QB365
 Important Questions - Surface Areas and Volumes
 9th Standard CBSE

Mathematics
Reg.No.:

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) Which of the following is a plane figure?
(a) Cone
(b) Square
(c) Cylinder
(d) Cube.
2) Which of the following is a solid figure?
(a) Circle
(b) Cylinder
(c) Square
(d) Rectangle.
3) Identify the wrong statement of the following:
(a) A square can be drawn on our notebook.
(b) A circle can be drawn on the blackboard.
(c) A rectangle can be drawn on a piece of paper.
(d) A triangle cannot be drawn on a wall.
4) The number of edges of a cube are
(a) 6
(b) 8
(c) 12
(d) 16.
5) If the edges of a cuboid are I, b and h respectively, then the total surface area of the cuboid is
(a) $2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$
(b) lbh
(c) $2(l+b) h$
(d) none of these.
6) The lateral surface area of a cuboid of length l, breadth b and height h is
(a) $2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$
(b) $2(l+b) h$
(c) lbh
(d) none of these.
7) The side of a cube is 1 cm . The total surface area of the figure formed by joining two such cubes is
(a) $2(2+1+2) \mathrm{cm}^{2}$
(b) $2(2+2+2) \mathrm{cm}^{2}$
(c) $2(1+1+1) \mathrm{cm}^{2}$
(d) $2(1+1+2) \mathrm{cm}^{2}$
8) A brick measures $25 \mathrm{~cm} \times 12 \mathrm{~cm} \times 10 \mathrm{~cm}$. Its surface area is
(a) $670 \mathrm{~cm}^{2}$
(b) $1340 \mathrm{~cm}^{2}$
(c) $3000 \mathrm{~cm}^{2}$
(d) $1500 \mathrm{~cm}^{2}$
9) The area of the four walls of a room is $300 \mathrm{~m}^{2}$. Its length and height are 15 m and 6 m respectively. Find its breadth.
(a) 10 m
(b) 5 m
(c) 20 m
(d) 15 m
10) The area of the four walls of a room is $80 \mathrm{~cm}^{2}$ and its height is 4 m . Then, the perimeter of the floor of the room is
(a) 16 m
(b) 5 m
(c) 20 m
(d) 10 m

Section-B

11) The edge of a cube is 10.5 mm . Find its total surface area in cm^{2}.
12) The length, breadth, and height of a cuboid are $15 \mathrm{~cm}, 10 \mathrm{~cm}$, and 20 cm . Find the surface area of the cuboid.
13) The surface area of a cuboid is $1372 \mathrm{~cm}^{2}$. If its dimensions are in the ratio $4: 2: 1$, find its length.
14) The floor of a rectangular hall has a perimeter of 250 m and its length and breadth are in the ratio of 13: 12. If the wall at Rs. 120 per sq. m.
15) How many metres of cloth $1 \frac{4}{7} \mathrm{~m}$ wide will be 7 required to make a conical tent whose base diameter is 10 m and whose vertical height is 12 cm ?
16) Find the volume, total surface area, lateral surface area and the length of diagonal of a cube, each of whose edges measures 20 cm .
17) A village having a population of 2000 , requires 150 litres of water per head per day. It has a tank measuring 20 $\mathrm{m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}$. Find how many days will the water of this tank last?
18) The volume of a cylinder is 448π cubic cm and the height is 7 cm . Find its total surface area.
19) Find the capacity in litres of a conical vessel whose base diameter is 14 cm and slant height is 25 cm .

Section-C

21) A cast-iron pipe has an external diameter of 75 mm . If it is 4.2 m long, find the area of the outer surface. $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
22) Find the length of the longest rod that can be placed in a room $12 \mathrm{~m} \times 9 \mathrm{~m} \times 8 \mathrm{~m}$.
23) A powder tin has a square base with side 8 cm and height 13 cm . Another is cylindrical with the radius of its base 47 cm and its height 15 cm . Find the difference in their capacities. (Use $\pi=\frac{22}{7}$)
24) The difference between outside and surface of a cylindrical metallic pipe 14 cm long is $44 \mathrm{~cm}^{2}$. If the pipe is made of $99 \mathrm{~cm}^{3}$ of metal, find the outer and inner radii of the pipe.

Section-A

1) (b) Square
2) (b) Cylinder
3) (d) A triangle cannot be drawn on a wall.
4) (c) 12
5) (a) $2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$
6) (b) $2(l+b) h$
7) (a) $2(2+1+2) \mathrm{cm}^{2}$
8) (b) $1340 \mathrm{~cm}^{2}$
9) (a) 10 m
10) (c) 20 m

Section-B

11) $6.615 \mathrm{~cm}^{2}$
12) $1300 \mathrm{~cm}^{2}$
13) 28 cm 2
14) 21.6 m
15) Rs. 23760
16) 130 m
17) $8000 \mathrm{~cm}^{3}, 2400 \mathrm{~cm}^{2}, 1600 \mathrm{~cm}^{2}, 20 \sqrt{3} \mathrm{~cm}$
18) 6 days
19) $240 \pi \mathrm{~cm}^{2}$
20) 1.2831

Section-C

21) External diameter $=75 \mathrm{~mm}$
\therefore External radius $(r)=\frac{75}{2} \mathrm{~mm}=37.5 \mathrm{~mm}$

$$
=\frac{37.5}{10} \mathrm{~cm}=3.75 \mathrm{~cm}
$$

Length of the pipe (h)

$$
=4.2 \mathrm{~m}=4.2 \times 100 \mathrm{~cm}=420 \mathrm{~cm}
$$

\therefore Area of the outer surface $=2 \pi r h$

$$
=2 \times \frac{22}{7} \times 3.75 \times 420=9900 \mathrm{~cm}^{2}
$$

22) For room

$$
\begin{aligned}
& \mathrm{l}=12 \mathrm{~m} \\
& \mathrm{~b}=9 \mathrm{~m} \\
& \mathrm{~h}=8 \mathrm{~m}
\end{aligned}
$$

\therefore Length of the longest rod that can be placed in the room

> = Length of the diagonal
$=\sqrt{l^{2}+b^{2}+h^{2}}$
$=\sqrt{(12)^{2}+(9)^{2}+(8)^{2}}$
$=\sqrt{ } 144+81+64$
$=\sqrt{289}$
$=17 \mathrm{~m}$.
23) For a power tin with a square base

Side of the square base $=8 \mathrm{~cm}$
Height $=13 \mathrm{~cm}$
\therefore Volume $\left(\mathrm{V}_{1}\right)=8 \times 8 \times 13=832 \mathrm{~cm}^{2}$
For a cylindrical powder tin
Radius of the base $(r)=7 \mathrm{~cm}$
Height (h) $=15 \mathrm{~cm}$
\therefore Volume $\left(\mathrm{v}_{2}\right)=\pi r^{2} h$
$=\frac{22}{7} \times(7)^{2} \times 15=2310 \mathrm{~cm}^{3}$
\therefore Difference in their capacities $=\mathrm{v}_{2}-\mathrm{v}_{1}$
$=2310-832=1478 \mathrm{~cm}^{3}$
24) Let the outer and inner radii of the pipe be $R \mathrm{~cm}$ and rcm respectively, then,
$2 \pi R(14)-2 \pi r(14)=44$
$\Rightarrow \quad 8 \pi(R-r)=44$
$\Rightarrow \quad 28 \times \frac{22}{7}(R-r)=44$
$=R-r=\frac{1}{2}$
and $\pi R^{2}(14)-\pi r^{2}(14)=99$
$\Rightarrow \quad 14 \pi\left(R^{2}-r^{2}\right)=99$
$\Rightarrow \quad 14 \times \frac{22}{7}\left(R^{2}-r^{2}\right)=99$
$\Rightarrow \quad R^{2}-r^{2}=\frac{9}{4}$
$\Rightarrow \quad(R+r)(R-r)=\frac{9}{4}$
$\Rightarrow \quad(R+r) \frac{1}{2}=\frac{9}{4}$
Solving (1) and (2) we get
$R=\frac{5}{2} \mathrm{~cm}$
$\mathrm{r}=2 \mathrm{~cm}$

