QB365
 Important Questions - Triangles

9th Standard CBSE
Mathematics
Reg.No. :

Time : 01:00:00 Hrs

Total Marks : 50

Section-A

1) A closed figure formed by three intersecting lines is called
(a) circle
(b) square
(c) triangle
(d) rhombus
2) If the side of a square is a cm , what is the side of a congruent square?
(a) 1 cm
(b) 2 cm
(c) a cm
(d) 2 a cm
3) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$, then which of the following is true:
(a) A
R
(b) $A B=Q R$
(c) $A C=P Q$
(d) $A B=P Q$
4) In the given figure, if $A B=D C, \angle A B D=\angle C D B$, which congruence rule would you apply to prove $\triangle A B D \cong C D B$?

(a) SAS
(b) SSS
(c) AAS
(d) SAS
5) In $\triangle A B C$ and $\triangle P Q R, A B=P R$ and $\angle A=\angle P$. The two triangles will be congruent by $S A S$ axiom if:
(a) $\mathrm{BC}=\mathrm{QR}$
(b) $A C=P Q$
(c) $A C=Q R$
(d) $\mathrm{BC}=\mathrm{PR}$
6) The measure of each angle of an equilateral triangle is
(a) 30^{0}
(b) 45^{0}
(c) 60°
(d) 90°
7) In triangles $A B C$ and $P Q R, A B=A C, \angle C=\angle$ Pand $\angle B=\angle Q$. The two triangles are:
(a) isosceles but not congruent
(b) isosceles and congruent
(c) congruent but not isosceles
(d) neither isosceles nor congruent
8) Which of the following is false?
(a) The mid-point of the hypotenuse of a right triangle is equidistant from its vertices.
(b) Each angle of an equilateral triangle is 60°
(c) The side opposite to the greater angle of a triangle is longer than the side opposite the smaller angle
(d) The two altitudes corresponding to two equal sides of a triangle are not equal.
9) If $\triangle A B C \cong D E F$ by $S S S$ congruence rule then:
(a) $\mathrm{AB}=\mathrm{EF}, \mathrm{BC}=\mathrm{FD}, \mathrm{CA}=\mathrm{DE}$
(b) $\mathrm{AB}=\mathrm{FD}, \mathrm{BC}=\mathrm{DE}, \mathrm{CA}=\mathrm{EF}$
(c) $\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{CA}=\mathrm{FD}$
(d) $\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \angle \mathrm{C}=\angle \mathrm{F}$
10) If $\triangle A B C$ is right angled at B, then:
(a) $A B=A C$
(b) $A C<A B$
(c) $A B=B C$
(d) $\mathrm{AC}>\mathrm{Ab}$

Section-B

11) $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see figure). Show that these altitudes are equal.

12) In $\triangle A B C$, if $\angle A=50^{\circ}$ and $\angle B=60^{\circ}$, determine the shortest and the longest side of the triangle.
13) In a $\triangle D E F$, if $\angle D=30^{\circ}, \angle E=60^{\circ}$ then which side of the triangle is longest and which side is shortest?
14) In $\triangle A B C, \angle A=60^{\circ}, \angle B=40^{\circ}$, which side of this triangle is the smallest? Give reasons for your answer.
15) In $\triangle P Q R, \angle P=100^{\circ}$ and $\angle R=60^{\circ}$, which side of the triangle is the longest. Give reasons for your answer.
16) In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (see figure).

Show that $\triangle A B C \cong \triangle A B D$. What can you say about BC and BD ?

17) Line l is the bisector of an angle $\angle A$ and $\angle B$ is any point on I. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see figure). Show that:
(i) $\triangle A P B \cong \triangle A Q B$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$

18) $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$ Show that
(i) AD bisects BC (ii) AD bisects $\angle A$
19) In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.
20) Complete the hexagonal and star shaped Rangolies [see figures (i) and (ii)] by filling them with as many equilateral triangles of side 1em as you can.Count the number of triangles in each case.Which has more triangles?

(i)

(ii)

Section-C

21) In the given figure, $A B$ and $C D$ are perpendicular to the line segment $A D$. $A D$ and $B C$ intersect at P such that $P A$ $=P D$. Prove that:
(i) $A B=C D$
(ii) P is the mid-point of BC .
 at Q . Prove that $\mathrm{PA}=\mathrm{BQ}$.

22) ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $A P \perp B C$. Show that $\angle B=\angle C$
23) In the figure, D and E are points on the base BC of a $\triangle A B C$ such that $\mathrm{AD}=\mathrm{AE}$ and $\angle B A D=\angle C A E$.prove that $A B=A C$

Section-A

1) (c) triangle
2) (c) acm
3) (d) $A B=P Q$
4) (a) SAS
5) (b) $A C=P Q$
6) (c) 60°
7) (a) isosceles but not congruent
8) (d) The two altitudes corresponding to two equal sides of a triangle are not equal.
9) (c) $\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{CA}=\mathrm{FD}$
10) (d) $A C>A b$

Section-B

Given: $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively.

To Prove: BE = CF

Proof: $A B C$ is an isosceles triangle
$A B=A C$
$\angle A B C=\angle A C B \mid$ Angles opposite to equal sides of a triangle are equal
In $\triangle B E C$ and $\triangle C F B$
$\angle B E C=\angle C F B \mid$ Each $=90^{\circ}$
$B C=C B$
$\angle E C B=\angle F B C$
$\triangle B E C \cong \triangle C F B \mid$ By AAS Rule
$\mathrm{BE}=\mathrm{CF} \mid$ C.P.C.T
12) $B C, A B$
13) DE, EF
14) $A C$ as $\angle B$ is the smallest.
15) $Q R$ as $\angle P$ is the greatest
16) Given:In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects $\angle A$

To prove: $\triangle A B C \cong \triangle A B D$
proof: In $\triangle A B C$ and $\triangle A B D$
$A C=A D$
$A B=A B$
$\angle C A B=\angle D A B \mid \mathrm{AB}$ bisects $\angle A$
$\triangle A B C \cong \triangle A B D \mid$ SAS Rule
$\mathrm{BC}=\mathrm{BD} \quad \mid$ С.P.C.T
17)

Given: Line l is the bisector of an angle $\angle A$ and $\angle B$ is any point on I.BP and BQ are perpendiculars from
B to the arms of $\angle A$
To Prove: (i) $\triangle A P B \cong \triangle A Q B$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$

Proof: (i) In $\triangle A P B$ and $\triangle A Q B$
$\angle B A P=\angle B A Q \mid l$ is the bisector of $\angle A$
$\mathrm{AB}=\mathrm{AB} \mid$ Common
$\angle B A P=\angle B A Q \mid$ Each $=90^{\circ}$
$\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$
$\triangle A P B \cong \triangle A Q B \mid$ SAS Rule
(ii) $\triangle A P B \cong \triangle A Q B \mid$ Proved in (i) above
$B P=B Q \mid$ C.P.C.T
18) Given: $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$.

To prove: (i) AD bisects BC (ii) AD bisects $\angle A$
Proof: (i) In right $\triangle A D B$ and right $\triangle A D C$
Hyp. $A B=$ Hyp. $A C$
Side AD = Side AD

$\triangle A D B \cong \triangle A D C \mid \mathrm{RHS}$ rule
$B D=C D \mid C . P . C . T$
$A D$ bisects $B C$
(ii) $\triangle A D B \cong \triangle A D C$
$\angle B A D=\angle C A D$
AD bisects $\angle A$
19)

Draw the angle bisectors of any two angles of the triangle. Their point of intersection is the required point.
20) (i) Number of triangles $=25 \times 6$
$=25+25+25+25+25+25=150$

(i)
(ii) Number of triangles $=25 \times 6+25 \times 6$
$=150+150$
$=300$

(ii)

Figure (ii) has more triangles.
21) Given: $A B$ and $C D$ are perpendicular to the line segment $A D . A D$ and $B C$ intersect at P such that $P A=P D$.

To Prove: (i) $A B=C D$
(ii) P is the mid-point of $B C$.

Proof: (i) In $\triangle A B D$ and $\triangle P D C$
$P A=P D$
$\angle A P B=\angle D P C \mid$ Vertically opposite angles
$\angle P A B=\angle P D C \mid$ Each 90°
$\triangle P A B \cong \triangle P D C \mid$ ASA congruence rule
$A B=D C \mid$ C.P.C.T
$A B=C D \mid C . P . C . T$
(ii) Also, $\mathrm{PB}=\mathrm{PC}$
P is the mid-point of $B C$.
22) Given: ABCD is a square and M is the mid-point of $\mathrm{AB} . P Q \perp C M$ meets AD at P and CB produced at Q To prove: $\mathrm{PA}=\mathrm{BQ}$.
Proof: In $\triangle P A M$ and $\triangle Q B M$
$\mathrm{PM}=\mathrm{QM} \mid \mathrm{M}$ is the midpoint of AB
$\angle P M A=\angle Q M B \mid$ Vertically opposite rule
$\angle P A M=\angle Q B M \mid$ Each 900
$\triangle P A M \cong \triangle Q B M$
$\mathrm{PA}=\mathrm{QB} \mid$ C.P.C.T
$P A=B Q$
23) Given: ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC} ; A P L B C$

To prove: $\angle B=\angle C$

Proof: In $\triangle A B C$
$A B=A C$
$\angle A B C=\angle A C P \mid$ Angles opposite to equal sides
of a triangle are equal
Now, in $\triangle A P B$ and $\triangle A P C$
$A B=A C$
$\angle A B P=\angle A C P$
$\angle A B P=\angle A C P\left(=90^{\circ}\right)$
$\triangle A P B \cong \triangle A P C \mid$ SAS congruence rule
$\angle A B P=\angle A C P \mid$ С.Р.С.T
$\angle B=\angle C$

Given: D and E are points on the base BC of a $\triangle A B C$ such that $\mathrm{AD}=\mathrm{AE}$ and $\angle B A D=\angle C A E$
To prove: AB = AC
Proof: In $\triangle A D E$
$A D=A E$
$\angle A D E=\angle A E D \ldots$. (1) \mid Angles opposite to equal sides of a triangle are equal
In $\triangle A B D$
Ext. $\angle A D E=\angle B A D+\angle A B D \ldots \ldots$. (2) | An exterior angle of a triangle is equal to the sum of its two interior opposite angles
$\triangle A E C$
Ext. $\angle A E D=\angle C A E+\angle A C E \ldots \ldots .$. (3) | An exterior angle of a triangle is equal to the sum of its two interior opposite angles
From (1), (2) and (3)
$\angle B A D+\angle A B D=\angle C A E+\angle A C E$
$\angle A B D=\angle A C E$
$\angle A B C=A C B$
$A B=A C \mid$ Sides opposite to equal angles of a triangle are equal

