Series OSR

<u>QB365 - Question Bank Software</u> कोड नं. 55/2/2

Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पृस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 16 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पृस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं। 🎺
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 16 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : ३ घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

QB365 - Question Bank Software

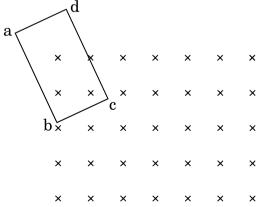
सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न-पत्र में कुल 30 प्रश्न हैं । प्रश्न सं. 1 से 8 तक के प्रश्न अति-लघुउत्तरीय प्रश्न हैं और प्रत्येक **एक** अंक का है ।
- (iii) प्रश्न सं. 9 से 18 में प्रत्येक प्रश्न **दो** अंक का है, प्रश्न सं. 19 से 27 में प्रत्येक प्रश्न **तीन** अंक का है और प्रश्न सं. 28 से 30 में प्रत्येक प्रश्न **पाँच** अंक का है ।
- (iv) तीन अंकों वाले प्रश्नों में से एक मूल्यपरक प्रश्न है।
- (v) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और पाँच अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है।
- (vi) कैलकुलेटर के उपयोग की अनुमति **नहीं** है । तथापि यदि आवश्यक हो तो आप लघुगणकीय सारणियों का प्रयोग कर सकते हैं ।
- (vii) जहाँ आवश्यक हो आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_o &= 4\pi \times 10^{-7} \text{ T mA}^{-1} \\ \frac{1}{4\pi\epsilon_o} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

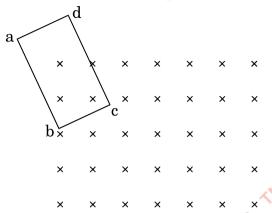
 $m_0 = 9.1 \times 10^{-31} \text{ kg}$

General Instructions :

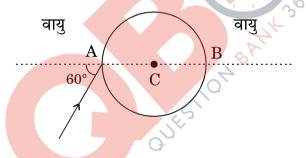

- (i) All questions are compulsory.
- (ii) There are **30** questions in total. Questions No. **1** to **8** are very short answer type questions and carry **one** mark each.
- (iii) Questions No. 9 to 18 carry two marks each, questions no. 19 to 27 carry three marks each and questions no. 28 to 30 carry five marks each.
- (iv) One of the questions carrying three marks weightage is value based question.
- (v) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all three questions of five marks each weightage. You have to attempt only one of the choices in such questions.

- (vi) Use of calculators is **not** permitted. However, you may use log tables if necessary.
- (vii) You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_o &= 4\pi \times 10^{-7} \text{ T mA}^{-1} \\ \frac{1}{4\pi\epsilon_o} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ m_e &= 9.1 \times 10^{-31} \text{ kg} \end{split}$$

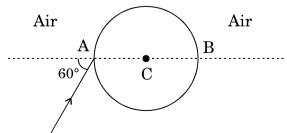

- 1. किसी आवेशित चालक के पृष्ठ के प्रत्येक बिन्दु पर स्थिर-वैद्युत क्षेत्र को पृष्ठ के अभिलम्बवत क्यों होना चाहिए ? कारण दीजिए ।

 Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point ? Give reason.
- 2. लेंज़ के नियम का उपयोग करके किसी आयताकार चालक लूप abcd में प्रेरित धारा की दिशा ज्ञात कीजिए, जो लूप में उस समय प्रेरित होती है जब वह किसी ऐसे चुम्बकीय क्षेत्र में गित करता है जो लूप के तल के अभिलम्बवत परन्तु पाठक से दूर निदर्शित है।



QB365 - Question Bank Software

Use Lenz's law to determine the direction of the induced current when a rectangular conducting loop abcd is moved into a region of magnetic field which is directed normal to the plane of the loop away from the reader.



3. चित्र में दर्शाए अनुसार किसी पारदर्शी गोले, जिसका केन्द्र C है, पर कोई प्रकाश किरण आपितत है। गोले से निर्गत किरण रेखा AB के समान्तर है। यदि गोले के पदार्थ का अपवर्तनांक $\sqrt{3}$ है, तो बिन्द् A पर अपवर्तन कोण ज्ञात कीजिए।

1

A ray of light falls on a transparent sphere with centre C as shown in the figure. The ray emerges from the sphere parallel to the line AB. Find the angle of refraction at A if refractive index of the material of the sphere is $\sqrt{3}$.

QB365 - Question Bank Software आरेख में किसी ऋणात्मक बिन्दुर्कित आवेश के कारण क्षेत्र रेखाएँ दर्शायी गयी हैं । बिन्दुओं 4. A और B के बीच किसी लघु ऋणात्मक आवेश की स्थितिज ऊर्जाओं के अन्तर का चिह्न बताइए ।

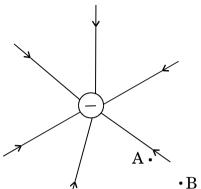
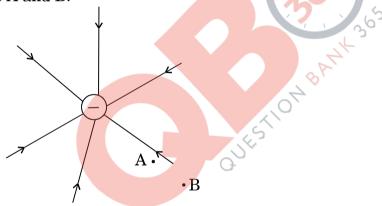



Figure shows the field lines due to a negative point charge. Give the sign of the potential energy difference of a small negative charge between the points A and B.

निम्नलिखित विद्युत्-चुम्बकीय तंरगों को उनकी आवृत्तियों के घटते क्रम में व्यवस्थित कीजिए : **5.** X-किरणें, γ -किरणें, सुक्ष्म तरंगें और अवरक्त किरणें। Arrange the following electromagnetic waves in order of decreasing frequency:

X-rays, γ-rays, microwaves and infrared rays.

A क्षेत्रफल की वृत्तीय कुण्डली, जिससे धारा I प्रवाहित हो रही है, के चुम्बकीय आघूर्ण के 6. लिए सदिश रूप में व्यंजक लिखिए।

Write the expression for the magnetic moment of a circular coil of area A carrying a current I, in a vector form.

1

OB365 - Question Bank Software.
7. $β^-$ क्षय तथा $β^+$ क्षय दोनों ही प्रक्रियाओं में, नाभिक की द्रव्यमान संख्या समान रहती है जबिक $β^-$ क्षय में परमाणु संख्या Z में एक की वृद्धि तथा $β^+$ क्षय में एक की कमी हो जाती है । कारण सहित व्याख्या कीजिए ।

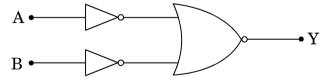
In both β^- and β^+ decay processes, the mass number of a nucleus remains same whereas the atomic number Z increases by one in β^- decay and decreases by one in β^+ decay. Explain, giving reason.

1

1

2

2

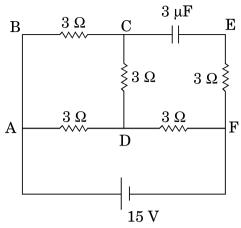

8. किसी दी गयी आवृत्ति और आपितत विकिरण की तीव्रता के लिए संग्राही पिटटका विभव के साथ प्रकाश-विद्युत् धारा के विचरण को दर्शाने के लिए ग्राफ खींचिए । विभव अक्ष पर ग्राफ का अन्त:खण्ड क्या सूचित करता है ?

Plot a graph showing variation of photoelectric current with collector plate potential at a given frequency and intensity of incident radiation. What does the intercept of the graph with potential axis signify?

9. किसी श्रेणीबद्ध LCR परिपथ में जिसमें प्रत्यावर्ती धारा (ac) स्रोत की प्रभावी वोल्टता 50 V, आवृत्ति $v=50/\pi$ Hz, $R=300~\Omega$, $C=20~\mu F$ तथा L=1.0 H है । परिपथ में वर्ग-माध्य-मूल (rms) धारा ज्ञात कीजिए ।

In a series LCR circuit with an ac source of effective voltage 50 V, frequency $v = 50/\pi$ Hz, R = 300 Ω , C = 20 μ F and L = 1·0 H. Find the rms current in the circuit.

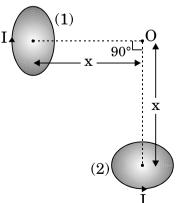
10. चित्र में दर्शाए गए परिपथ के तुल्य गेट की पहचान कीजिए । इसकी सत्यमान सारणी लिखिए ।

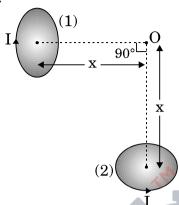


Identify the gate equivalent to the circuit shown in the figure. Write its truth table.



QB365 - Question Bank Software


55/2/2


In the circuit shown in the figure, find the total resistance of the circuit and the current in the arm CD.

12. दो अति लघु सर्वसम वृत्तीय लूप (पाश), (1) और (2), जिनसे समान धाराएँ I प्रवाहित हो रही हैं, चित्र में दर्शाए अनुसार एक-दूसरे के ज्यामितीय अक्षों को लम्बवत् रखते हुए ऊर्ध्वाधर (काग़ज़ के तल के सापेक्ष) रखे गए हैं । बिन्दु O पर उत्पन्न नेट चुम्बकीय क्षेत्र का परिमाण और दिशा ज्ञात कीजिए।

Two very small identical circular loops, (1) and (2), carrying equal currents I are placed vertically (with respect to the plane of the paper) with their geometrical axes perpendicular to each other as shown in the figure. Find the magnitude and direction of the net magnetic field produced at the point O.

13. आदर्श संधारित्र के प्रत्यावर्ती धारा (ac) परिपथ के लिए यह दर्शाइए कि परिपथ में प्रवाहित धारा कला में वोल्टता से $\pi/2$ आगे रहती है । Show that the current leads the voltage in phase by $\pi/2$ in an ac circuit containing an ideal capacitor.

2

2

2

- 14. अनुचुम्बकीय पदार्थ और प्रतिचुम्बकीय पदार्थ के बीच विभेदन करने वाले दो बिन्दु लिखिए। 2 Give two points to distinguish between a paramagnetic and a diamagnetic substance.
- 15. p-प्रकार के अर्धचालक और n-प्रकार के अर्धचालक के ताप T>0 K पर ऊर्जा बैण्ड आरेख खींचिए । इन आरेखों पर, दाता और ग्राही ऊर्जा स्तरों को उनकी ऊर्जाओं सहित अंकित कीजिए ।

अथवा

ऊर्जा बैण्ड आरेखों के आधार पर किसी धातु और किसी विद्युत्रोधी के बीच विभेदन कीजिए।

Draw energy band diagrams of an n-type and p-type semiconductor at temperature T > 0 K. Mark the donor and acceptor energy levels with their energies.

OR

Distinguish between a metal and an insulator on the basis of energy band diagrams.

OB365 - Question Bank Software16. माडुलन पद की परिभाषा लिखिए । AM सिग्नल प्राप्त करने के लिए सरल माडुलक का ब्लॉक आरेख खींचिए ।

Define the term modulation. Draw a block diagram of a simple modulator for obtaining AM signal.

17. आरेख में प्रिज़्म से किसी प्रकाश किरण को गुज़रते हुए दर्शाया गया है। यदि अपवर्तित किरण QR आधार BC के समान्तर है, तो यह दर्शाइए कि (i) $r_1=r_2=A/2$, (ii) न्यूनतम विचलन कोण, $D_m=2i-A$.

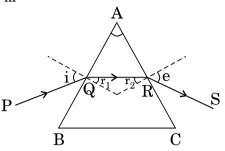
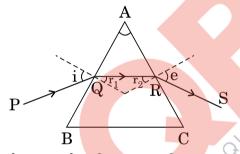



Figure shows a ray of light passing through a prism. If the refracted ray QR is parallel to the base BC, show that (i) $r_1 = r_2 = A/2$, (ii) angle of minimum deviation, $D_m = 2i - A$.

- 18. (a) दोलनी आवेश किस प्रकार विद्युत्-चुम्बकीय तरंगें उत्पन्न करता है ?
 - (b) + z-दिशा के अनु<mark>दिश संचरित</mark> किसी विद्युत्-चुम्बकीय तरंग के दोलीय विद्युत् और चुम्बकीय क्षेत्रों को दर्शाने वाला व्यवस्था आरेख खींचिए।
 - (a) How does oscillating charge produce electromagnetic waves?
 - (b) Sketch a schematic diagram depicting oscillating electric and magnetic fields of an em wave propagating along + z-direction.
- 19. दो कुण्डलियों, जिनके स्वप्रेरकत्व $L_1=20~\mathrm{mH}$ और $L_2=15~\mathrm{mH}$ हैं, से प्रवाहित विद्युत् धाराओं में समान दर से वृद्धि हो रही है। यदि दोनों कुण्डलियों को प्रदान की जाने वाली शक्ति समान है, तो किसी दिए गए क्षण पर इन दोनों कुण्डलियों में (i) प्रेरित वोल्टताओं, (ii) धाराओं और (iii) संचित ऊर्जाओं का अनुपात ज्ञात कीजिए।

The currents flowing in the two coils of self-inductance L_1 = 20 mH and L_2 = 15 mH are increasing at the same rate. If the power supplied to the two coils are equal, find the ratio of (i) induced voltages, (ii) the currents and (iii) the energies stored in the two coils at a given instant.

QB365 - Question Bank Software

2

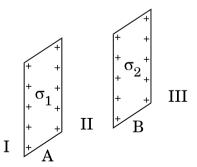
3

2

- **20.** (a) ज़ेनर डायोड का सविरचन (निर्माण) सिंध के p- तथा n- दोनों फलकों को अत्यिधक अपिमिश्रित करके क्यों किया जाता है ?
 - (b) वोल्टता नियंत्रक के रूप में ज़ेनर डायोड के उपयोग को दर्शाने के लिए परिपथ आरेख खींचकर संक्षेप में इसकी कार्यविधि की व्याख्या कीजिए।

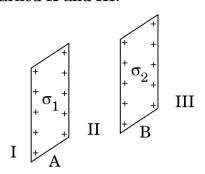
3

3


3

अथवा

- (a) फ़ोटोडायोड का निर्माण किस प्रकार किया जाता है ?
- (b) इसकी कार्यविधि का संक्षेप में वर्णन कीजिए। दो विभिन्न प्रदीपन-तीव्रताओं के लिए इसके V I अभिलाक्षणिक खींचिए।
- (a) Why is zener diode fabricated by heavily doping both p- and n-sides of the junction?
- (b) Draw the circuit diagram of zener diode as a voltage regulator and briefly explain its working.


OR.

- (a) How is a photodiode fabricated?
- (b) Briefly explain its working. Draw its V I characteristics for two different intensities of illumination.
- 21. (a) कोई बिन्दुकित <mark>आवेश (+Q) किसी अनावेशित धा</mark>तु की चादर के समीप स्थित है। आवेश और <mark>धातु की</mark> चादर के बीच विद्युत्-क्षेत्र रेखाएँ खींचिए।
 - (b) दो पतले समान्तर अनन्त तल शीट जिनके आवेश घनत्व σ_1 तथा σ_2 ($\sigma_1 > \sigma_2$) हैं, चित्र में दर्शाए गए हैं । II और III द्वारा अंकित क्षेत्रों में नेट विद्युत्-क्षेत्रों के परिमाण और दिशाएँ लिखिए ।

(a) A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric field lines between the charge and the plate.

(b) Two infinitely large plane thin parallel sheets having surface charge densities σ_1 and σ_2 ($\sigma_1 > \sigma_2$) are shown in the figure. Write the magnitudes and directions of the net fields in the regions marked II and III.

- 22. (a) दो लम्बे सीधे समान्तर चालकों 'a' और 'b', जिनमें स्थायी धाराएँ I_a और I_b प्रवाहित हो रही हैं, के बीच पृथकन दूरी d है । चालक 'a' द्वारा चालक 'b' के अनुदिश बिन्दुओं पर उत्पन्न चुम्बकीय क्षेत्र का परिमाण और दिशा लिखिए । यदि इन चालकों में प्रवाहित धाराओं की दिशा समान है, तो दोनों चालकों के बीच बल का परिमाण और प्रकृति क्या है ?
 - (b) आरेख की सहायता से दर्शाइए कि जब इन चालकों से धाराएँ विपरीत दिशाओं में प्रवाहित होती हैं, तो दोनों चालकों के बीच बल में किस प्रकार परिवर्तन होगा।
 - (a) Two long straight parallel conductors 'a' and 'b', carrying steady currents I_a and I_b are separated by a distance d. Write the magnitude and direction of the magnetic field produced by the conductor 'a' at the points along the conductor 'b'. If the currents are flowing in the same direction, what is the nature and magnitude of the force between the two conductors ?
 - (b) Show with the help of a diagram how the force between the two conductors would change when the currents in them flow in the opposite directions.
- 23. किसी समान्तर पट्टिका संधारित्र में, जिसकी पट्टिकाओं के बीच वायु है, की प्रत्येक पट्टिका का क्षेत्रफल $5 \times 10^{-3} \text{ m}^2$ और पट्टिकाओं के बीच पृथकन 2.5 mm है।
 - (i) इस संधारित्र की धारिता परिकलित कीजिए ।
 - (ii) यदि इस संधारित्र को 100 V आपूर्ति से संयोजित किया जाए, तो प्रत्येक पट्टिका पर कितना आवेश होगा ?
 - (iii) यदि वोल्टता आपूर्ति को संयोजित रखते हुए संधारित्र की पट्टिकाओं के बीच K=8 की अभ्रक की 2.5 mm मोटी चादर रख दी जाए, तो पट्टिकाओं पर आवेश किस प्रकार प्रभावित होगा ?

3

*QB365 - Question Bank Software*In a parallel plate capacitor with air between the plates, each plate has an area of 5×10^{-3} m² and the separation between the plates is 2.5 mm.

- Calculate the capacitance of the capacitor. (i)
- (ii) If this capacitor is connected to 100 V supply, what would be the charge on each plate?
- How would charge on the plates be affected, if a 2.5 mm thick mica (iii) sheet of K = 8 is inserted between the plates while the voltage supply remains connected?

3

3

- उपयुक्त आरेखों की सहायता से भू तरंगों और व्योम तरंगों की संचरण-विधियों के बीच विभेदन 24. कीजिए । संचरण की इन विधियों में तरंगों के आवृत्ति-परिसर का उल्लेख कीजिए । Distinguish with the help of suitable diagrams between ground wave and sky wave modes of propagation. Mention the frequency range of the waves in these modes of propagation.
- अध्रवित प्रकाश और रैखिकत: ध्रवित प्रकाश के बीच विभेदन कीजिए। 25. (i)
 - पोलेरॉइड किस प्रकार बनाया जाता है ? यह रैखिकत: ध्रुवित प्रकाश किस प्रकार उत्पन्न (ii) करता है ?
 - संक्षेप में व्याख्या कीजिए कि वायुमण्डलीय कणों से प्रकीर्णित होकर सूर्य का प्रकाश (iii) किस प्रकार ध्रवित हो जाता है।
 - Distinguish between unpolarised and linearly polarised light. (i)
 - What does a polaroid consist of? How does it produce a linearly (ii) polarised light?
 - Explain briefly how sunlight is polarised by scattering through (iii) atmospheric particles.
- संक्षेप में वर्णन कीजिए कि किस प्रकार डेविसन तथा जर्मर प्रयोग द्वारा इलेक्ट्रॉनों की 26. (a) तरंग प्रकृति का निदर्शन किया गया।
 - किसी इलेक्टॉन को उसकी विरामावस्था से किसी विभव V द्वारा त्वरित किया जाता (b) है । इससे सम्बद्ध दे-ब्रॉग्ली तरंगदैर्घ्य के लिए व्यंजक प्राप्त कीजिए ।
 - Describe briefly how Davisson Germer experiment demonstrated (a) the wave nature of electrons.
 - (b) An electron is accelerated from rest through a potential V. Obtain the expression for the de-Broglie wavelength associated with it.

- **QB365 Question Bank Software 27.** कक्षा X की छात्रा पूजा ने अपनी माताजी को खुल में कपड़े धीत समय, साबुन के रंगीन बुलबुले देखे और उसे यह जानने की जिज्ञासा हुई कि साबुन के बुलबुले रंगीन क्यों प्रतीत होते हैं । सायंकाल जब उसके पिताजी, जो पेशे से इंजीनियर हैं, घर आए तो उसने इसी विषय में उनसे प्रश्न पूछा । उसके पिताजी ने उसे भौतिकी की उस मूल परिघटना से अवगत कराया जिसके कारण साबुन के बुलबुले रंगीन दिखाई देते हैं ।
 - (a) आपके विचार से पूजा और उसके पिताजी किन मूल्यों को दर्शाते हैं ?
 - (b) साबुन के रंगीन बुलबुले बनने में सम्मिलित प्रकाशिक परिघटना का उल्लेख कीजिए।

When Puja, a student of 10th class, watched her mother washing clothes in the open, she observed coloured soap bubbles and was curious to know why the soap bubbles appear coloured. In the evening when her father, an engineer by profession, came home, she asked him this question. Her father explained to her the basic phenomenon of physics due to which the soap bubbles appear coloured.

- (a) What according to you are the values displayed by Puja and her father?
- (b) State the phenomenon of light involved in the formation of coloured soap bubbles.
- 28. (a) किसी दूरस्थ बिम्ब का प्रतिबिम्ब बनना दर्शाने के लिए खगोलीय दूरदर्शक का नामांकित किरण आरेख खींचिए। किसी दूरदर्शक की उच्च आवर्धन क्षमता और उच्च विभेदन क्षमता के लिए अभिदृश्यक तथा नेत्रिका लेंसों का चयन करते समय आवश्यक ध्यान देने योग्य प्रमुख विचारों का उल्लेख कीजिए।
 - (b) किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक की फोकस दूरी 1.25 cm और नेत्रिका की फोकस दूरी 5 cm है। कोई लघु बिम्ब इसके अभिदृश्यक से 2.5 cm दूरी पर रखा गया है। यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है, तो अभिदृश्यक और नेत्रिका के बीच की दूरी ज्ञात कीजिए।

अथवा

- (a) यंग के द्वि-झिरी प्रयोग में प्राप्त व्यतिकरण फ़्रिन्जों और पतली एकल झिरी के कारण प्राप्त विवर्तन पैटर्न के बीच विभेदन करने योग्य तीन अभिलाक्षणिक विशेषताएँ लिखिए।
- (b) 500 nm तरंगदैर्घ्य का कोई समान्तर प्रकाश पुन्ज किसी पतली झिरी पर आपतन करता है और परिणामी विवर्तन पैटर्न 1 m दूरी पर स्थित पर्दे पर दिखाई देता है । प्रेक्षण करने पर यह पाया जाता है कि प्रथम निम्निष्ठ केन्द्र से 2⋅5 mm की दूरी पर है । झिरी की चौड़ाई ज्ञात कीजिए ।

5

5

- (a) Draw a labelled ray diagram of an astronomical telescope to show the image formation of a distant object. Write the main considerations required in selecting the objective and eyepiece lenses in order to have large magnifying power and high resolution of the telescope.
- (b) A compound microscope has an objective of focal length 1.25 cm and eyepiece of focal length 5 cm. A small object is kept at 2.5 cm from the objective. If the final image formed is at infinity, find the distance between the objective and the eyepiece.

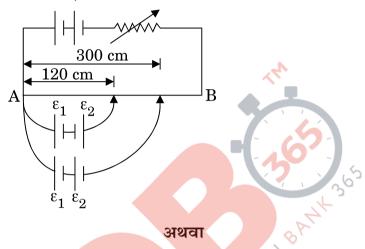
OR.

- (a) Write three characteristic features to distinguish between the interference fringes in Young's double slit experiment and the diffraction pattern obtained due to a narrow single slit.
- (b) A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is a distance of 2.5 mm away from the centre. Find the width of the slit.
- 29. (a) बोर के अभिगृहीतों का उपयोग करके, हाइड्रोजन परमाणु की स्थिर अवस्थाओं में इलेक्ट्रॉन की कुल ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए।
 - (b) रिडबर्ग सूत्र का उपयोग करके, लाइमेन श्रेणी और बामर श्रेणी के पहले सदस्य की स्पेक्ट्रमी रेखाओं की तरंगदैर्घ्यों को परिकलित कीजिए।

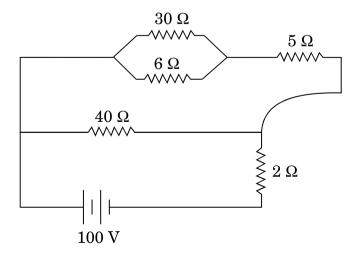
5

5

अथवा

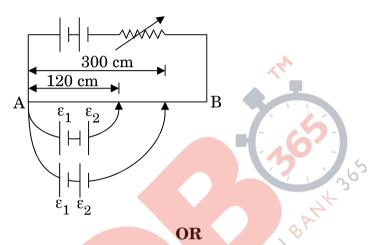

- (a) (i) अर्ध-आयु ($T_{1/2}$) और (ii) औसत आयु (τ) पदों की परिभाषा लिखिए । इनके क्षय स्थिरांक (λ) से संबंध ज्ञात कीजिए ।
- (b) किसी रेडियोऐक्टिव नाभिक का क्षय स्थिरांक $\lambda = 0.3465~($ दिन $)^{-1}~$ है । आरम्भिक मात्रा से 75% तक क्षयित होने में इसके नाभिक को कितना समय लगेगा ?
- (a) Using Bohr's postulates, derive the expression for the total energy of the electron in the stationary states of the hydrogen atom.
- (b) Using Rydberg formula, calculate the wavelengths of the spectral lines of the first member of the Lyman series and of the Balmer series.

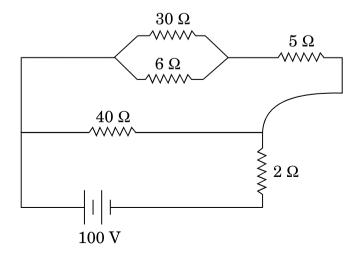
OR.


- (a) Define the terms (i) half-life $(T_{1/2})$ and (ii) average life (τ) . Find out their relationships with the decay constant (λ) .
- (b) A radioactive nucleus has a decay constant $\lambda = 0.3465 \, (\text{day})^{-1}$. How long would it take the nucleus to decay to 75% of its initial amount?

QB365 - Question Bank Software

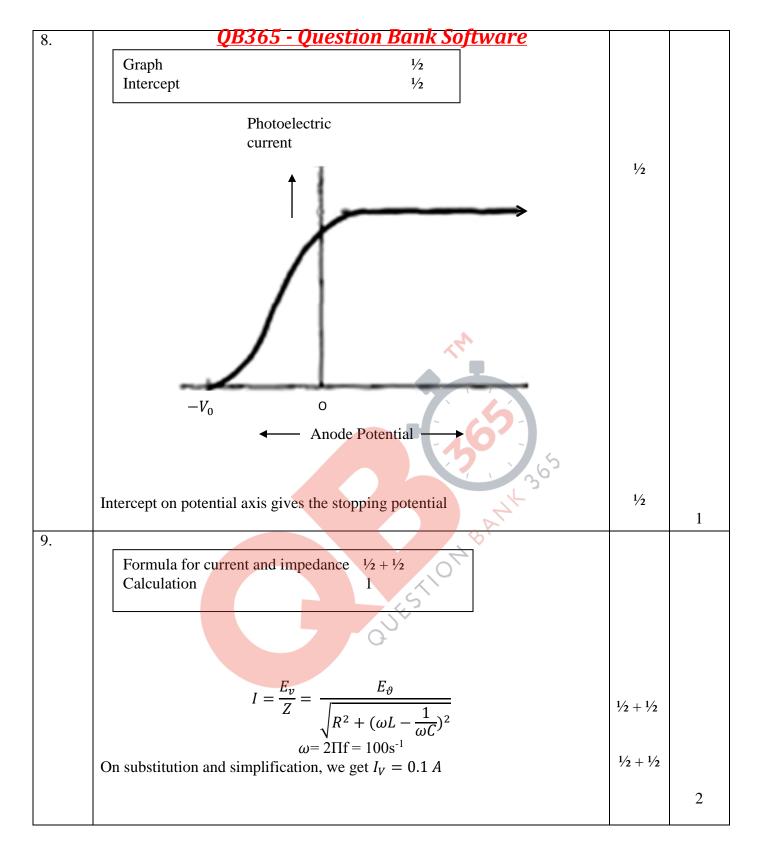
- **QB365 Question Bank Software 30.** (a) विभवमापी का सिद्धान्त लिखिए। विभव प्रवणता की परिभाषा लिखिए। विभवमापी तार की प्रतिरोधकता के पदों में विभव प्रवणता के लिए व्यंजक प्राप्त कीजिए।
 - (b) चित्र में नियत विभव प्रवणता का कोई लम्बा विभवमापी तार AB दर्शाया गया है । ϵ_1 तथा ϵ_2 विद्युत्-वाहक बलों के दो प्राथमिक सेलों, जिन्हें दर्शाए अनुसार संयोजित किया गया है, के लिए शून्य विक्षेप स्थितियाँ, सिरे A से दूरियों $l_1=120~{\rm cm}$ तथा $l_2=300~{\rm cm}$ पर प्राप्त होती हैं । (i) ϵ_1/ϵ_2 और (ii) केवल ϵ_1 सेल के लिए शून्य विक्षेप स्थिति ज्ञात कीजिए ।


- (a) किसी चालक में आवेश वाहकों के 'अपवाह वेग' पद की परिभाषा लिखिए। विश्रांति काल के पदों में धारा घनत्व के लिए व्यंजक प्राप्त कीजिए।
- (b) 100 V की कोई बैटरी दर्शाए गए विद्युत् नेटवर्क में संयोजित है । यदि 2Ω प्रतिरोधक में उपभुक्त शक्ति 200 W है, तो 5Ω प्रतिरोधक में शक्ति-क्षय निर्धारित कीजिए ।


5

(a) State the principle of a potentiometer. Define potential gradient. Obtain an expression for potential gradient in terms of resistivity of the potentiometer wire.

(b) Figure shows a long potentiometer wire AB having a constant potential gradient. The null points for the two primary cells of emfs ε_1 and ε_2 connected in the manner shown are obtained at a distance of l_1 = 120 cm and l_2 = 300 cm from the end A. Determine (i) $\varepsilon_1/\varepsilon_2$ and (ii) position of null point for the cell ε_1 only.

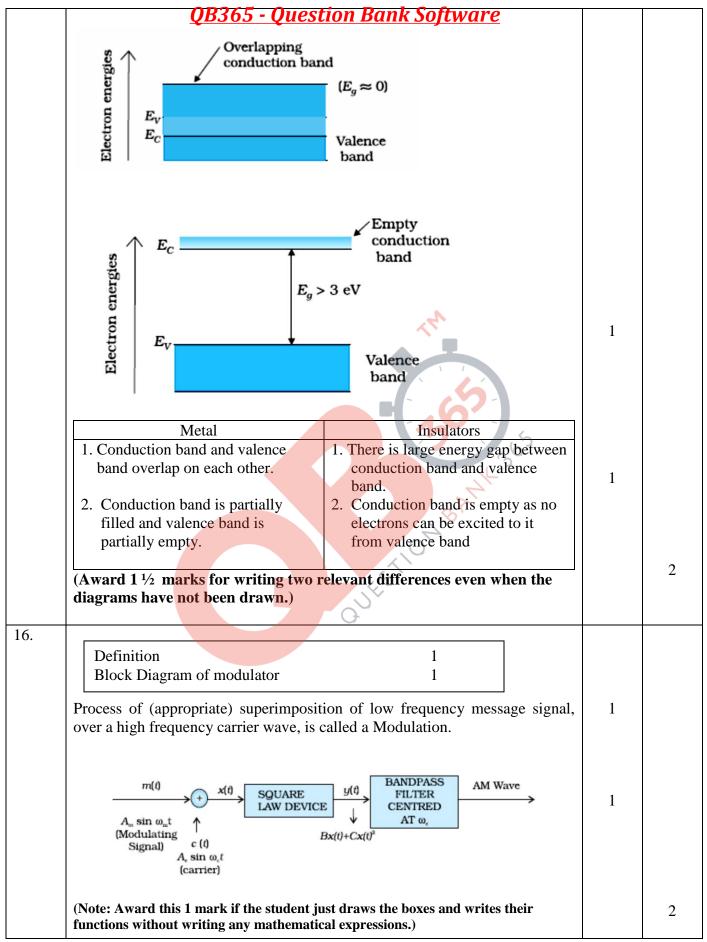

- (a) Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time.
- (b) A 100 V battery is connected to the electric network as shown. If the power consumed in the 2 Ω resistor is 200 W, determine the power dissipated in the 5 Ω resistor.

QB365 - Question Bank Software

QB365 - QurstionsBanksoftware SET 55/2/2

Q. No.	Expected Answer / Value Points	Marks	Total Marks
1.	It is an equipotential surface, [alternatively if the electric field were not	1	
	normal to the surface, then it would have a component along the surface which would cause work to be done in moving a charge on an equipotential surface.]		1
2.	Anticlockwise	1	1
3.	$\frac{\sin i}{\sin r} = \mu$	1/2	
	$\frac{\sin 60^{\circ}}{\sin r} = \sqrt{3} \text{gives } r = 30^{\circ}$	1/2	
	(Note: if a student just gives the answer 30°, award this 1 mark.)		1
4.	$U_A > U_B$	1/2	
	\therefore U _A U _B is positive	1/2	1
5.	γ rays, X rays, I.R, Microwaves	1	1
6.	$\vec{M} = I\vec{A} \text{ (or } \vec{M} = IA \hat{n} \text{)}$	1	1
7.	It is due to conversion of neutron to proton or proton to neutron inside the nucleus. Alternatively:- ${}^{A}_{Z}X \rightarrow \beta^{-} + {}^{A}_{Z+1}Y + \bar{\nu}$	1	
	${}^{A}_{Z}X \rightarrow \beta^{+} + {}^{A}_{Z-1}Y + \overline{\nu}$		1

10.	QB365 - Question Bank Software		
	Identification of equivalent gate 1 Truth Table 1		
	AND Gate	1	
	Truth Table A B Y 0 0 0 0 1 0		
	$\begin{array}{c cccc} 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	1	2
11.			
	Total resistance of the circuit 1 Current in arm CD 1		
	BC and CD are in series and their combination, is in parallel with AD		
	$\therefore \frac{1}{R_p} = \frac{1}{6} + \frac{1}{3} \therefore R_p = 2\Omega$	1.	
	R_p 6 3 P Total resistance of the circuit	1/2	
	P = (2/2)0 = 50	1/2	
	$\therefore \text{Net current, I} = \frac{V}{R}$ $I = \frac{15}{5}A = 3A, \text{ so}$		
	$I = \frac{15}{5}A = 3A$, so	1/2	
	$I_{CD} = 1A$	1/2	2
12.	Calculation of resultant magnetic field Direction 1 ½ ½		
	$B = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$	1/2	
	Net field at O, $B_0 = \sqrt{2}B = \frac{\sqrt{2}\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$	1/2	
	For small loop($r \ll x$), $B_0 = \frac{\sqrt{2}\mu_0 I}{2x^3}$	1/2	
	Direction of B_0 is at 45° with the axis of any of the two loops.	1/2	2
13.	Derivation of current flowing through capacitor 1 ½ To show current leads voltage ½		
			L


Foreign SET II Page 3 of 17

Final Draft

	QB365 - Question Bo	ank Software	
	If $V = V_0 \sin \omega t$	1/2	
	$q = CV = CV_0 sin\omega t$	1/2	
	$I = \frac{dq}{dt} = \omega C V_0 cos \omega t$	1/2	
	at •		
	Or I = $\omega CV_0 \sin(\omega t + \frac{\pi}{2})$		
	So, the current leads the applied voltage, in pha	se by $\pi/2$.	2
14.		· =	2
11.	Two points of difference	1 + 1	
	Diamagnetic Par	ramagnetic	
		attracted by	
	external magnetic field. magneti		
		arallel to the field.	
	the field 3. Move from stronger to 3. Move fr	om weaker to	
	weaker region. Stronger to stronger		
		d by temperature.	
	temperature	a by temperature.	
	5. Susceptibility < 0 5. Suscept	ibility > 0	
		, , , , , , , , , , , , , , , , , , ,	
	6. Permeability μ_r <1 6. Permeal		
		1+1	2
	(Any two points of difference)		2
15.	Energy level diagrams for n & p type	$\frac{1}{2} + \frac{1}{2}$	
	Marking of donor & acceptor level	$\frac{1}{2} + \frac{1}{2}$	
	Training of donor to mosphor to the	5	
	Energy bands of n-type at $T > 0$	nergy bands of p type at $T > 0$	
	0		
	E _c		
	zo.olev E _p E _p E _q E _q	$\frac{1}{2} + \frac{1}{2}$	⁄2
	F	E _A 20.01 - 0.05 eV	
		$\frac{1}{2} + \frac{1}{2}$	6
	••••	72 + 7	2
	[Note: Deduct only ½ mark in total, if a	student does not write the	
	energy values corresponding to the donor an		
	OR		
	Energy Band diagrams	1	
	Distinction between metal and insulator	1	
L	<u>i</u>		

Foreign SET II Page 4 of 17

Final Draft

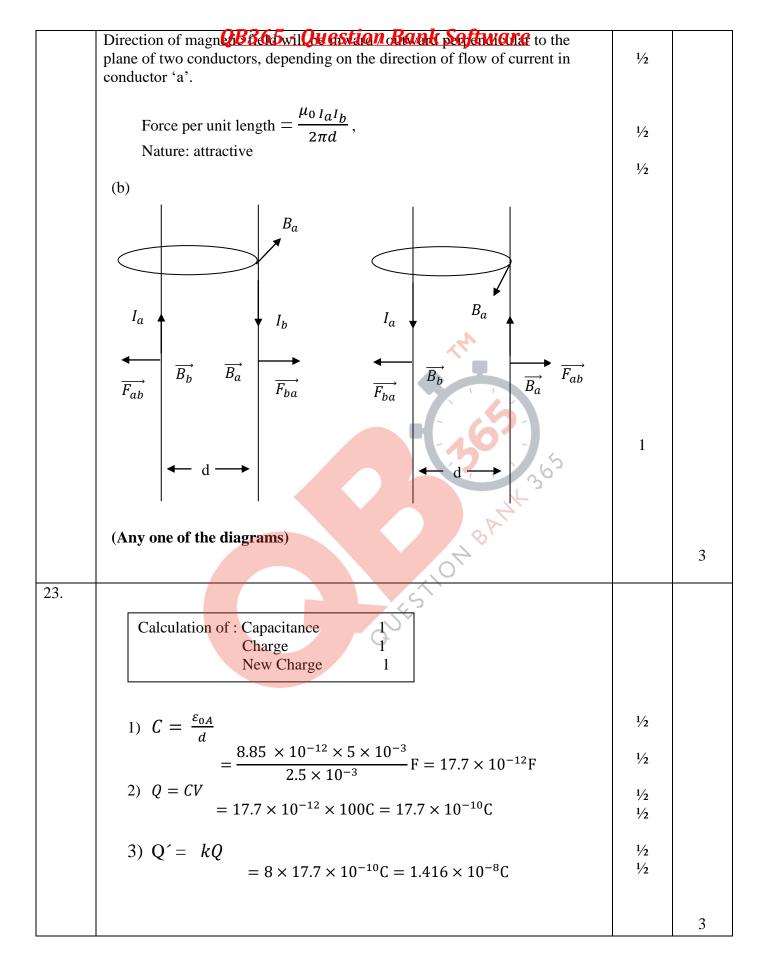
Foreign SET II Page 5 of 17

Final Draft

(i) To show $r_1 = r_2 = \frac{A}{2}$ 1 (ii) To show $D_m = 2i - A$ 1		
$(ii) To show D_m = 2i - A 1$		
(i) From given figure, $A = r_1 + r_2$	1/2	
As ray QR is parallel to the base BC,		
then $r_1 = r_2$, and $i = e$	1./	
Therefore, $2r_1$ (or $2r_2$) = A	1/2	
$\Rightarrow r_1 = r_2 = A/2$		
(ii) $D = (i - r_1) + (e - r_2)$	1/2	
$D = (i + e) - (r_1 + r_2)$		
or $D = 2i - A$	1/2	2
	, 2	_
18.		
a) Explanation		
b) Schematic Diagram		
a) An oscillating charge produces an oscillating electric field in space,		
	1	
which produces an oscillating magnetic field. The oscillating electric and		
magnetic fields regenerate each other, and this results in the production		
of e-m waves in space.		
of e-m waves in space.		
x O		
↑ E		
	1	
$\langle i \rangle / \langle i $		
₩ B		2
y		

19.	<u>QB365 - Question Bank Software</u>		
	Calculation of : ratio of induced voltage 1 ratio of currents 1 ratio of energy stored 1		
	1) $e = -L \frac{dF}{dt}$ $\therefore \frac{e_1}{e_2} = \frac{L_1}{L_2}$ $= \frac{20}{15} = \frac{4}{3}$	1/2	
	$=\frac{20}{15}=\frac{4}{3}$	1/2	
	2) $e_1 I_1 = e_2 I_2$ $\frac{I_1}{I_2} = \frac{e_2}{e_1} = \frac{3}{4}$	1/2	
	$\frac{1}{I_2} = \frac{1}{e_1} = \frac{1}{4}$	1/2	
	3) $U = \frac{1}{2}LI^2$	1/2	
	$\frac{U_1}{U_2} = \frac{L_1 I_1^2}{L_2 I_2^2} = \frac{3}{4}$	1/2	3
20.	a) Reason of heavily doping of p and n sides b) Circuit diagram Working (a) Due to heavy doping, the depletion layer become very thin and electric field, across the junction, becomes very high even for a small reverse bias voltage. (b) Circuit diagram	1	
	Unregulated voltage (V_L) I_L I_L $Regulated$ $Voltage$ R_L (V_L)	1	
	Any increase/ decrease in the input voltage results in increase/ decrease of the voltage drop across R_s , without any change in the voltage across the Zener diode.	1	

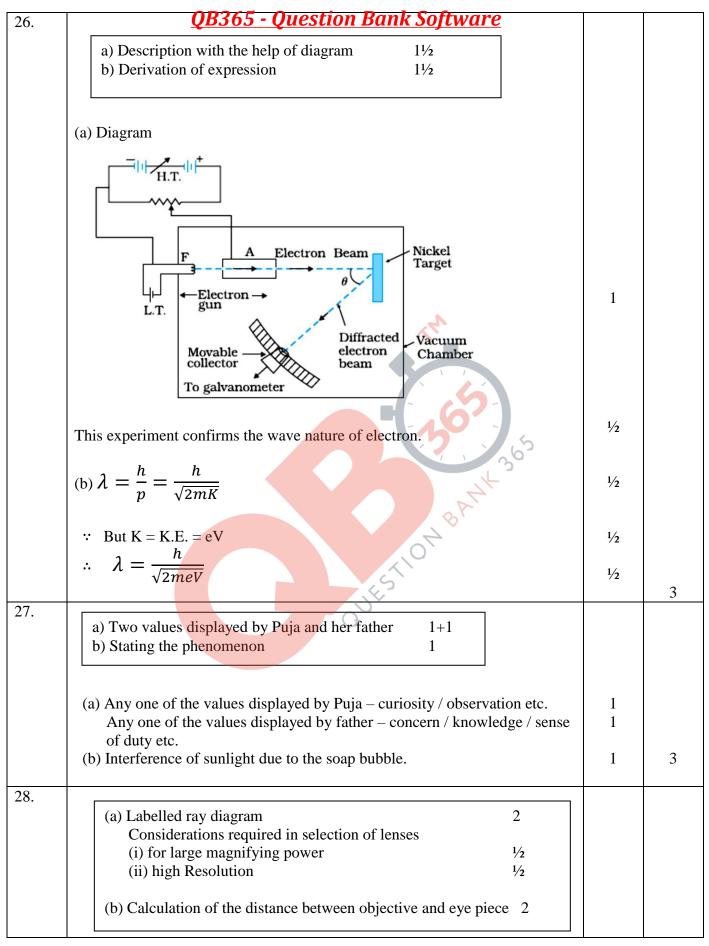
Foreign SET II Page 7 of 17


Final Draft

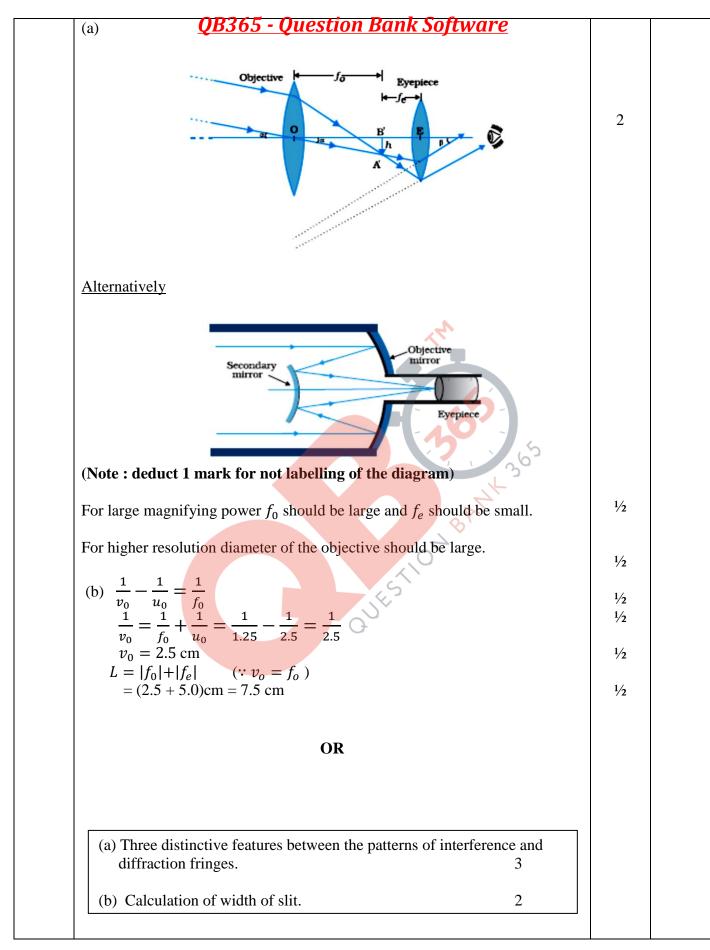
OR		
a) Fabrication of photodiode	1	
b) (i) Working of photo diode	1	
(ii) V – I characteristics	1	
(a) Photo diode is fabricated with a transpon the diode.(b) (i)Working:- When reversed biased photo	diode is illuminated wi	th light of
energy greater than the forbidden energy generated in, or near, the depletion regionare collected on the n-side and holes on difference. (b)(ii)	n. Due to junction field p-side, giving rise to	l, electrons a potential
†mA		
Reverse bias	JESTION BANK	1

21.	<u> QB365 - Question Bank Software</u>		
	(a) Sketching of electric field lines 1		
	(b) Magnitude and direction of net field in regions II and III $4 \times \frac{1}{2} = 2$		
	(a) Q + Slab	1	
	b) (i) For region II, $E_{II} = \frac{1}{2\epsilon_0} (\sigma_1 - \sigma_2)$	1/2	
	towards right side / from Sheet A to Sheet B (ii) For region III, $E_{III} = \frac{1}{2 \in_0} (\sigma_1 + \sigma_2)$	1/2	
	(ii) For region III, $E_{III} = \frac{1}{2 \epsilon_0} (\sigma_1 + \sigma_2)$	1/2	
	towards right side /away from two sheets.	1/2	3
22.	a) Magnitude and direction of magnetic field at 'b' Magnitude and nature of force b) Diagram showing magnetic field and force 1/2 + 1/2 b) Diagram showing magnetic field and force		
	a) The magnitude of magnetic field produced by conductor 'a', at a point on the conductor b: $B = \frac{\mu_{0 Ia}}{2\pi d}$	1/2	

Foreign SET II Page 9 of 17


Final Draft

Foreign SET II Page 10 of 17


Final Draft

24.	QB365 - Question Bank Software		
	Diagrams of ground wave and sky wave $\frac{1}{2} + \frac{1}{2}$		
	Explanation 1		
	Frequency range of ground wave & sky wave $\frac{1}{2} + \frac{1}{2}$		
	Ionosphere		
		1	
	Los		
	Ground wave Sky wave		
	Earth		
	Ground wave propagation – The wave glides over the surface or it follows the	1/2	
	curvature of earth Sky wave propagation is ionospheric reflection of radio wave back to the	1/2	
	earth.	/2	
	Frequency range of ground wave(few MHz) < 2 MHz Frequency range of sky wave(2 MHz) to 40 MHz	1/2 1/2	3
	Trequency range of sky wave(2 WHZ) to 40 WHZ	/2	3
	i) Distinction 1		
25.	ii) Polaroid & its working		
	iii) Polarization of sunlight – explanation 1		
	i) In a beam of Unpolarized light, the vibrations of light vectors are in all	1	
	directions in a plane perpendicular to direction of propagation. In polarized light, these vibrations are only along one direction.	1	
	ii) Polaroids consist of long chain of molecules aligned in a particular direction. It polarizes light as it allows only one component of light	$\frac{1}{2} + \frac{1}{2}$	
	(electric vectors parallel to the pass axis) to pass through it while the other	, _	
	component is absorbed. iii) The observer receives scattered light corresponding to only one of the two		
	sets of accelerated charges i.e. electrons oscillating perpendicular to the	1	
	direction of propagation.		3
	I .		<u> </u>

Foreign SET II Page 12 of 17

Final Draft

	Inter 28365 - Quest	ion Bank Software		
	1. Width of central maxima is same as that of the other fringes.	Width of central maxima is more than of the other fringes.	1	
	2. All bright fringes are of equal intensity.	2. Intensity of secondary maxima keeps on decreasing.	1	
	3. Large number of fringes.	3. Only a small number of fringes.	1	
	(or any other rel	evant difference)		
	(b) $y_n = \frac{n\lambda D}{d}$		1/2	
	$d = \frac{n\lambda D}{y_n}$		1/2	5
	(b) $y_n = \frac{MD}{d}$ $d = \frac{n\lambda D}{y_n}$ $= \frac{1 \times 500 \times 10^{-9} \times 1}{2.5 \times 10^{-3}} \text{m}$ $= 2 \times 10^{-4} \text{ m} (=0.2 \text{mm})$	The state of the s	1	
29.	a) Expression for total energy of ele b) Calculation of wavelengths	111		
	a) $mvr = \frac{nh}{2\pi}$ $mv^2 = 1 - e^2$	BAZIL 30°	1/2	
	$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$ $r = \frac{e^2}{4\pi\epsilon_0 mv^2}$	OUESTION BANKS		
	$r = \frac{ze^2}{4\pi\epsilon_o m \left(\frac{nh}{2\pi mr}\right)^2}$		1/2	
	$\Rightarrow r = \frac{\epsilon_0 n^2 h^2}{\pi m e^2}$ Potential energy U = $-\frac{1}{4\pi \epsilon_0} \cdot \frac{e^2}{r}$		1/2	
	$= - \frac{me^4}{4\epsilon_0 n^2 h^2}$		1/2	
	$KE = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)$	2	1/2	
	$=\frac{n^2h^2\pi^2m^2e^4}{8\pi^2m\epsilon_o{}^2n^4h^4}$		1/2	

Foreign SET II Page 14 of 17

Final Draft

QB365 - Question Bank Software

$$KE = \frac{me^4}{8\epsilon_o^2 n^2 h^2}$$

$$TE = KE + PE$$

$$= -\frac{me^4}{8\epsilon_0^2 n^2 h^2}$$

1/2

(Note: If a candidate does not use Bohr's postulates and writes the final expression for the energy in terms of r award 1 mark.)

b) Rydberg formula :For first member of Lyman series

$$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$
$$\lambda = \frac{4}{3R}$$

1/2

1/2

3R For first member of Balmer Series

$$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$$
$$\lambda = \frac{36}{5R}$$

(Note: Award full marks if the student calculates the value of λ in the two cases by taking the value of $R = 1.097 \times 10^7 \text{m}^{-1}$)

OR

a) Definition of (i) half life

1

(ii) average life

1

Relationship of half life & average life with decay constant

b) Calculation of time taken

2

(a) Definition:

1

(i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei.

1

(ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample.

1/2

$$T_{1/2}=rac{0.693}{\lambda}$$
 Relation between average life and decay constant $au=rac{1}{\lambda}$

1/2

(b)

$$N = N_o e^{-\lambda t}$$

$$\frac{3}{4}N_o = N_o e^{-(0.3465)t}$$

$$e^{(0.3465)t} = \frac{4}{3}$$

1/2

Foreign SET II Page 15 of 17

Final Draft

	0 3465 QB365g- Question Bank Software		
	$0.3403 \times t = tog_e(\sqrt{3})$	1/2	
	$= 2.303[\log 4 - \log 3]$ $= 2.303[0.6020 - 0.4771]$, -	
	$= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$		
	2.555 7. 6.12 12		
	$t = \frac{2.303 \times 0.1249}{0.3465}$		
	0.3465	1/2	
	$\therefore t = 0.83 \text{ days or } 19.92 \text{ hours}$		
	Alternatively:		
	Also accept if the student takes N=25% $N_0 = \frac{1}{4} N_0$ and does the calculations as		
	follows.		
	0.602	1/2	
	$T_{\frac{1}{2}} = \frac{0.693}{\lambda} = \frac{0.693}{0.3465} = 2 \text{ days}$		
	2 % 3.5103		
	$N = \frac{N_0}{2^n}$		
	Time taken to reduce to $50\% = 2$ days	1/2	
	· · · · · · · · · · · · · · · · · · ·		
	or $\frac{25}{100} = \frac{1}{2^n}$ (one half)		
	7-10-1		
	$\Rightarrow n = 2$ Additional time taken	1/2	
	to reduce to (one fourth) 25% = 2days		
	But $\frac{t}{T_{\frac{1}{2}}} = n$, Total time taken to reduce to one fourth		
	$\Rightarrow t = 4 \text{ days} \qquad \therefore \text{ Total time taken to reduce to one fourth}$	1/2	
	$\Rightarrow t = 4 \text{ days}$ $(25\%)=2+2 \text{ days} = 4 \text{ days}$		~
			5
30.			
	(a) Principle of potentiometer ½ Definition of potential gradiant ½ 1/2		
	Expression for potential gradiant 1		
	(b) Determination of		
	i. $\frac{e_1}{e_2}$ 1½		
	ii. Position of null point for cell E ₁ only 1 ½		
	(a) Principle: When a steady current flows through a wire of uniform	17	
	cross -section, the potential drop across any segment is directly	1/2	
	proportional to the length of the segment of the wire i.e. $V \propto l$		
	Potential gradiant is the potential drop across the wire per unit length of		
	17	1/2	
	the wire i.e. $K = \frac{v}{l}$		
L	<u> </u>	1	

Foreign SET II Page 16 of 17

Final Draft

Potential gradient K = 7 - Question Bank Software	1/2	
$K = \frac{I\rho \frac{l}{A}}{l}$ $K = \frac{I\rho}{A}$	1/2	
(b) (i) $\frac{e_1 - e_2}{e_1 + e_2} = \frac{120}{300} = \frac{2}{5}$ $\frac{e_1}{e_2} = \frac{7}{3}$	1 1/2	
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$	1	
$\Rightarrow x = 210 \text{cm}$ (where x is the position of null point with cell e_1 only.)	1/2	
OR		
(a) Definition of drift velocity Expression for current density (b) Calculation of power 3		
OT BEET		
(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.	1	
$I = neA \frac{v_d}{v_d}$ $= neA \frac{eE}{m} \tau$	1/2	
$\therefore \text{ current density } J = \frac{I}{A} = \frac{ne^2 E \tau}{m}$	1/2	
(b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10 A$	1/2	
	1/2	
∴Potential drop across the 2Ω resistor =20V Therefore Potential across parallel combination of 40Ω and 10 Ω = 80V Current through 5Ω ; $I = \frac{80}{10}$ A= 8A	1/2 1	
∴Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320W$	1/2	5