAS Congruence Rule

AB = AD I C.P.C.T.

Now, ∵ABCD is a parallelogram and

AB=AD

: ABCD is a rhombus.

Again, in Δ ABC and Δ BAD,

AC = BD I Given

BC = AD I: ABCD is a rhombus

AB = BA I Common

 $\therefore \Delta$ ABC $\cong \Delta$ BAD I SSS Congruence Rule

 \therefore \angle ABC = \angle BAD I C.P.C.T.

: AD II BC I Opp. sides of IIgm ABCD and transversal AB intersects them.

 \therefore $\angle ABC + \angle BAD = 180^{\circ}$ I Sum of consecutive interior angles on the same side of a transversal is

180°

 $ABC = \angle BAD = 90^{\circ}$

Similarly, \angle BCD= \angle ADc= 90°


∴ ABCD is a square.

19) 36°, 60°, 108°, 156°

20) 48°

21) Given: ABCD is a rectangle with $\angle A = 90^{\circ}$.

To Prove: $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$.

Proof ∴ ABCD is a rectangle

:. ABCD is a parallelogram

.: AD II BC I Opposite sides of a parallelogram are parallel and a transversal AB intersects them

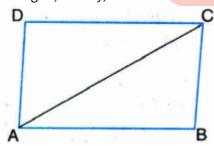
 \therefore $\angle A + \angle B = 180^{\circ}$ | Sum of the consecutive interior angles on the same side of a transversal is 180°

$$\Rightarrow$$
 90° + \angle B = 180° I.: \angle A = 90° (given)

$$\Rightarrow$$
 \angle B = 90°

: ABCD is a parallelogram and opposite angles of a parallelogram are equal.

Section-C


∴ ∠C=∠A=90°

and $\angle D = \angle B = 90^{\circ}$

Hence, $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$.

22)

Given: ABCD is a parallelogram. AC is a diagonal of parallelogram ABCD which divides it into two triangles, namely, Δ ABC and Δ CDA

To Prove: $\Delta \mathsf{ABC} \cong \Delta \mathsf{CDA}$

Proof: BC IIDA IOpposite sides of a parallelogram are parallel and AC is a transversal

∠ BCA=∠DAC ...(1) I Pair of alternate interior angles

Also, AB IIDC IOpposite sides of a parallelogram are parallel and AC is a transversal

 \therefore \angle BAC = \angle DCA(2) I Alternate interior angles

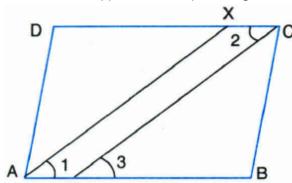
$$AC = CA$$
 ...(3) I Common

In view of (1), (2) and (3),

 Δ ABC \cong Δ CDA I ASA congruence criterion

5

2


5

Given: ABCD is a parallelogram and line segments AX, CY bisect the angles A and C respectively.

To Prove: AX IICY.

Proof: ∵ ABCD is a parallelogram.

 $\therefore \angle A = \angle C$ I Opposite $\angle s$ of a parallelogram are equal

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$
 |: Halves of equals are equal

$$\Rightarrow$$
 $\angle 1 = \angle 2$...(1) I : AX is the bisector of $\angle A$ and CY is the bisector of $\angle C$ Now, AB II DC and CY

intersects them

$$\therefore$$
 $\angle 2 = \angle 3$ (2) I Alternate interior \angle s

From (1) and (2), we get

$$\angle 1 = \angle 3$$

But these form a pair of equal corresponding angles

.: AX II CY.

24) Given: ABCD is a parallelogram and E is the mid-point of side BC. DE and AB on producing meet at F.

To Prove: AF = 2AB

Proof: In Δ FAD,

∴ E is the mid-point of BC I Given

and EB II DA | Opposite sides of a parallelogram are parallel

... B is the mid-point of AF I By converse of mid-point theorem

 $AB = BF = \frac{1}{2} AF \Rightarrow AF = 2AB$