11th Standard - Mathematics

Probability

Random Experiment

An experiment whose outcomes cannot be predicted or determined in advance is called a random experiment.

Outcome

A possible result of a random experiment is called its outcome.

Sample Space

A sample space is the set of all possible outcomes of an experiment.

Events

An event is a subset of a sample space associated with a random experiment.

Types of Events

Impossible and sure events: The empty set Φ and the sample space S describes events. Intact Φ is called the impossible event and S i.e. whole sample space is called sure event.

Simple or elementary event: Each outcome of a random experiment is called an elementary event.

Compound events: If an event has more than one outcome is called compound events.

Complementary events: Given an event A, the complement of A is the event consisting of all sample space outcomes that do not correspond to the occurrence of A .

Mutually Exclusive Events

Two events A and B of a sample space S are mutually exclusive if the occurrence of any one of them excludes the occurrence of the other event. Hence, the two events A and B cannot occur simultaneously and thus $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ $=0$.

Exhaustive Events

If $E_{1}, E_{2}, \ldots \ldots . ., E_{n}$ are n events of a sample space S and if $E_{1} \cup E_{2} \cup E_{3} \cup U$ $E_{n}=S$, then $E_{1}, E_{2}, \ldots E_{3}$ are called exhaustive events.

Mutually Exclusive and Exhaustive Events

If $E_{1}, E_{2}, \ldots . . . E_{n}$ are n events of a sample space S and if
$\mathrm{E}_{\mathrm{i}} \cap \mathrm{E}_{\mathrm{j}}=\Phi$ for every $\mathrm{i} \neq \mathrm{j}$ i.e. E_{i} and E_{j} are pairwise disjoint and $\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup$
$\mathrm{E}_{3} \mathrm{U}$ \qquad $U E_{n}=S$, then the events
$\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ are called mutually exclusive and exhaustive events.

Probability Function

Let S = ($\mathrm{w}_{1}, \mathrm{w}_{2}$ \qquad w_{n}) be the sample space associated with a random experiment. Then, a function p which assigns every event $A \subset S$ to a unique non-negative real number $\mathrm{P}(\mathrm{A})$ is called the probability function.

It follows the axioms hold

- $0 \leq \mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right) \leq 1$ for each $\mathrm{W}_{\mathrm{i}} \in \mathrm{S}$
- $\mathrm{P}(\mathrm{S})=1$ i.e. $\mathrm{P}\left(\mathrm{w}_{1}\right)+\mathrm{P}\left(\mathrm{w}_{2}\right)+\mathrm{P}\left(\mathrm{w}_{3}\right)+\ldots+\mathrm{P}\left(\mathrm{w}_{\mathrm{n}}\right)=1$
- $\mathrm{P}(\mathrm{A})=\Sigma \mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)$ for any event A containing elementary event w_{i}.

Probability of an Event

If there are n elementary events associated with a random experiment and m of them are favorable to an event A, then the probability of occurrence of A is defined as

$$
P(A)=\frac{m}{n}=\frac{\text { Favourable number of outcomes }}{\text { Total number of outcomes }}
$$

The odd in favour of occurrence of the event A are defined by $\mathrm{m}:(\mathrm{n}-\mathrm{m})$.
The odd against the occurrence of A are defined by $n-m: m$.
The probability of non-occurrence of A is given by $P\left(A^{-}\right)=1-P(A)$.

Addition Rule of Probabilities

If A and B are two events associated with árandom experiment, then
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Similarly, for three events A, B, and C, we have
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap$ C)

Note: If A andB are mutually exclusive events, then
$P(A \cup B)=P(A)+P(B)$

