9th Standard Science **Matter in Our Surroundings**

Facts that Matter

Introduction

- Everything in this universe is made of materials which scientist has names 'matter'.
- **The matter** is made up of very small tiny particles. It is not continuous but is particulate.
- **The matter** is anything that occupies space and has mass.
- Particles of matter have space between them and are continuously Particles of matter attract each other. States of Matter moving.
- States of Matter: It has 3 states.

Solids	Liquids	Gases	
Strong intermolecular force.	Weak intermolecular force.	Very weak intermolecular force.	
Very less intermolecular space.	Large intermolecular space.	Very large intermolecular space.	
Have definite shape and volume.	No definite shape but definite volume.	No definite shape and volume.	
High density, melting point and boiling point.	Density is lower, low melting and boiling point.	Density is very low.	
Solids cannot be compressed.	Liquids can be compressed.	Gases are highly compressible.	
Solids cannot flow.	Liquids can flow.	Gases can flow.	
Particle	Particle	O O Particle	
Solid	Liquid	Gas	

QB365 - Question Bank Software

Matter can change its state from solid to liquid and from liquid to gas and vice-versa.

solid
$$\xrightarrow{\text{heat}}$$
 liquid $\xrightarrow{\text{heat}}$ gas

Effect of temperature: On increasing the heat, the particles gain energy and start vibrating with greater energy. Due to increased kinetic energy the particles overcome the force of attraction and a new state is obtained.

Melting point: The temperature at which a solid melts to become a liquid at the atmospheric pressure is called its melting point.

Boiling point: The temperature at which a liquid starts boiling at the atmospheric pressure is known as its boiling point. Boiling is a bulk phenomenon.

Latent heat of fusion: The amount of heat energy required to change 1 kg of a solid into liquid at its melting point is called the latent heat of fusion of the solid.

Latent heat of vaporization: The amount of heat energy required to change 1 kg of a liquid to vapour at atmospheric pressure, at its boiling point is called the latent heat of vaporization of the liquid.

Effect of change of pressure on the matter: On applying pressure, the particles of matter can be brought close together and the state of matter can

QB365 - Question Bank Software

QB365 - Question Bank Software

be changed. For example, CO_2 gas can be solidified by applying pressure and lowering temperature.

Evaporation: The phenomenon of changing of a liquid into its vapour state at any temperature below its boiling point is called evaporation. Evaporation is a surface phenomenon.

Factors affecting evaporation.

- An increase in surface area increases evaporation.
- An increase in temperature increases the rate of evaporation.
- A decrease in humidity increases the rate of evaporation.
- An increase in wind speed increases the rate of evaporation.
- Evaporation causes a cooling effect.

Some measurable quantities and their units

Quantity	Vale	Symbol
Temperature	Kelvin	K
Length	Metre	m
Mass	Kilogram	Kg
Weight	Newton	N
Volume	Cubic metre	m^3
Density	Kilogram per cubic metre	Kg/m³
Pressure	Pascal	Pa

QB365 - Question Bank Software

