QB365 Important Questions - Surface Areas and Volumes

9th Standard CBSE

Mathematics Reg.No.:	
Time : 01:00:00 Hrs	
	1 50
Iotal M. Section-A	arks : 50
1) Which of the following is a plane figure?	1
(a) Cone (b) Square (c) Cylinder (d) Cube.	-
2) Which of the following is a solid figure?	1
(a) Circle (b) Cylinder (c) Square (d) Rectangle.	-
3) Identify the wrong statement of the following:	1
(a) A square can be drawn on our notebook. (b) A circle can be drawn on the blackboard.	_
(c) A rectangle can be drawn on a piece of paper. (d) A triangle cannot be drawn on a wall.	
	1
4) The number of edges of a cube are (a) 6 (b) 8 (c) 12 (d) 16.	
5) If the edges of a cuboid are l, b and h respectively, then the total surface area of the cuboid is	1
(a) $2(lb + bh + hl)$ (b) lbh (c) $2(l + b)h$ (d) none of these.	
6) The lateral surface area of a cuboid of length l, breadth b and height h is	1
(a) $2(lb + bh + hl)$ (b) $2(l + b)h$ (c) lbh (d) none of these.	
7) The side of a cube is 1 cm. The total surface area of the figure formed by joining two such cubes is	1
(a) $2(2+1+2)$ cm ² (b) $2(2+2+2)$ cm ² (c) $2(1+1+1)$ cm ² (d) $2(1+1+2)$ cm ²	
8) A brick measures 25 cm $ imes$ 12 cm $ imes$ 10 cm. Its surface area is	1
(a) 670 cm ² (b) 1340 cm ² (c) 3000 cm ² (d) 1500 cm ²	
9) The area of the four walls of a room is 300 m ² . Its length and height are 15 m and 6 m respectively. Find its	1
breadth.	
(a) 10 m (b) 5 m (c) 20 m (d) 15 m	
10) The area of the four walls of a room is 80 cm ² and its height is 4 m. Then, the perimeter of the floor of the	1
room is	
(a) 16 m (b) 5 m (c) 20 m (d) 10 m	
Section-B	
11) The edge of a cube is 10.5 mm. Find its total surface area in cm ² .	2
12) The length, breadth, and height of a cuboid are 15 cm, 10 cm, and 20 cm. Find the surface area of the cuboid	. 2
13) The surface area of a cuboid is 1372 cm ² . If its dimensions are in the ratio 4: 2: 1, find its length.	2
14) The floor of a rectangular hall has a perimeter of 250 m and its length and breadth are in the ratio of 13: 12. I	f 2

the cost of painting the four walls and ceiling at the rate of Rs. 5 per m² is Rs.27000, find the height of the hall.

15) The diameter of a circular wall is 4.5 m and its depths is 14 m.Find the cost of cementing the inner surface of	2
the wall at Rs. 120 per sq. m.	
16) How many metres of cloth $1rac{4}{7}m$ wide will be 7 required to make a conical tent whose base diameter is 10 m	2
and whose vertical height is 12 cm?	
17) Find the volume, total surface area, lateral surface area and the length of diagonal of a cube, each of whose	2
edges measures 20 cm.	
18) A village having a population of 2000, requires 150 litres of water per head per day. It has a tank measuring 20	2
m $ imes$ 15 m $ imes$ 6 m. Find how many days will the water of this tank last?	
19) The volume of a cylinder is 448 π cubic cm and the height is 7 cm. Find its total surface area.	2
20) Find the capacity in litres of a conical vessel whose base diameter is 14 cm and slant height is 25 cm.	2
Section-C	
21) A cast-iron pipe has an external diameter of 75 mm. If it is 4.2 m long, find the area of the outer surface.	5
$\left\lfloor Assume\pi=rac{22}{7} ight floor$	
22) Find the length of the longest rod that can be placed in a room 12 m $ imes$ 9 m $ imes$ 8 m.	5
23) A powder tin has a square base with side 8 cm and height 13 cm. Another is cylindrical with the radius of	5
its base 47 cm and its height 15 cm. Find th <mark>e difference in their capacities. (Use $\pi=rac{22}{7}$)</mark>	
24) The difference between outside and surface of a cylindrical metallic pipe 14 cm long is 44 cm ² . If the pipe is	5
made of 99 cm ³ of metal, find the outer and inner radii of the pipe.	
0 40 30	
**** <mark>**</mark> ******************************	
Section-A	
1) (h) Course	

1) (b) Square 2) (b) Cylinder	1
2) (b) Cylinder	1
3) (d) A triangle cannot be drawn on a wall.	1
4) (c) 12	1
5) (a) 2(lb + bh + hl)	1
6) (b) 2(l+b)h	1
7) (a) $2(2+1+2)$ cm ²	1
8) (b) 1340 cm ²	1
9) (a) 10 m	1
10) (c) 20 m	1
Section-B	
11) 6.615 cm ²	2
12) 1300 cm ²	2
13) 28 cm	2
14) 21.6 m	2

- 15) Rs. 23760
- 16) 130 m
- 17) 8000 cm³, 2400 cm², 1600 cm², $20\sqrt{3}$ cm
- 18) 6 days
- 19) 240 π cm²
- 20) 1.283 l

Section-C

21) External diameter = 75 mm

 \therefore External radius (r) $= \frac{75}{2}mm = 37.5mm$ $=rac{37.5}{10}cm^2=3.75cm$

Length of the pipe (h)

 $= 4.2 \text{ m} = 4.2 \times 100 \text{ cm} = 420 \text{ cm}$

 \therefore Area of the outer surface = $2\pi rh$

$$2 = 2 imes rac{22}{7} imes 3.75 imes 420 = 9900 cm^2$$
 .

- 22) For room

) For room

$$l = 12 m,$$

$$b = 9 m,$$

$$h = 8 m$$

$$\therefore \text{ Length of the longest rod that can be placed in the room}$$

$$= \text{Length of the diagonal}$$

$$= \sqrt{l^2 + b^2 + h^2}$$

$$= \sqrt{(12)^2 + (9)^2 + (8)^2}$$

$$= \sqrt{144 + 81 + 64}$$

$$= \sqrt{289}$$

$$= 17m.$$
) For a power tin with a square base

$$= 17m.$$

23) For a power tin with a square base

Side of the square base =8 cm

Height =13 cm

∴ Volume (v₁)=8 x 8 x 13=832 cm²

For a cylindrical powder tin

Radius of the base (r)=7 cm

Height (h)=15 cm

$$\therefore$$
 Volume (v₂)= $\pi r^2 h$

$$=rac{22}{7} imes (7)^2 imes 15=2310~cm^3$$

 \therefore Difference in their capacities =v₂-v₁

=2310-832=1478 cm³

2

2

2

2

2

2

5

24) Let the outer and inner radii of the pipe be R cm and r cm respectively, then,

=

 \Rightarrow

$$2\pi R(14) - 2\pi r(14) = 44$$

$$\Rightarrow 8\pi (R - r) = 44$$

$$\Rightarrow 28 \times \frac{22}{7}(R - r) = 44$$

$$= R - r = \frac{1}{2}$$
and $\pi R^2(14) - \pi r^2(14) = 99$

$$\Rightarrow 14\pi (R^2 - r^2) = 99$$

$$\Rightarrow R^2 - r^2 = \frac{9}{4}$$

$$\Rightarrow (R + r)(R - r) = \frac{9}{4}$$

$$\Rightarrow (R + r)\frac{1}{2} = \frac{9}{4}$$
Solving (1) and (2) we get
$$R = \frac{5}{2} cm$$
r=2 cm