QB365-Question Bank Software

APPLICATIONS OF DERIVATIVE

SOME IMPORTANT FORMULAE/ KEYCONCEPTS

1. RATE OF CHANGE OF QUANTITIES

Whenever one quantity y varies with another quantity x , satisfying some rule $y=f(x)$, then $\frac{d y}{d x}\left(o r f^{\prime}(x)\right)$ represents the rate of change of y with respect to x and $\left\lceil\frac{\mathrm{dy}}{\mathrm{dx}}\right\rfloor_{\mathrm{x}=\mathrm{x}_{0}}$ (or $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$) represents the rate of change of y with respect to x at $\mathrm{x}=\mathrm{x}_{\mathrm{o}}$.

EXAMPLE:

QUESTION :The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?
(CBSE 2011)
SOLUTION :Let any instant of time t, the radius of circle $=r$
Then, circumference $\mathrm{C}=2 \pi \mathrm{r}$
Diff. Both sides w.r.t t, we get
$\frac{d C}{d t}=\frac{d}{d t}(2 \pi r)=2 \pi \frac{d r}{d t}$

Here,

2. INCREASING AND DECREASING FUNCTIONS:

Let I be an open interval contained in the domain of a real valued function f. Then f is said to be
(i) increasing on I if $\mathrm{x}_{1}<\mathrm{x}_{2}$ in $\mathrm{I} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \leq \mathrm{f}\left(\mathrm{x}_{2}\right)$ for all $\mathrm{x}_{1, \mathrm{x}_{2}}$ I.
(ii) strictly increasing on I if $x_{1}<x_{2}$ in I $\Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1, x_{2}}$ I
(iii) decreasing on I if $x_{1}<x_{2}$ in $I \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for all $x_{1, x_{2}}$ I.
(iv) strictly decreasing on I if $x_{1}<x_{2}$ in $I \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}, x_{2}{ }^{\epsilon}$ I

USING THE CONCEPTS OF DERIVATIVES
(i) f is strictly increasing in (a, b) if $\mathrm{f}^{\prime}(\mathrm{x})>0$ for each $\mathrm{x}^{*}(\mathrm{a}, \mathrm{b})$
(ii) f is strictly decreasing in (a, b) if $f^{\prime}(x)<0$ for each $x^{\in}(a, b)$
(iii) A function will be increasing (decreasing) in R if it is so in every interval of R .

QB365-Question Bank Software

EXAMPLE

QUESTION : Find the interval in which the function $f(x)=2 x^{3}-9 x^{2}+12 x+15$ is (i) strictly increasing (ii) strictly decreasing

(CBSE2010)

SOLUTION: $f(x)=2 x^{3}-9 x^{2}+12 x+15$

$$
f^{\prime}(x)=6\left(x^{2}-3 x+2\right)
$$

(i) For strictly increasing, $\mathrm{f}^{\prime}(\mathrm{x})>0$

$$
\begin{aligned}
& 6\left(x^{2}-3 x+2\right)>0 \\
& (x-1)(x-2)>0 \\
& x<1 \text { or } x>2 \\
& x \in(-\infty, 1) \cup(2, \infty)
\end{aligned}
$$

so, $\mathrm{f}(\mathrm{x})$ is strictly increasing on $(-\infty, 1) \cup(2, \infty)$
(ii) for strictly decreasing $\mathrm{f}^{\prime}(\mathrm{x})<0$

$$
\begin{aligned}
& 6\left(x^{2}-3 x+2\right)<0 \\
& (x-1)(x-2)<0 \\
& 1<x<2
\end{aligned}
$$

QB365-Question Bank Software

so, $\mathrm{f}(\mathrm{x})$ is strictly decreasing on $(1,2)$.

3. TANGENTS AND NORMALS:

- Slope of the tangent to the curve $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ is given by $\left[\frac{d y}{d x}\right]_{\left(X_{0}, y_{o}\right)}\left(=\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)\right)$.
- The equation of the tangent at $\left(x_{0}, y_{0}\right)$ to the curve $y=f(x)$ is given by $\mathrm{y}-\mathrm{y}_{\mathrm{o}}=f^{\prime}\left(\mathrm{x}_{\mathrm{o}}\right)\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right)$.

- Slope of the normal to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)=-\frac{1}{\text { slope of the tangent at (xo,yo) }}$
- Slope of the normal to the curve $y=f(x)$ at $\left(x_{0}, y_{o}\right)$ is $-\frac{P}{f^{\prime}\left(x_{0}\right)}$.
- The equation of the normal (x_{0}, y_{0}) to the curve $y=f(x)$ is given by $y-y_{o}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)$.
- If slope of the tangent line is zero, then $\tan \theta=0$ and so $\theta=0$ which means the tangent line is parallel to the x -axis. In this case, the equation of the tangent at the point $\left(x_{0}, y_{0}\right)$ is given by $y=y_{0}$.
- If $\theta \rightarrow \frac{\pi}{2}$, then $\tan \theta \rightarrow \infty$, which means the tangent line is perpendicular to the x-axis, i.e., parallel to they-axis. In this case, the equation of the tangent at $\left(x_{0}\right.$, y_{o}) is given by $x=x_{0}$.

EXAMPLE

QUESTION: Find the equation of normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.
SOLUTION:

$$
\begin{aligned}
& y=x^{3}+2 x+6 \\
& \frac{d y}{d x}=\left(3 x^{2}+2\right)
\end{aligned}
$$

Slope of the tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=3 x_{1}^{2}+2$

QB365-Question Bank Software

Slope of normal at point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\frac{-1}{3 x_{1}{ }^{2}+2}$

Slope of the given line is $\frac{-1}{14}$
According to the given condition,
Slope of normal $=$ Slope of line

$$
\begin{aligned}
& \frac{-1}{3 x_{1}{ }^{2}+2}=\frac{-1}{14} \\
& x_{1}= \pm 2
\end{aligned}
$$

When $\mathrm{x}_{1}=2 \mathrm{y}_{1}=18$
When $\mathrm{x}_{1}=-2 \mathrm{y}_{1}=-6$
Equation of normal at $(2,18)$ is

$$
\begin{align*}
& y-18=\frac{-1}{14}(x-2) \\
& x+14 y=254 \tag{1}
\end{align*}
$$

Equation of normal at $(-2,-6)$ is $y+6=-\frac{1}{-4}(x+2)$

$$
x+14 y+86=0
$$

4. Approximations:

$$
f(x+\Delta x)=f(x)+\Delta y
$$

$$
\approx f(x)+f^{\prime}(x) \Delta x \quad(\text { as } d x=\Delta x)
$$

- Increment $\Delta \mathrm{y}$ in the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ corresponding to increment $\Delta \mathrm{x}$ in x is given by $\Delta \mathrm{y}=\frac{d y}{d x} \Delta \mathrm{x}$.
- Relative error in $\mathrm{y}=\frac{\Delta y}{y}$.
- Percentage error in $\mathrm{y}=\frac{\Delta y}{y} \times 100$.

QB365-Question Bank Software

EXAMPLE

QUESTION: Evaluate $\sqrt[4]{81.5}$ (CBSE 2012)
SOLUTION: :Let $x=81$ and $\Delta x=0.5$

$$
\begin{align*}
& y=\sqrt[4]{x}=\sqrt[4]{81} \ldots \ldots \ldots(1) \tag{1}\\
& y+\Delta y=\sqrt[4]{81.5} \ldots \ldots \ldots(2) \\
& \Delta y=\sqrt[4]{81.5}-\sqrt[4]{x} \\
& \sqrt[4]{81.5}=\Delta y+\sqrt[4]{x} \\
& \text { using approximation } \Delta y \cong d y \\
& \sqrt[4]{81.5}=\frac{d y}{d x} \cdot d x+\sqrt[4]{x} \\
& =\frac{1}{4}-\frac{3}{4} \cdot 0.5+3 \\
& =\frac{1}{4} \times \frac{1}{81} \times \frac{1}{2} \times+3 \\
& =\frac{1}{4} \times \frac{1}{27} \times \frac{1}{2}+3=\frac{1}{216}+3=3.0046
\end{align*}
$$

5. MAXIMA AND MINIMA:

- Let f be a function defined on an interval I. Then
(a) f is said to have a maximum value in I, if there exists a point c in I such that $\mathrm{f}(\mathrm{c}) \geq \mathrm{f}(\mathrm{x})$, for all $\mathrm{x}^{\mathrm{e}} \mathrm{I}$.
- The number $f(c)$ is called the maximum value of f in I and the point c is called a point of maximum value of f in I.
(b) f is said to have a minimum value in I, if there exists a point c in I such that $\mathrm{f}(\mathrm{c}) \leq \mathrm{f}(\mathrm{x})$, for all $\mathrm{x}^{\mathrm{e}} \mathrm{I}$.
- The number $f(c)$, in this case, is called the minimum value of f in I and the point c, in this case, is called a point of minimum value of f in I.

QB365-Question Bank Software

- $f(x)$ is said to have an extreme value in I if there exists a point c in I such that f (c) is either a maximum value or a minimum value of f in I.
- The number $f(c)$, in this case, is called an extreme value of f in I and the point c is called an extreme point.

Absolute maxima and minima

- Let f be a function defined on the interval I and $\mathrm{c}^{e} \mathrm{I}$. Then
(a) $f(c)$ is absolute minimum if $f(x) \geq f(c)$ for all x^{e} I.
(b) $\mathrm{f}(\mathrm{c})$ is absolute maximum if $\mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{c})$ for all x^{c} I.
(c) C^{e} I is called the critical point off if $\mathrm{f}^{\prime}(\mathrm{c})=0$
(d) Absolute maximum or minimum value of a continuous function f on $[a, b]$ occurs at a or b or at critical points off (i.e. at the points where f 'is zero)
- If $c_{1}, c_{2}, \ldots, c n$ are the critical points lying in [a, b], then
- absolute maximum value of $\mathrm{f}=\max \{\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{c} 1), \mathrm{f}(\mathrm{c} 2), \ldots, \mathrm{f}(\mathrm{cn}), \mathrm{f}(\mathrm{b})\}$ and absolute minimum value of $f=\min \{f(a), f(c 1), f(c 2), \ldots, f(c n), f(b)\}$.

Local maxima and minima

- (a)A function f is said to have a local maxima or simply a maximum vaJue at x a if $f(a \pm h) \leq f(a)$ for sufficiently small h
- (b)A function f is said to have a local minima or simply a minimum value at $x=a$ if $f(a \pm h) \geq f(a)$.
- ** First derivative test :A function f has a maximum at a point $\mathrm{x}=\mathrm{a}$ if
(i) $f^{\prime}(a)=0$, and
(ii) $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign from + ve to -ve in the neighborhood of ' a ' (points taken from left to right).

However, f has a minimum at $\mathrm{x}=\mathrm{a}$, if
(i) $f^{\prime}(a)=0$, and
(ii) $f^{\prime}(x)$ changes sign from -ve to +ve in the neighborhood of ' a '.

If $f^{\prime}(\mathrm{a})=0$ and $\mathrm{f}^{\prime}(\mathrm{x})$ does not change sign, then $\mathrm{f}(\mathrm{x})$ has neither maximum nor minimum and the point ' a ' is called point of inflection.

- The points where $\mathrm{f}^{\prime}(\mathrm{x})=0$ are called stationary or critical points. The stationary points at which the function attains either maximum or minimum values are called extreme points.

QB365-Question Bank Software

Second derivative test

(i) a function has a maxima at $\mathrm{x}=\mathrm{a}$ if $\mathrm{f}^{\prime}(\mathrm{x})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{a})<0$
(ii) a function has a minima at $x=a$ if $f^{\prime}(x)=0$ and $f^{\prime \prime}(a)>0$.

EXAMPLE

QUESTION: If length of three sides of a trapezium other than base is equal to 10 cm each, then find the area of the trapezium when it is maximum.

SOLUTION: The required trapezium is as given in Fig below. Draw perpendiculars DP and CQ on AB

\triangle APD is congruent to \triangle BQC
Let $A P=B Q=x \mathrm{~cm}$
$D P=Q C=\sqrt{100-x^{2}}$
A.area of trapezium $=(x+10) \sqrt{100-x^{2}}$
$A^{\prime}(x)=\frac{-2 x^{2}-10 x+100}{\sqrt{100-x^{2}}}$

QB365-Question Bank Software

$$
\begin{aligned}
& A^{\prime \prime}(x)=\frac{2 x^{3}-300 x-100}{\left(100-x^{2}\right)^{\frac{3}{2}}} \\
& \left.A^{\prime \prime}(x)\right|_{x=5}=\frac{-30}{\sqrt{75}}<0
\end{aligned}
$$

Thus the area of the trapezium is maximum at $x=5$
Area $={ }_{75} \sqrt{3} \mathrm{~cm}^{2}$

IMPORTANT BOARD QUESTIONS 4 MARK QUESTIONS

1. A balloon, which always remains spherical, has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x.
(CBSE 2008)
SOLUTION: $\mathrm{D}=\frac{3}{2}(2 x+1)$

$$
r=\frac{3}{4}(2 x+1)
$$

Volume of spherical balloon $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{3} \pi\left[\frac{3}{4}(2 x+1)\right]^{3} \\
& \frac{d V}{d x}=\frac{9 \pi}{16}\left[3(2 x+1)^{2}\right] .2 \\
& \frac{d V}{d x}=\frac{27 \pi}{8}(2 x+1)^{2}
\end{aligned}
$$

2. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?
(CBSE 2011)
SOLUTION : Let any instant of time t, the radius of circle $=r$
Then, circumference $C=2 \pi r$
Diff. Both sides w.r.t t , we get
$\frac{\mathrm{dC}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(2 \pi \mathrm{r})=2 \pi \frac{\mathrm{dr}}{\mathrm{dt}}$

QB365-Question Bank Software

Here, $\frac{{ }_{d t}}{\frac{d t}{}}=0.7 \mathrm{~cm} / \mathrm{s}$

$$
\therefore \frac{\mathrm{dC}}{\mathrm{dt}}=2 \pi \times 0.7=1.4 \pi \mathrm{~cm} / \mathrm{s}
$$

3Find the interval in which the function $f(x)=(x+1)^{3}(x-1)^{3}$ is (i) strictly increasing
(ii) strictly decreasing
(CBSE2010)
SOLUTION: $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1)^{3}(\mathrm{x}-1)^{3}$

$$
f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)
$$

(i) For strictly increasing $f^{\prime}(x)>0$

$$
\begin{array}{rl}
6(\mathrm{x}+1)^{2}(\mathrm{x}-3)^{2}(\mathrm{x}-1)>0 \\
\mathrm{x}-1 & >0 \\
\mathrm{x} & >1 \\
\mathrm{x} & \mathrm{C}(1, \infty)
\end{array}
$$

so, $\mathrm{f}(\mathrm{x})$ is increasing on
(ii) for strictly decreasing $\mathrm{f}^{\prime}(\mathrm{x})<0$

$$
6(x+1)^{2}(x-3)^{2}(x-1)<0
$$

$$
(x-1)<0
$$

$$
x \in(-\infty, 1)
$$

so, $\mathrm{f}(\mathrm{x})$ is decreasing on $(-\infty, 1)$
4. Find the interval in which the function $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is strictly increasing or strictly decreasing (CBSE 2009)
SOLUTION: $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}$

$$
f^{\prime}(x)=\cos x-\sin x
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\sqrt{2} \sin \left(\frac{\pi}{4}-x\right)
$$

QB365-Question Bank Software

(i) For strictly increasingf' $(x)>0$

$$
\begin{aligned}
& \sqrt{2} \sin \left(\frac{\pi}{4}-x\right)>0 \\
& -\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)<0 \\
& \pi<x-\frac{\pi}{4}<2 \pi \\
& \frac{5 \pi}{4}<x<\frac{9 \pi}{4} \\
& \frac{5 \pi}{4}<x<2 \pi
\end{aligned}
$$

so, $\mathrm{f}(\mathrm{x})$ is strictly increasing on $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right.$
(ii) for strictly decreasing $\mathrm{f}^{\prime}(\mathrm{x})<0$

$$
\begin{aligned}
& \sqrt{2} \sin \left(\frac{\pi}{4}-x\right)<0 \\
& -\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)>0 \\
& 0<x-\frac{\pi}{4}<\pi \\
& \frac{\pi}{4}<x<\frac{5 \pi}{4}
\end{aligned}
$$

so, $\mathrm{f}(\mathrm{x})$ is increasing on $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
5. Find the equations of all lines having slope $\mathbf{0}$, which are tangent to the curve $y=\frac{1}{x^{2}-2 x+3}$ SOLUTION: $y=\frac{1}{x^{2}-2 x+3}$

QB365-Question Bank Software

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-(x-1)}{\left(x^{2}-2 x+3\right)^{2}}=0 \\
& X=1 \\
& y=\frac{1}{2}
\end{aligned}
$$

Equation of tangent
$y-1 / 2=0$
$y=1 / 2$
6. . Find the equation of tangent and normal to the hyperbola $\frac{x^{2}}{\frac{1}{2}^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ SOLUTION:

7. Find the approximate value of $f(5.001)$ where $f(x)=x^{3}-7 x^{2}+15$ SOLUTION:

QB365-Question Bank Software

$$
\begin{align*}
& y+\Delta y=f(5.001) \tag{1}\\
& x=5 \quad \Delta x=0.001 \\
& y=f(x) \tag{2}\\
& \text { (1) }-(2) \Rightarrow \Delta y=f(5.001)-f(x) \\
& f(5.001)=\Delta y+f(x) \\
& =\frac{d y}{d x} \cdot d x+f(5) \\
& =\left(3 x^{2}-14 x\right) \cdot \Delta x-35 \\
& =\left(3.5^{2}-70\right) \cdot 0 \cdot 001-35 \\
& =0.005-35 \\
& =-34.995
\end{align*}
$$

8. If the radius of sphere is measured as 7 mtr with error of 0.02 m , than find the approximate error in calculating its volume.

SOLUTION:

$$
\begin{aligned}
& r=7 m, d r=0.02 m \\
& V=4 / 3 \pi r^{3} \\
& d V=\frac{d v}{d r} \cdot d r=\frac{4}{3}-\pi 3 r^{2} d r=4 \pi 7^{2} 0.02 \\
& d V=3.92 \pi m^{3}
\end{aligned}
$$

9. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} / \mathrm{min}$ and the width y is increasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (i) Perimeter (ii) area of the rectangle.
(CBSE 2009)

SOLUTION:

Let at any instant of time t,
Perimeter, $\mathrm{P}=2(\mathrm{x}+\mathrm{y})$ and Area, $\mathrm{A}=\mathrm{xy}$
Given, $\frac{\mathrm{dx}}{\mathrm{dt}}=-5 \mathrm{~cm} / \min$ and
$\frac{\mathrm{d} y}{\mathrm{dt}}=4 \mathrm{~cm} / \min$

QB365-Question Bank Software

(i) $P=2(x+y)$

$$
\Rightarrow \frac{\mathrm{dP}}{\mathrm{dt}}=2\left(\frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\mathrm{dy}}{\mathrm{dt}}\right)=2(-5+4)=-2 \mathrm{~cm} / \mathrm{min}
$$

Therefore, Perimeter of rectangle is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$
(ii)Here, $\mathrm{A}=\mathrm{xy}$, Diff. w.r.t t, we get
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{y} \frac{\mathrm{dx}}{\mathrm{dt}}=8 \cdot(4)+6 \cdot(-5)=2 \mathrm{~cm}^{2} / \mathrm{min}$

Therefore Area of the rectangle is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$
10. A ladder 5 m long is leaning against a wall. Bottom of ladder is pulled along the ground away from wall at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fast is the height on the wall decreasing when the foot of ladder is $\mathbf{4 m}$ away from the wall?
(CBSE 2012)
SOLUTION:

$$
\text { Let } \mathrm{AC} \text { is a ladder, }, \frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s} \text { so for } \frac{d y}{d t} \text { at } \mathrm{x}=4 \mathrm{~m}\llcorner
$$

$$
x^{2}+y^{2}=25, x=4 \text { then } y=30
$$

diff. w.r.t. t both sides

$$
\text { We get } 2 \mathrm{x} \frac{d x}{d t}+2 \mathrm{y} \frac{d y}{d t}=0 \text { so } 4 \mathrm{x} 2 \uparrow 3 \mathrm{x} \frac{d y}{d t}=\mathrm{o}, \frac{d y}{d t}=\frac{-8}{3} \mathrm{~m} / \mathrm{s}
$$

Hence height on the wall is decreasing at the rate of $\frac{8}{3} \mathrm{~m} / \mathrm{s}$

6 MARK QUESTIONS

1 Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(CBSE 2013)
SOLUTION:
Let $(a \cos \theta, b \sin \theta)$ parametric coordinate of ellipse where θ is an eccentric angle
Length of $A B=2 a \cos \theta$
Length of $\mathrm{AD}=2 \mathrm{~b} \sin \theta$

QB365-Question Bank Software

Area of rectangle $\mathrm{ABCD}=2 \operatorname{a} \cos \theta .2 \mathrm{~b} \sin \theta$
$=2 a b \sin 2 \theta$
Area of rectangle is greatest when $\sin 2 \theta$ is greatest

$$
\begin{aligned}
& \sin 2 \theta=1 \\
& \quad \begin{array}{l}
\text { so } \quad 2 \theta=90^{\circ} \\
\theta=45^{\circ}
\end{array}
\end{aligned}
$$

Area of greatest rectangle $=2 \mathrm{ab}$ when $\theta=45^{0}$
2. A window is in the form of rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum sunlight through the whole opening. Explain the importance of sunlight.
(CBSE2011)
SOLUTION:

Let length of rectangle $=2 x$, Let breadth of rectangle $=y$
$2 x+2 y+\Pi x=10$
$Y=(10-2 x-\Pi x) / 2$
Finding area $A, d A / d x, d^{2} A / d x$
Put $d A / d x=0$ we get $x=10 /(\Pi+4)$

3. Find the point on the curve $y 2=2 x$ which is at minimum distance from the point $(1,4)$ (CBSE 2009, 2011)

SOLUTION:

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point $\mathrm{y}^{2}=2 \mathrm{x}$ and $\mathrm{M}(1,4)$

$$
\begin{aligned}
& \mathrm{PM}=\sqrt{(x-1)^{2}+(y-4)^{2}} \\
& =\sqrt{x^{2}+y^{2}-2 x-8 y+17} \\
& =\sqrt{x^{2}-8 y+17} \\
& =\sqrt{\left(\frac{y^{2}}{2}\right)^{2}-8 y+17}
\end{aligned}
$$

QB365-Question Bank Software

Let $\mathrm{z}=\mathrm{PM}^{2}$

$$
\begin{aligned}
& \mathrm{Z}=\left(\frac{y^{2}}{2}\right)^{2}-8 y+17 \\
& \frac{d z}{d y}=y^{3}-8 \text { and } \frac{\mathrm{d}^{2} z}{d y^{2}}=3 y^{2}
\end{aligned}
$$

For maxima or minima

$$
\begin{aligned}
& \frac{d z}{d y}=0 \Rightarrow y=2 \\
& \frac{\mathrm{~d}^{2} z}{d y^{2}}=12>0, \text { it is minimum }
\end{aligned}
$$

$$
Y^{2}=2 x \Rightarrow x=2
$$

PM is least when point is $(2,2)$
4. Show that the semivertical angle of a cone of maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.(CBSE 2008,2011)

SOLUTION:

Let V be the Volume of the cone, then

$$
V=\frac{1}{3} \pi r^{2} h=>v^{2}=\frac{\pi^{2}}{9}\left(r^{4} l^{2}-r^{6}\right)
$$

For max.or $\min \frac{d v^{2}}{d r}=o=>2 r^{3}\left(2 l^{2}-3 r^{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow 2 l^{2}=3 r^{2} \\
& \Rightarrow l^{2}=3 r^{2} / 2
\end{aligned}
$$

or, $h^{2}=\frac{r^{2}}{2}$ Also, $\frac{d v^{2}}{d r^{2}}<o$ at $h=\frac{r^{2}}{2}$

r
$r=$ radius,$h=$ height $l=$ slant height $\alpha=$ semi vertical angle

Now $\frac{r}{h}=\tan \alpha$ therefore $\alpha=\tan ^{-1} \sqrt{2}$

QB365-Question Bank Software

5. Show that the height of cylinder of maximum volume that can be inscribed in a sphere of radius

R is $\frac{2 R}{\sqrt{3} .}$
(CBSE 2012, 2013)

SOLUTION:

Let h be the height of the cylinderhaving radii us rand R be the radius of the sphere.
Let V be the volume of the cylinder.
So, $V=\pi r^{2} h=\pi\left(R^{2}--\frac{h^{2}}{4}\right) h=\pi R^{2} h-\frac{\pi}{4} h^{3}$

For max. volume, $\frac{d V}{d h}=0$
$\pi\left(R^{2}-\frac{3 h^{2}}{4}\right)=o$
$h=\frac{2 R}{\sqrt{3}}$
Also, $\frac{d^{2} v}{d h^{2}}<0$ at $h=\frac{2 R}{\sqrt{3}}$
There fore the required height $=\frac{2 R}{\sqrt{3}}$

HOTS

1. Prove that : $\mathrm{y}=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$ is an increasing function in $\left[0, \frac{\pi}{2}\right]$. (HINT: Find $\frac{d y}{d x}$ and show that it is >0)
2. Prove that the curves $x=y^{2}$ and $x y=k$ are orthogonal if $8 \mathrm{k}^{2}=1$
(HINT: If the curves are Orthogonal, the tangents at point of intersection to the given curves are perpendicular i.e the product of slopes of the tangents $=-1$)
3. Prove that the volume of the largest cone that can be inscribed in a sphere of radius a is $\frac{8}{27}$ of the volume of the sphere.

QB365-Question Bank Software

4. Find the sub intervals of $\left[0, \frac{\pi}{2}\right]$ in which the function $f(x)=\sin ^{4} x+\cos ^{4} x$ is
(i) strictly increasing (ii) strictly decreasing.
5. Find the maximum area of the isosceles triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end of the major axis
6. Show that the semi-vertical angle of the right circular cone of given total surface area and maximum volume is $\sin ^{-1} \frac{1}{3}$.
7. Show that the volume of thegreatestcylinder that can be inscribed in acone of height h and semi vertical angle α is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.
8. Find the point on the curve $\mathrm{y}=\frac{x}{1+x^{2}}$, where the tangent to the curve has the greatest slope.
9. Find the value of p for which the curves $x^{2}=9 p(9-y)$ and $x^{2}=p(y+1)$ cut each other at right angle.
10. Find the equation of the tangent to the curve

$$
y=\frac{x-7}{(x-2)(x-3)} \text { at the point where it cuts the } \mathrm{x} \text {-axis }
$$

