QB365 Important Questions - Triangles

Oth Standard CRSE

9th Standard	CBSE						
Mathemat	ics Reg.No. :						
Time : 01:00:00 Hrs							
				То	tal N	1arks	5:50
Section-A							
 A closed figure formed by three intersecting lines is called (a) circle (b) square (c) triangle (d) rhombus 	_						
2) If the side of a square is a cm, what is the side of a congruent	square?						
(a) 1 cm (b) 2 cm (c) a cm (d) 2a cm							
3) $\triangle ABC \cong \triangle PQR$, then which of the following is true:	1.671						
(a) A R (b) AB=QR (c) AC=PQ (d) AB=PQ	5 1.5						
4) In the given figure, if AB = DC, \angle ABD = \angle CDB, which congrue	nce rule would you apply t	o prov	ve ∆A	\BD ≅	CDB	?	
(a) SAS (b) SSS (c) AAS (d) SAS	TION BANKS IN						
5) In $\triangle ABC$ and $\triangle PQR$, $AB = PR$ and $\angle A = \angle P$. The two triangles	will be congruent by SAS a	xiom i	if:				
(a) BC=QR (b) AC=PQ (c) AC=QR (d) BC=PR							
6) The measure of each angle of an equilateral triangle is							
(a) 30^{0} (b) 45^{0} (c) 60^{0} (d) 90^{0}							
7) In triangles ABC and PQR, AB = AC, $\angle C = \angle Pand \angle B = \angle Q$. T	he two triangles are:						
(a) isosceles but not congruent (b) isosceles and congrue	nt (c) congruent but not	t isosc	eles				
(d) neither isosceles nor congruent							
8) Which of the following is false?							
(a) The mid-point of the hypotenuse of a right triangle is equ	idistant from its vertices.						
(b) Each angle of an equilateral triangle is 60°							
(c) The side opposite to the greater angle of a triangle is long	er than the side opposite	the sn	naller	r angle	ĩ		
(d) The two altitudes corresponding to two equal sides of a t	riangle are not equal.						
9) If $\triangle ABC \cong DEF$ by SSS congruence rule then:							

- (a) AB = EF, BC = FD, CA = DE (b) AB = FD, BC = DE, CA = EF (c) AB = DE, BC = EF, CA = FD
- (d) $AB = DE, BC = EF, \angle C = \angle F$

- 10) If $\triangle ABC$ is right angled at B, then:
 - (a) AB = AC (b) AC < AB (c) AB = BC (d) AC > Ab

Section-B

11) ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see 2 figure). Show that these altitudes are equal.

12) In $\triangle ABC$, if $\angle A = 50^{\circ}$ and $\angle B = 60^{\circ}$, determine the shortest and the longest side of the triangle. 2 13) In a ΔDEF , if $\angle D = 30^\circ$, $\angle E = 60^\circ$ then which side of the triangle is longest and which side is shortest? 2 14) In $\triangle ABC$, $\angle A = 60^\circ$, $\angle B = 40^\circ$, which side of this triangle is the smallest? Give reasons for your answer. 2 15) In \triangle PQR, \angle P = 100° and \angle R = 60°, which side of the triangle is the longest. Give reasons for your answer. QUESTION BANK 36 2 16) In quadrilateral ACBD, AC=AD and AB bisects $\angle A$ (see figure). 2

Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

17) Line l is the bisector of an angle $\angle A$ and $\angle B$ is any point on I.BP and BQ are perpendiculars from B to the arms of $\angle A$ (see figure). Show that:

(i) $\triangle APB \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$

- 18) AD is an altitude of an isosceles triangle ABC in which AB = AC Show that
 - (i) AD bisects BC (ii) AD bisects $\angle A$

19) In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

2

20) Complete the hexagonal and star shaped Rangolies [see figures (i) and (ii)] by filling them with as many equilateral triangles of side 1em as you can. Count the number of triangles in each case. Which has more triangles?

Section-C

в

- gment AD. 21) In the given figure, AB and CD are perpendicular to the line segment AD. AD and BC intersect at P such that PA
 - = PD. Prove that:

(i) AB = CD

(ii) P is the mid-point of BC.

P

D

22) In the given figure ABCD is a square and M is the mid-point of AB. $PQ \perp CM$ meets AD at P and CB produced

23) ABC is an isosceles triangle with AB = AC.Draw $AP \perp BC$.Show that $\angle B = \angle C$

24) In the figure, D and E are points on the base BC of a $\triangle ABC$ such that AD = AE and $\angle BAD = \angle CAE$.prove

Section-A	
1) (c) triangle	1
2) (c) a cm	1
3) (d) AB=PQ	1
4) (a) SAS	1
5) (b) AC=PQ	1
6) (c) 60 ⁰	1
7) (a) isosceles but not congruent	1
8) (d) The two altitudes corresponding to two equal sides of a triangle are not equal.	1
9) (c) AB = DE, BC = EF, CA = FD	1
10) (d) AC > Ab	1
Section-B	

5

11)

Given: ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively.

To Prove: BE = CF Proof: ABC is an isosceles triangle AB = AC $\angle ABC = \angle ACB$ | Angles opposite to equal sides of a triangle are equal In $\triangle BEC$ and $\triangle CFB$ $\angle BEC = \angle CFB \mid \mathsf{Each} = 90^{\circ}$ BC = CB $\angle ECB = \angle FBC$ $riangle BEC\cong riangle CFB$ | By AAS Rule BE = CF | C.P.C.T 12) BC, AB 13) DE, EF OUESTION BANK365.IN 14) AC as \angle B is the smallest. 15) QR as $\angle P$ is the greatest 16) Given: In quadrilateral ACBD, AC=AD and AB bisects $\angle A$ To prove: $\triangle ABC \cong \triangle ABD$ proof: In $\triangle ABC$ and $\triangle ABD$ AC=AD

AB=AB

 $\angle CAB = \angle DAB \mid AB \text{ bisects } \angle A$

 $riangle ABC \cong riangle ABD \mid \mathsf{SAS}$ Rule

BC=BD | C.P.C.T

```
17)
```

Given: Line l is the bisector of an angle $\angle A$ and $\angle B$ is any point on I.BP and BQ are perpendiculars from

```
B to the arms of \angle A
```

```
To Prove: (i) 	riangle APB \cong 	riangle AQB
```

(ii) BP = BQ or B is equidistant from the arms of $\angle A$

Proof: (i) In $\triangle APB$ and $\triangle AQB$

 $\angle BAP = \angle BAQ \mid$ l is the bisector of $\angle A$

AB = AB | Common

 $\angle BAP = \angle BAQ \mid \mathsf{Each} = 90^{\circ}$

BP = BQ or B is equidistant from the arms of $\angle A$

 $riangle APB \cong riangle AQB \mid$ SAS Rule

(ii) $\triangle APB \cong \triangle AQB$ | Proved in (i) above

BP = BQ | C.P.C.T

2

2

2

2

2

18) Given: AD is an altitude of an isosceles triangle ABC in which AB = AC.

To prove: (i) AD bisects BC (ii) AD bisects $\angle A$ Proof: (i) In right $\triangle ADB$ and right $\triangle ADC$ Hyp.AB = Hyp. AC Side AD = Side AD

$$ADB \cong \triangle ADC | \text{RHS rule}$$

BD = CD | C.P.C.T

AD bisects BC (ii) $\triangle ADB \cong \triangle ADC$ $\angle BAD = \angle CAD$ AD bisects $\angle A$

19)

point of i. Draw the angle bisectors of any two angles of the triangle. Their point of intersection is the required point.

20) (i) Number of triangles = 25×6

```
= 25 + 25 + 25 + 25 + 25 + 25 = 150
```


(ii) Number of triangles = 25 x 6 + 25 x 6

= 150 + 150

= 300

Figure (ii) has more triangles.

2

21) Given: AB and CD are perpendicular to the line segment AD. AD and BC intersect at P such that PA = PD.

```
To Prove: (i) AB = CD
(ii) P is the mid-point of BC.
Proof: (i) In \triangle ABD and \triangle PDC
PA = PD
\angle APB = \angle DPC | Vertically opposite angles
\angle PAB = \angle PDC \mid \mathsf{Each} \: 90^{\circ}
\triangle PAB \cong \triangle PDC \mid \mathsf{ASA} \text{ congruence rule}
AB = DC | C.P.C.T
AB = CD | C.P.C.T
(ii) Also, PB = PC
```

P is the mid-point of BC.

22) Given: ABCD is a square and M is the mid-point of AB. $PQ \perp CM$ meets AD at P and CB produced at Q To prove: PA = BQ.

Proof: In riangle PAM and riangle QBM

PM = QM | M is the midpoint of AB

PM = QM | M is the midpoint of AB

$$\angle PMA = \angle QMB$$
 | Vertically opposite rule
 $\angle PAM = \angle QBM$ | Each 900
 $\triangle PAM \cong \triangle QBM$
PA = QB | C.P.C.T
PA = BQ
23) Given: ABC is an isosceles triangle with AB = AC; $AP \perp BC$
To prove: $\angle B = \angle C$

Proof: In $\triangle ABC$ AB = AC $\angle ABC = \angle ACP \mid$ Angles opposite to equal sides of a triangle are equal Now, in $\triangle APB$ and $\triangle APC$ AB = AC $\angle ABP = \angle ACP$ $\angle ABP = \angle ACP (= 90^0)$ $\triangle APB \cong \triangle APC \mid$ SAS congruence rule $\angle ABP = \angle ACP \mid \text{C.P.C.T}$ $\angle B = \angle C$

24)

```
Given: D and E are points on the base BC of a 	riangle ABC such that AD = AE and 	riangle BAD = 	riangle CAE
To prove: AB = AC
Proof: In \triangle ADE
AD = AE
\angle ADE = \angle AED .......... (1) | Angles opposite to equal sides of a triangle are equal
\ln 	riangle ABD
Ext. \angle ADE = \angle BAD + \angle ABD ...... (2) | An exterior angle of a triangle is equal to the sum of its two
interior opposite angles
\triangle AEC
Ext. \angle AED = \angle CAE + \angle ACE ....... (3) | An exterior angle of a triangle is equal to the sum of its two
interior opposite angles
From (1), (2) and (3)
\angle BAD + \angle ABD = \angle CAE + \angle ACE
\angle ABD = \angle ACE
\angle ABC = ACB
                                              OUESTION BANK 36F.
AB = AC | Sides opposite to equal angles of a triangle are equal
```