11th Standard -Mathematics

Sets

Set

A set is a well-defined collection of objects.

Representation of Sets

There are two methods of representing a set

- Roster or Tabular form In the roster form, we list all the members of the set within braces $\}$ and separate by commas.
- Set-builder form In the set-builder form, we list the property or properties satisfied by all the elements of the sets.

Types of Sets -

- Empty Sets: A set which does not contain any element is called an empty set or the void set or null set and it is denoted by $\}$ or Φ.
- Singleton Set: A set consists of a single element, is called a singleton set.
- Finite and infinite Set: A set which consists of a finite number of elements, is called a finite set, otherwise the set is called an infinite set.
- Equal Sets: Two sets A and 6 are said to be equal, if every element of A is also an element of B or vice-versa, i.e. two equal sets will have exactly the same element.
- Equivalent Sets: Two finite sets A and 6 are said to be equal if the number of elements are equal, i.e. $n(A)=n(B)$

Subset - Class 11 Maths Notes

A set A is said to be a subset of set B if every element of set A belongs to set B.
In symbols, we write
$A \subseteq B$, if $x \in A \Rightarrow x \in B$

Note:

- Every set is o subset of itself.
- The empty set is a subset of every set.
- The total number of subsets of a finite set containing n elements is 2^{n}.

Intervals as Subsets of \mathbf{R}

Let a and b be two given real numbers such that $a<b$, then

- an open interval denoted by (a, b) is the set of real numbers $\{x: a<x<b\}$.
- a closed interval denoted by $[\mathrm{a}, \mathrm{b}]$ is the set of real numbers $\{\mathrm{x}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$.
- intervals closed at one end and open at the others are known as semiopen or semi-closed interval and denoted by $(\mathrm{a}, \mathrm{b}]$ is the set of real numbers $\{\mathrm{x}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$ or $[\mathrm{a}, \mathrm{b})$ is the set of real numbers $\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$.

Power Set

The collection of all subsets of a set A is called the power set of A. It is denoted by $\mathrm{P}(\mathrm{A})$. If the number of elements in A i.e. $\mathrm{n}(\mathrm{A})=\mathrm{n}$, then the number of elements in $\mathrm{P}(\mathrm{A})=2^{\mathrm{n}}$.

Universal Set

A set that contains all sets in a given context is called the universal set.

Venn-Diagrams

Venn diagrams are the diagrams, which represent the relationship between sets. In Venn-diagrams the universal set U is represented by point within a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle.

Operations of Sets

Union of sets: The union of two sets A and B, denoted by $A \cup B$ is the set of all those elements which are either in A or in B or in both A and B. Thus, $A \cup B=$ $\{x: x \in A$ or $x \in B\}$.

Intersection of sets: The intersection of two sets A and B, denoted by $A \cap$ B, is the set of all elements which are common to both A and B.

Thus, $A \cap B=\{x: x \in A$ and $x \in B\}$

Disjoint sets: Two sets Aand Bare said tobe disjoint, if $\mathrm{A} \cap \mathrm{B}=\Phi$.

Intersecting or Overlapping sets: Two sets A and B are said to be intersecting or overlapping if $\mathrm{A} \cap \mathrm{B} \neq \Phi$

Difference of sets: For any sets A and B, their difference $(A-B)$ is defined as a set of elements, which belong to A but not to B.

Thus, $A-B=\{x: x \in A$ and $x \notin B\}$
also, $B-A=\{x: x \in B$ and $x \notin A\}$

Complement of a set: Let U be the universal set and A is a subset of U. Then, the complement of A is the set of all elements of U which are not the element of A.

Thus, $\mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A}=\{\mathrm{x}: \mathrm{x} \in \mathrm{U}$ and $\mathrm{x} \notin \mathrm{A}\}$

Some Properties of Complement of Sets

- $A \cup A^{\prime}=U$
- $\mathrm{A} \cap \mathrm{A}^{\prime}=\Phi$
- $U^{\prime}=\Phi$
- $\Phi^{\prime}=U$
- $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$

Symmetric difference of two sets: For any set A and B, their symmetric difference $(A-B) \cup(B-A)$
$(A-B) \cup(B-A)$ defined as set of elements which do not belong to both A and B.

It is denoted by $A \Delta B$.
Thus, $\mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})=\{\mathrm{x}: \mathrm{x} \notin \mathrm{A} \cap \mathrm{B}\}$.

Laws of Algebra of Sets - Class 11 Maths Notes

Idempotent Laws: For any set A , we have

- $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
- $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$

Identity Laws: For any set A, we have

- $\mathrm{A} \cup \Phi=\mathrm{A}$
- $A \cap U=A$

Commutative Laws:

For any two sets A and B, we have

- $A \cup B=B \cup A$
- $A \cap B=B \cap A$

Associative Laws: For any three sets A, B and C, we have

- $A \cup(B \cup C)=(A \cup B) \cup C$
- $A \cap(B \cap C)=(A \cap B) \cap C$

Distributive Laws: If A, B and Care three sets, then

- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

De-Morgan's Laws: If A and B are two sets, then

- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Formulae to Solve Practical Problems on Union and Intersection of Two Sets

Let A, B and C be any three finite sets, then

- $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
- If $(A \cap B)=\Phi$, then $n(A \cup B)=n(A)+n(B)$
- $n(A-B)=n(A)-n(A \cap B)$
- $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A$ $\cap B \cap C)$

