Series OSR

QB365 - Question Bank Software कोड नं. 55/2/3

Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पृस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 16 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं। 🎺
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे
- Please check that this question paper contains 16 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : ३ घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न-पत्र में कुल 30 प्रश्न हैं । प्रश्न सं. 1 से 8 तक के प्रश्न अति-लघुउत्तरीय प्रश्न हैं और प्रत्येक **एक** अंक का है ।
- (iii) प्रश्न सं. 9 से 18 में प्रत्येक प्रश्न **दो** अंक का है, प्रश्न सं. 19 से 27 में प्रत्येक प्रश्न **तीन** अंक का है और प्रश्न सं. 28 से 30 में प्रत्येक प्रश्न **पाँच** अंक का है ।
- (iv) तीन अंकों वाले प्रश्नों में से एक मूल्यपरक प्रश्न है।
- (v) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और पाँच अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है।
- (vi) कैलकुलेटर के उपयोग की अनुमित **नहीं** है । तथापि यदि आवश्यक हो तो आप लघुगणकीय सारणियों का प्रयोग कर सकते हैं ।
- (vii) जहाँ आवश्यक हो आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_o &= 4\pi \times 10^{-7} \text{ T mA}^{-1} \\ \frac{1}{4\pi\epsilon_o} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ m_e &= 9.1 \times 10^{-31} \text{ kg} \end{split}$$

General Instructions:

- (i) All questions are compulsory.
- (ii) There are **30** questions in total. Questions No. **1** to **8** are very short answer type questions and carry **one** mark each.
- (iii) Questions No. 9 to 18 carry two marks each, questions no. 19 to 27 carry three marks each and questions no. 28 to 30 carry five marks each.
- (iv) One of the questions carrying three marks weightage is value based question.
- (v) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all three questions of five marks each weightage. You have to attempt only one of the choices in such questions.

- (vi) Use of calculators is **not** permitted. However, you may use log tables if necessary.
- (vii) You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_o &= 4\pi \times 10^{-7} \text{ T mA}^{-1} \\ \frac{1}{4\pi\epsilon_o} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

$$m_e = 9{\cdot}1\times10^{-31}~kg$$

1. आरेख में किसी धनात्मक बिन्दुकित आवेश के कारण क्षेत्र रेखाएँ दर्शायी गयी हैं । बिन्दुओं Q और P के बीच किसी लघु ऋणात्मक आवेश की स्थितिज ऊर्जाओं के अन्तर का चिह्न बताइए।

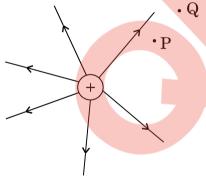
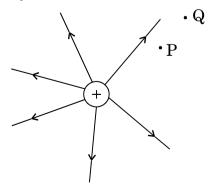
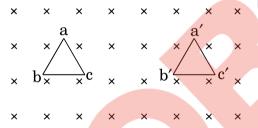



Figure shows the field lines due to a positive point charge. Give the sign of potential energy difference of a small negative charge between the points Q and P.

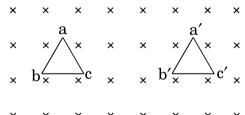
QB365 - Question Bank Software. 2. β^- क्षय तथा β^+ क्षय दोनों ही प्रक्रियाओं में, नाभिक की द्रव्यमान संख्या समान रहती है जबिक β^- क्षय में परमाणु संख्या Z में एक की वृद्धि तथा β^+ क्षय में एक की कमी हो जाती है । कारण सहित व्याख्या कीजिए ।

In both β^- and β^+ decay processes, the mass number of a nucleus remains same whereas the atomic number Z increases by one in β^- decay and decreases by one in β^+ decay. Explain, giving reason.

1

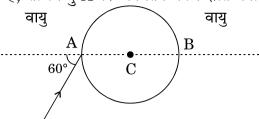

1

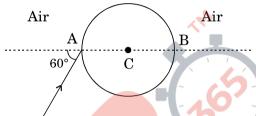
1


1

- 3. किसी आवेशित चालक के पृष्ठ के प्रत्येक बिन्दु पर स्थिर-वैद्युत क्षेत्र को पृष्ठ के अभिलम्बवत क्यों होना चाहिए ? कारण दीजिए ।

 Why must electrostatic field at the surface of a charged conductor be
 - Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.
- 4. तार का कोई त्रिभुजाकार लूप (पाश) किसी चुम्बकीय क्षेत्र जो लूप के तल के अभिलम्बवत परन्तु पाठक से दूर निदर्शित है, के पूर्णत: भीतर, स्थिति abc से नई स्थिति a'b'c' तक, गित करता है। लूप में प्रेरित धारा की दिशा क्या है ? कारण दीजिए।

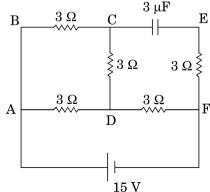

A triangular loop of wire placed at abc is moved completely inside a magnetic field which is directed normal to the plane of the loop away from the reader to a new position a'b'c'. What is the direction of the current induced in the loop? Give reason.


5. किसी परमाणु में कोई इलेक्ट्रॉन उसके नाभिक की परिक्रमा त्रिज्या ${f r}$ की कक्षा में आवृत्ति ${m v}$ के साथ करता है । इस इलेक्ट्रॉन के चुम्बकीय आधूर्ण के लिए व्यंजक लिखिए ।

An electron in an atom revolves round the nucleus in an orbit of radius r with frequency ν . Write the expression for the magnetic moment of the electron.

6. चित्र में दर्शाए अनुसार किसी पारदर्शी गील, जिसका केन्द्र C है, पर कोई प्रकाश किरण आपितत है । गोले से निर्गत किरण रेखा AB के समान्तर है । यदि गोले के पदार्थ का अपवर्तनांक $\sqrt{3}$ है, तो बिन्दु A पर अपवर्तन कोण ज्ञात कीजिए ।

A ray of light falls on a transparent sphere with centre C as shown in the figure. The ray emerges from the sphere parallel to the line AB. Find the angle of refraction at A if refractive index of the material of the sphere is $\sqrt{3}$.

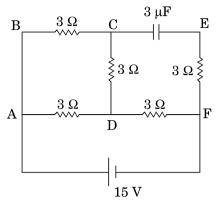

7. निम्नलिखित विद्युत्-चुम्बकीय तंरगों को उनके घटते तरंगदैर्घ्य के क्रम में व्यवस्थित कीजिए :

 γ -किरणें, अवरक्त किरणें, X-किरणें और सूक्ष्म तरंगें।

Arrange the following electromagnetic waves in decreasing order of wavelength:

γ-rays, infrared rays, X-rays and microwaves.

- 8. किसी दी गयी आवृत्ति परन्तु दो विभिन्न तीव्रताओं I_1 और I_2 , जबिक $I_2 > I_1$ है, संग्राही पिट्टका विभव के साथ प्रकाश-विद्युत् धारा के विचरण को दर्शाने के लिए ग्राफ़ खींचिए। Plot a graph showing the variation of photoelectric current with collector plate potential at a given frequency but for two different intensities I_1 and I_2 , where $I_2 > I_1$.
- 9. चित्र में दर्शाए गए परिपथ में, परिपथ का कुल प्रतिरोध और भुजा AD में प्रवाहित धारा ज्ञात कीजिए।


QB365 - Question Bank Software

1

1

1

In the circuit shown in the figure, find the total resistance of the circuit and the current in the arm AD.

आरेख में प्रिज़्म से किसी प्रकाश किरण को गुज़रते हुए दर्शाया गया है । यदि अपवर्तित किरण **10.** QR आधार BC के समान्तर है, तो यह दर्शाइए कि (i) $r_1 = r_2 = A/2$, (ii) न्यूनतम विचलन कोण, $D_m = 2i - A$.

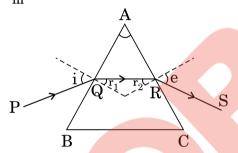
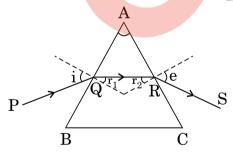



Figure shows a ray of light passing through a prism. If the refracted ray QR is parallel to the base BC, show that (i) $r_1 = r_2 = A/2$, (ii) angle of minimum deviation, $D_m = 2i - A$.

p-प्रकार के अर्धचालक और n-प्रकार के अर्धचालक के ताप T>0 K पर ऊर्जा बैण्ड आरेख 11. खींचिए । इन आरेखों पर, दाता और ग्राही ऊर्जा स्तरों को उनकी ऊर्जाओं सहित अंकित कीजिए।

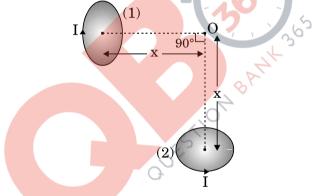
अथवा

ऊर्जा बैण्ड आरेखों के आधार पर किसी धात और किसी विद्युत्रोधी के बीच विभेदन कीजिए।

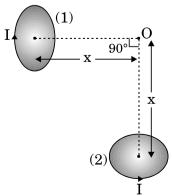
2

2

Draw energy band diagrams of an n-type and p-type semiconductor at temperature T > 0 K. Mark the donor and acceptor energy levels with their energies.


OR

Distinguish between a metal and an insulator on the basis of energy band diagrams.


12. आदर्श संधारित्र के प्रत्यावर्ती धारा (ac) परिपथ के लिए यह दर्शाइए कि परिपथ में प्रवाहित धारा कला में वोल्टता से $\pi/2$ आगे रहती है । Show that the current leads the voltage in phase by $\pi/2$ in an ac circuit

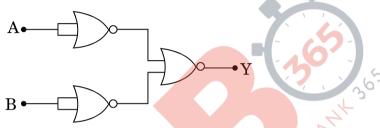
containing an ideal capacitor.

13. दो अति लघु सर्वसम वृत्तीय लूप (पाश), (1) और (2), जिनसे समान धाराएँ I प्रवाहित हो रही हैं, चित्र में दर्शाए अनुसार एक-दूसरे के ज्यामितीय अक्षों को लम्बवत् रखते हुए ऊर्ध्वाधर (काग़ज़ के तल के सापेक्ष) रखे गए हैं । बिन्दु O पर उत्पन्न नेट चुम्बकीय क्षेत्र का परिमाण और दिशा ज्ञात कीजिए।

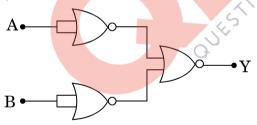
Two very small identical circular loops, (1) and (2), carrying equal currents I are placed vertically (with respect to the plane of the paper) with their geometrical axes perpendicular to each other as shown in the figure. Find the magnitude and direction of the net magnetic field produced at the point O.

2

- **OB365 Question Bank Software** 14. (a) दोलनी आवेश किस प्रकार विद्युत्-चुम्बकीय तरगे उत्पन्न करता है ?
 - (b) + z-दिशा के अनुदिश संचरित किसी विद्युत्-चुम्बकीय तरंग के दोलीय विद्युत् और चुम्बकीय क्षेत्रों को दर्शाने वाला व्यवस्था आरेख खींचिए।


2

2


2

2

- (a) How does oscillating charge produce electromagnetic waves?
- (b) Sketch a schematic diagram depicting oscillating electric and magnetic fields of an em wave propagating along + z-direction.
- 15. अनुचुम्बकीय पदार्थ और प्रतिचुम्बकीय पदार्थ के बीच विभेदन करने वाले दो बिन्दु लिखिए। 2 Give two points to distinguish between a paramagnetic and a diamagnetic substance.
- 16. चित्र में दर्शाए गए परिपथ के तुल्य गेट की पहचान कीजिए । इसकी सत्यमान सारणी लिखिए ।

Identify the gate equivalent to the circuit shown in the figure. Write its truth table.

- 17. माडुलन पद की परिभाषा लिखिए । AM सिग्नल प्राप्त करने के लिए सरल माडुलक का ब्लॉक आरेख खींचिए ।
 - Define the term modulation. Draw a block diagram of a simple modulator for obtaining AM signal.
- 18. प्रेरकत्व L=100~mH, प्रतिरोधक $R=100~\Omega$ और $200~\Omega$ प्रतिघात के संधारित्र को श्रेणीक्रम में संयोजित करके कोई परिपथ व्यवस्थित किया गया है । इस श्रेणी संयोजन के सिरों पर $500/\pi~\text{Hz}$; $150\sqrt{2}~V$ का प्रत्यावर्ती वि.वा. बल (emf) आरोपित करने पर प्रतिरोधक में शक्ति क्षय परिकलित कीजिए ।

QB365 - Question Bank Software

A circuit is set up by connecting inductance L=100 mH, resistor $R=100~\Omega$ and a capacitor of reactance 200 Ω in series. An alternating emf of $150\sqrt{2}$ V, $500/\pi$ Hz is applied across this series combination. Calculate the power dissipated in the resistor.

- 19. (a) ज़ेनर डायोड का संविरचन (निर्माण) संधि के p- तथा n- दोनों फलकों को अत्यधिक अपिमश्रित करके क्यों किया जाता है ?
 - (b) वोल्टता नियंत्रक के रूप में ज़ेनर डायोड के उपयोग को दर्शाने के लिए परिपथ आरेख खींचकर संक्षेप में इसकी कार्यविधि की व्याख्या कीजिए।

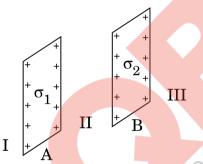
अथव

- (a) फ़ोटोडायोड का निर्माण किस प्रकार किया जाता है ?
- (b) इसकी कार्यविधि का संक्षेप में वर्णन कीजिए। दो विभिन्न प्रदीपन-तीव्रताओं के लिए इसके V I अभिलाक्षणिक खींचिए।
- (a) Why is zener diode fabricated by heavily doping both p- and n-sides of the junction?
- (b) Draw the circuit diagram of zener diode as a voltage regulator and briefly explain its working.

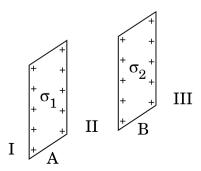
OR

- (a) How is a photodiode fabricated?
- (b) Briefly explain its working. Draw its V I characteristics for two different intensities of illumination.
- 20. (a) दो लम्बे सीधे समान्तर चालकों 'a' और 'b', जिनमें स्थायी धाराएँ I_a और I_b प्रवाहित हो रही हैं, के बीच पृथकन दूरी d है। चालक 'a' द्वारा चालक 'b' के अनुदिश बिन्दुओं पर उत्पन्न चुम्बकीय क्षेत्र का परिमाण और दिशा लिखिए। यदि इन चालकों में प्रवाहित धाराओं की दिशा समान है, तो दोनों चालकों के बीच बल का परिमाण और प्रकृति क्या है?
 - (b) आरेख की सहायता से दर्शाइए कि जब इन चालकों से धाराएँ विपरीत दिशाओं में प्रवाहित होती हैं, तो दोनों चालकों के बीच बल में किस प्रकार परिवर्तन होगा।
 - (a) Two long straight parallel conductors 'a' and 'b', carrying steady currents I_a and I_b are separated by a distance d. Write the magnitude and direction of the magnetic field produced by the conductor 'a' at the points along the conductor 'b'. If the currents are flowing in the same direction, what is the nature and magnitude of the force between the two conductors?
 - (b) Show with the help of a diagram how the force between the two conductors would change when the currents in them flow in the opposite directions.

3


3

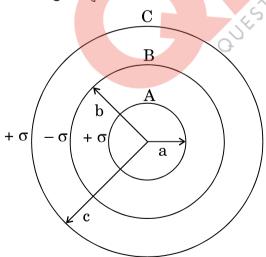
- 21. (a) संक्षेप में वर्णन कीजिए कि किस प्रकार डीवसन तथा जमर प्रयोग द्वारा इलेक्ट्रॉनों की तरंग प्रकृति का निदर्शन किया गया।
 - (b) किसी इलेक्ट्रॉन को उसकी विरामावस्था से किसी विभव V द्वारा त्वरित किया जाता है। इससे सम्बद्ध दे-ब्रॉग्ली तरंगदैर्घ्य के लिए व्यंजक प्राप्त कीजिए।


3

3

- (a) Describe briefly how Davisson Germer experiment demonstrated the wave nature of electrons.
- (b) An electron is accelerated from rest through a potential V. Obtain the expression for the de-Broglie wavelength associated with it.
- 22. (a) कोई बिन्दुिकत आवेश (+Q) किसी अनावेशित धातु की चादर के समीप स्थित है। आवेश और धातु की चादर के बीच विद्युत्-क्षेत्र रेखाएँ खींचिए।
 - (b) दो पतले समान्तर अनन्त तल शीट जिनके आवेश घनत्व σ_1 तथा σ_2 ($\sigma_1 > \sigma_2$) हैं, चित्र में दर्शाए गए हैं । II और III द्वारा अंकित क्षेत्रों में नेट विद्युत्-क्षेत्रों के परिमाण और दिशाएँ लिखिए ।

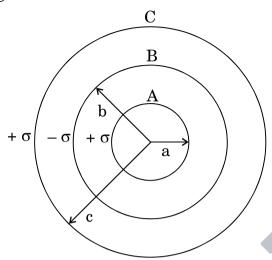
- (a) A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric field lines between the charge and the plate.
- (b) Two infinitely large plane thin parallel sheets having surface charge densities σ_1 and σ_2 ($\sigma_1 > \sigma_2$) are shown in the figure. Write the magnitudes and directions of the net fields in the regions marked II and III.



QB365 - Question Bank Software

- **QB365 Question Bank Software 23.** कक्षा X की छात्रा पूजा ने अपनी माताजी को खुले में कपड़े धीत समय, साबुन के रंगीन बुलबुले देखे और उसे यह जानने की जिज्ञासा हुई कि साबुन के बुलबुले रंगीन क्यों प्रतीत होते हैं । सायंकाल जब उसके पिताजी, जो पेशे से इंजीनियर हैं, घर आए तो उसने इसी विषय में उनसे प्रश्न पूछा । उसके पिताजी ने उसे भौतिकी की उस मूल परिघटना से अवगत कराया जिसके कारण साबुन के बुलबुले रंगीन दिखाई देते हैं ।
 - (a) आपके विचार से पूजा और उसके पिताजी किन मूल्यों को दर्शाते हैं ?
 - (b) साबुन के रंगीन बुलबुले बनने में सम्मिलित प्रकाशिक परिघटना का उल्लेख कीजिए ।

When Puja, a student of 10th class, watched her mother washing clothes in the open, she observed coloured soap bubbles and was curious to know why the soap bubbles appear coloured. In the evening when her father, an engineer by profession, came home, she asked him this question. Her father explained to her the basic phenomenon of physics due to which the soap bubbles appear coloured.


- (a) What according to you are the values displayed by Puja and her father?
- (b) State the phenomenon of light involved in the formation of coloured soap bubbles.
- **24.** धातु के तीन संकेन्द्री खोल A, B और C जिनकी त्रिज्याएँ a, b और c (a < b < c) हैं, के चित्र में दर्शाए अनुसार पृष्ठीय आवेश घनत्व क्रमशः $+ \sigma$, σ और $+ \sigma$ हैं।

यदि खोल A और C समान विभव पर हैं, तो त्रिज्याओं $a,\ b$ और c के बीच संबंध प्राप्त कीजिए ।

3

Three concentric metallic shells A, B and C of radii a, b and c (a < b < c) have surface charge densities + σ , - σ and + σ respectively as shown in the figure.

If shells A and C are at the same potential, then obtain the relation between the radii a, b and c.

3

3

- 25. किसी वायु क्रोड की टोरॉइडी परिनालिका जिसकी औसत त्रिज्या 15 cm और अनुप्रस्थ-काट का क्षेत्रफल 12 cm² है, में लपेटों की संख्या 1200 है। इस टोरॉइड का स्वप्रेरकत्व परिकलित कीजिए। यह मानिए कि टोरॉइड की अनुप्रस्थ-काट के आरपार क्षेत्र एकसमान है। A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm² and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.
- 26. उपयुक्त आरेख की सहायता से संचरण की व्योम तरंग विधि की व्याख्या कीजिए। संचार व्यवस्थाओं में ऐसे दो उदाहरण दीजिए जहाँ इस विधि का उपयोग किया जाता है। इन तरंगों का आवृत्ति परिसर क्या है? इस आवृत्ति परिसर के उपयोग करने का कारण दीजिए। Explain, with the help of a suitable diagram, the space wave mode of propagation. Give two examples in communication systems where this mode is used. What is the frequency range of these waves? Give reason for using this range of frequency.
- 27. (a) अध्रवित प्रकाश और रैखिकत: ध्रुवित प्रकाश के बीच विभेदन कीजिए।
 - (b) कोई आंशिक समतल ध्रुवित प्रकाश पुन्ज किसी पोलेरॉइड से गुज़ारा गया है। ग्राफ़ द्वारा पोलेरॉइड के घूर्णन कोण के साथ पारगमित प्रकाश की तीव्रता के विचरण को दर्शाइए।
 - (c) आरेख की सहायता से यह व्याख्या कीजिए कि वायुमंडलीय कणों से प्रकीर्णन द्वारा सूर्य का प्रकाश किस प्रकार ध्रुवित हो जाता है।

- *QB365 Question Bank Software*Distinguish between unpolarised and linearly polarised light. (a)
- A partially plane polarised beam of light is passed through a (b) polaroid. Show graphically the variation of the transmitted light intensity with angle of rotation of the polaroid.
- (c) Explain with the help of a diagram how sunlight is polarised by scattering through atmospheric particles.
- किसी दरस्थ बिम्ब का प्रतिबिम्ब बनना दर्शाने के लिए खगोलीय दरदर्शक का 28. (a) नामांकित किरण आरेख खींचिए । किसी द्रदर्शक की उच्च आवर्धन क्षमता और उच्च विभेदन क्षमता के लिए अभिदृश्यक तथा नेत्रिका लेंसों का चयन करते समय आवश्यक ध्यान देने योग्य प्रमुख विचारों का उल्लेख कीजिए।
 - किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक की फोकस दरी 1.25 cm और नेत्रिका की (b) फोकस दूरी 5 cm है। कोई लघु बिम्ब इसके अभिदृश्यक से 2.5 cm दूरी पर रखा गया है। यदि अन्तिम प्रतिबिम्ब अनन्त पर बनता है, तो अभिदृश्यक और नेत्रिका के बीच की दरी ज्ञात कीजिए।

- यंग के द्वि-झिरी प्रयोग में प्राप्त व्यतिकरण फ्रिन्जों और पतली एकल झिरी के कारण (a) प्राप्त विवर्तन पैटर्न के बीच विभेदन करने योग्य तीन अभिलाक्षणिक विशेषताएँ लिखिए।
- 500 nm तरंगदैर्घ्य का कोई समान्तर प्रकाश पुन्ज किसी पतली झिरी पर आपतन (b) करता है और परिणामी विवर्तन पैटर्न 1 m दूरी पर स्थित पर्दे पर दिखाई देता है। प्रेक्षण करने पर यह पाया जाता है कि प्रथम निम्निष्ठ केन्द्र से 2·5 mm की दूरी पर है। झिरी की चौडाई ज्ञात कीजिए।
- (a) Draw a labelled ray diagram of an astronomical telescope to show the image formation of a distant object. Write the main considerations required in selecting the objective and eyepiece lenses in order to have large magnifying power and high resolution of the telescope.
- A compound microscope has an objective of focal length 1.25 cm (b) and eyepiece of focal length 5 cm. A small object is kept at 2.5 cm from the objective. If the final image formed is at infinity, find the distance between the objective and the eyepiece.

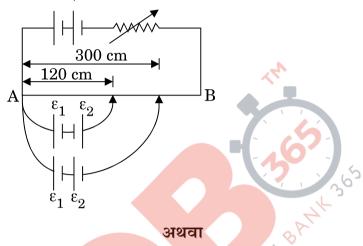
OR.

5

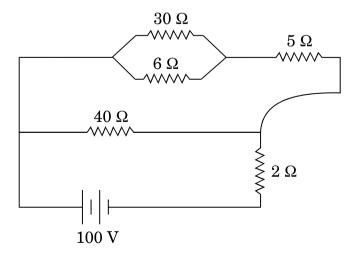
- (a) Write three characteristic features to distinguish between the interference fringes in Young's double slit experiment and the diffraction pattern obtained due to a narrow single slit.
- (b) A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is a distance of 2.5 mm away from the centre. Find the width of the slit.
- 29. (a) बोर के अभिगृहीतों का उपयोग करके, हाइड्रोजन परमाणु की स्थिर अवस्थाओं में इलेक्ट्रॉन की कुल ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए।
 - (b) रिडबर्ग सूत्र का उपयोग करके, लाइमेन श्रेणी और बामर श्रेणी के पहले सदस्य की स्पेक्टमी रेखाओं की तरंगदैर्घ्यों को परिकलित कीजिए।

5

5

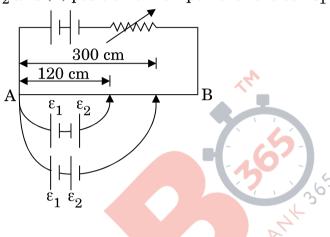

अथवा

- (a) (i) अर्ध-आयु ($T_{1/2}$) और (ii) औसत आयु (τ) पदों की परिभाषा लिखिए । इनके क्षय स्थिरांक (λ) से संबंध ज्ञात कीजिए ।
- (b) किसी रेडियोऐक्टिव नाभिक का क्षय स्थिरांक $\lambda = 0.3465 \ (दिन)^{-1}$ है । आरम्भिक मात्रा से 75% तक क्षयित होने में इसके नाभिक को कितना समय लगेगा ?
- (a) Using Bohr's postulates, derive the expression for the total energy of the electron in the stationary states of the hydrogen atom.
- (b) Using Rydberg formula, calculate the wavelengths of the spectral lines of the first member of the Lyman series and of the Balmer series.


OR

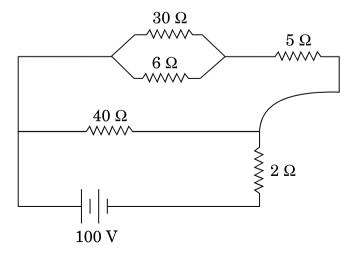
- (a) Define the terms (i) half-life ($T_{1/2}$) and (ii) average life (τ). Find out their relationships with the decay constant (λ).
- (b) A radioactive nucleus has a decay constant $\lambda = 0.3465 \, (day)^{-1}$. How long would it take the nucleus to decay to 75% of its initial amount?

- **QB365 Question Bank Software 30.** (a) विभवमापी का सिद्धान्त लिखिए। विभव प्रवणता की परिभाषा लिखिए। विभवमापी तार की प्रतिरोधकता के पदों में विभव प्रवणता के लिए व्यंजक प्राप्त कीजिए।
 - (b) चित्र में नियत विभव प्रवणता का कोई लम्बा विभवमापी तार AB दर्शाया गया है । ϵ_1 तथा ϵ_2 विद्युत्-वाहक बलों के दो प्राथिमक सेलों, जिन्हें दर्शाए अनुसार संयोजित किया गया है, के लिए शून्य विक्षेप स्थितियाँ, सिरे A से दूरियों $l_1=120~{\rm cm}$ तथा $l_2=300~{\rm cm}$ पर प्राप्त होती हैं । (i) ϵ_1/ϵ_2 और (ii) केवल ϵ_1 सेल के लिए शून्य विक्षेप स्थिति ज्ञात कीजिए ।


- (a) किसी चालक में आवेश वाहकों के 'अपवाह वेग' पद की परिभाषा लिखिए। विश्रांति काल के पदों में धारा घनत्व के लिए व्यंजक प्राप्त कीजिए।
- (b) 100 V की कोई बैटरी दर्शाए गए विद्युत् नेटवर्क में संयोजित है । यदि 2Ω प्रतिरोधक में उपभुक्त शक्ति 200 W है, तो 5Ω प्रतिरोधक में शक्ति-क्षय निर्धारित कीजिए ।

5

(a) State the principle of a potentiometer. Define potential gradient. Obtain an expression for potential gradient in terms of resistivity of the potentiometer wire.


(b) Figure shows a long potentiometer wire AB having a constant potential gradient. The null points for the two primary cells of emfs ε_1 and ε_2 connected in the manner shown are obtained at a distance of l_1 = 120 cm and l_2 = 300 cm from the end A. Determine (i) $\varepsilon_1/\varepsilon_2$ and (ii) position of null point for the cell ε_1 only.

(a) Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time.

OR

(b) A 100 V battery is connected to the electric network as shown. If the power consumed in the 2 Ω resistor is 200 W, determine the power dissipated in the 5 Ω resistor.

QB365 - Question Bank Software

MARKING SCHEME SET 55/2/3

0.37	SET 55/2/3	36.3	TD ()
Q. No.	Expected Answer / Value Points	Marks	Total
			Marks
1.	Negative	1	1
2.	It is due to conversion of neutron to proton or proton to neutron inside the	1	
	nucleus.		
	Alternatively:-		
	${}^{A}_{Z}X \rightarrow \beta^{-} + {}^{A}_{Z+1}Y + \bar{\nu}$		
	$A X \rightarrow \beta^+ + A A Y + \bar{\nu}$		
	$Z^{\Lambda} \rightarrow P + Z - 1 + V$		1
3.	It is an equipotential surface, [alternatively if the electric field were not	1	1
٥.	normal to the surface, then it would have a component along the surface	1	
	which would cause work to be done in moving a charge on an		1
	equipotential surface.]		
4.	No induced current	1/2	
	As there is no change in magnetic flux	1/2	1
5.	$M = ev\pi r^2$ or $n.\frac{eh}{4\pi m}$	1	
	Or		1
	(If student writes m=IA award ½ mark)		1
6.	$\frac{\sin i}{2} - \mu$	1/2	
	$\frac{\sin i}{\sin r} = \mu$ $\frac{\sin 60^{\circ}}{\sin r} = \sqrt{3} \text{ gives } r = 30^{\circ}$		
	sin 60°		
	$\frac{\sin 60^{\circ}}{\sin r} = \sqrt{3} \text{ gives } r = 30^{\circ}$	1/2	
	$\sin r$	/ 2	
	(Note: if a student just gives the answer 30°, award this 1 mark.)		1
7.	Microwaves, Infrared, X-Rays, γ- rays	1	1
8.			
	Photocurrent		
	un		
	 g		
	윤		
	i,	1	
	I,	1	
	Stopping potential		
	-V ₆ 0 ←— Retarding potential Collector plate —→		
	potential contents		1
			1

Foreign SET III Page 1 of 17

Final Draft

	T		
9.	Calculation of: effective resistance 1 Net current ½ Current in AD ½		
	BC and CD are in series \therefore R _{BCD} =6 Ω And AD is in parallel \therefore Rp== $\frac{6 \times 3}{6+3}\Omega = 2\Omega$	1	
	Then, DF in series, $R_e=(2+3) \Omega = 5 \Omega$ Net current $I = \frac{15}{5} A = 3A$ $I_{AD} = 2A$	1/2	2
10.	(i) To show $r_1 = r_2 = \frac{A}{2}$ 1 (ii) To show $D_m = 2i - A$		
	(i) From given figure, $A = r_1 + r_2$ As ray QR is parallel to the base BC,	1/2	
	then $r_1 = r_2$, and $i = e$ Therefore, $2r_1$ (or $2r_2$) = A $\Rightarrow r_1 = r_2 = A/2$	1/2	
	(ii) $D = (i - r_1) + (e - r_2)$ $D = (i + e) - (r_1 + r_2)$	1/2	
	or $D = 2i - A$	1/2	2
11.	Energy level diagrams for n & p type $\frac{1}{2} + \frac{1}{2}$ Marking of donor & acceptor level $\frac{1}{2} + \frac{1}{2}$ Energy bands of n-type at T > 0 Energy bands of p type at T > 0		
	E_{C} $= \underbrace{\sum_{0.01 \text{eV}} E_{g}}_{E_{g}}$ $= \underbrace{\sum_{0.01 \text{eV}} E_{g}}_{E_{g}}$ $= \underbrace{\sum_{0.01 \text{eV}} E_{g}}_{C}$	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	[Note: Deduct only ½ mark in total, if a student does not write the energy values corresponding to the donor and acceptor energy levels.]		

Foreign SET III Page 2 of 17

Final Draft 12/3/2014 4:26 PM

Energy Band diagrams Distinction between metal and insu	OR 1 ulator 1		
Overlapping conduction by E_V E_C	and $(E_g \approx 0)$ Valence band		
Electron energies E_c	Empty conduction band Valence band	1	
Metal 1. Conduction band and valence band overlap on each other. 2. Conduction band is partially filled and valence band is partially empty.	Insulators 1. There is large energy gap between conduction band and valence band. 2. Conduction band is empty as no electrons can be excited to it from valence band	1	
(Award 1½ marks for writing two diagrams have not been drawn.)	relevant differences even when the		2
Derivation of current flowing throu To show current leads voltage	ugh capacitor 1 ½ ½ ½		
If $V = V_0 \sin \omega t$ $q = CV = CV_0 \sin \omega t$		1/2 1/2	

Foreign SET III Page 3 of 17

Final Draft 12/3/2014 4:26 PM

	da	1/	I
	$I = \frac{dq}{dt} = \omega C V_0 cos \omega t$	1/2	
	π		
	Or $I = \omega C V_0 \sin(\omega t + \frac{\pi}{2})$		
	So, the current leads the applied voltage, in phase by $\pi/2$.	1/2	2
13.	Calculation of resultant magnetic field 1 ½		
	Direction 1/2		
	u_0Ir^2		
	$B = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$	1/2	
	2(((%) -		
	Not finish at $O(R) = \sqrt{2}R = \sqrt{2}\mu_0 Ir^2$		
	Net field at O, $B_0 = \sqrt{2}B = \frac{\sqrt{2}\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$	1/2	
		1/2	
	For small loop($r \ll x$), $B_0 = \frac{\sqrt{2}\mu_0 I}{2x^3}$	/2	
	$=$ 1 \times		
	Direction of B_0 is at 45° with the axis of any of the two loops.	1/2	2
	7-40		
14.			
	a) Explanation		
	b) Schematic Diagram		
	a) An oscillating charge produces an oscillating electric field in space,		
	which produces an oscillating magnetic field. The oscillating electric and	1	
	magnetic fields regenerate each other, and this results in the production		
	of e-m waves in space.		
	of c in waves in space.		
	b)		
	X A		
	E		
	\mathcal{M}/\mathcal{M}	1	
			2
	y		2
		<u> </u>	

Foreign SET III Page 4 of 17

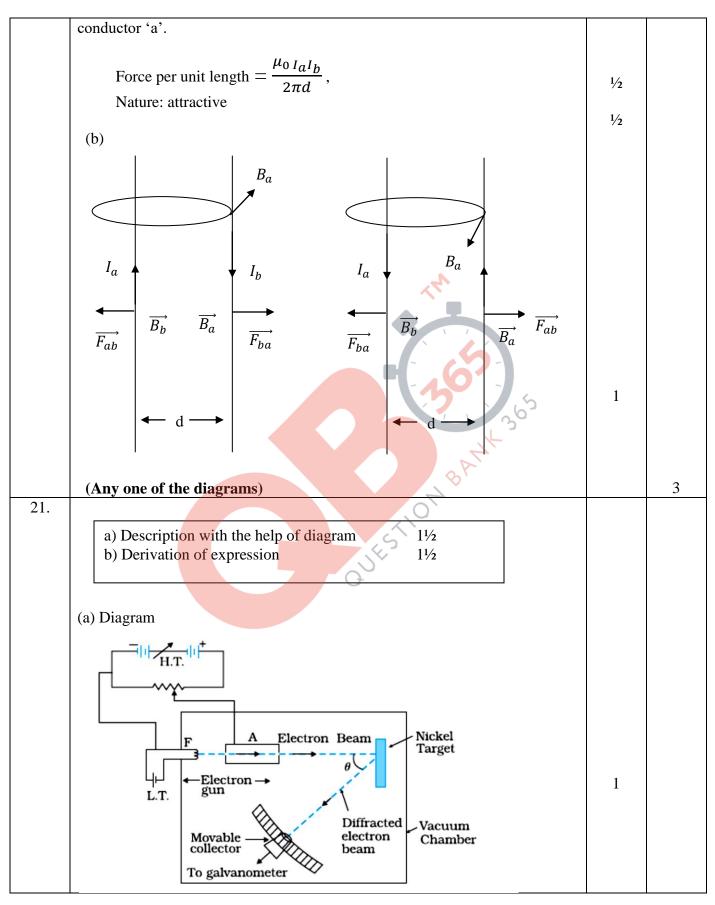
Final Draft

1.5				
15.	Two points of difference	1 + 1		
	Diamagnetic	Paramagnetic		
	1. Weakly repelled by external magnetic field.	. Weakly attracted by magnetic field.		
		. Align parallel to the field.		
	weaker region.	. Move from weaker to stronger region.		
	temperature	. Affected by temperature.		
		. Susceptibility > 0 . Permeability $\mu_r > 1$		
		1 /	1+1	2
16.	(Any two points of difference)	(46)		
	Identification of equivalent gate Truth table	305		
		Gate : AND h table	1	
	0 0 1	B Y 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	2
17	1			
17.	Definition Block Diagram of modulator	1 1		
	Process of (appropriate) superimposit over a high frequency carrier wave, is o	tion of low frequency message signal, called a Modulation.	1	
	$ \begin{array}{c c} & \xrightarrow{m(t)} & \xrightarrow{x(t)} & & & & \\ \hline A_m \sin \omega_m t & \uparrow & & & \\ Modulating & c (t) & & & \\ Signal) & c (t) & & & \\ A_c \sin \omega_c t & & \\ (carrier) & & & \\ \end{array} $	$E \xrightarrow{y(t)} AM \text{ Wave}$ $FILTER$ $CENTRED$ $AT \omega_{\epsilon}$ $Bx(t)+Cx(t)^{3}$	1	
	(Note: Award this 1 mark if the student ju functions without writing any mathematic			2

Foreign SET III Page 5 of 17

Final Draft

18.			
10.			
	Calculation of : impedance 1 current 1/2		
	power ½		
	$Z = \sqrt{R^2 + (L\omega - \frac{1}{2})^2}$	1/2	
	$Z = \sqrt{R^2 + (L\omega - \frac{1}{c\omega})^2}$ $= 100\sqrt{2} \Omega$	1/2	
	=100 \(\frac{7}{2} \) \(\frac{1}{2} \)		
	$I_{v}=\frac{E_{v}}{E_{v}}$	1/2	
	$I_{v} = \frac{E_{v}}{Z}$ $= 1.5 \text{ A}$	/ 2	
	$P = I_v^2 R$	1/2	2
10	= 225 W		2
19.			
	a) Reason of heavily doping of p and n sides		
	b) Circuit diagram Working		
	Working (S		
	30		
	(a) Due to heavy doping, the depletion layer become very thin and electric	1	
		1	
	voltage.		
	voltage. (b) Circuit diagram		
	${}^{{}^{\downarrow}}_{{}^{\downarrow}}$ ${}^{\prime}$		
	}		
	Unregulated voltage (V_L) I_L	1	
	Regulated		
	$ \stackrel{\longleftarrow}{\rightleftharpoons} \begin{cases} Load & voltage \\ R_L & (V_{\bullet}) \end{cases} $		
	Any increase/ decrease in the input voltage regults in increase/ decrease of the	1	
	Any increase/ decrease in the input voltage results in increase/ decrease of the voltage drop across R _s , without any change in the voltage across the Zener	-	
	diode.		


Foreign SET III Page 6 of 17

Final Draft

	OR		
	a) Fabrication of photodiode b) (i) Working of photo diode (ii) V – I characteristics 1		
	Photo diode is fabricated with a transparent window to allow light to fall the diode.	1	
We end get are dif	orking:- When reversed biased photo diode is illuminated with light of ergy greater than the forbidden energy gap (Eg), electron hole pairs are nerated in, or near, the depletion region. Due to junction field, electrons e collected on the n-side and holes on p-side, giving rise to a potential efference.	1	
(b)	Eference. (iii) Reverse blas $I_2 > I_1$	1	3
20.	a) Magnitude and direction of magnetic field at 'b' \frac{1}{2} + \frac{1}{2} Magnitude and nature of force \frac{1}{2} + \frac{1}{2} b) Diagram showing magnetic field and force 1 The magnitude of magnetic field produced by conductor 'a', at a point on		
1	the conductor b: $B = \frac{\mu_0 I_a}{2\pi d}$	1/2	
	ection of magnetic field will be inward / outward perpendicular to the ne of two conductors, depending on the direction of flow of current in	1/2	

Foreign SET III Page 7 of 17

Final Draft 12/3/2014 4:26 PM

Foreign SET III Page 8 of 17

Final Draft

		T	
	This experiment confirms the wave nature of electron.	1/2	
	(b) $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$	1/2	
	∴ But K = K.E. = eV ∴ $\lambda = \frac{h}{\sqrt{2meV}}$	1/2	
	$\frac{1}{\sqrt{2meV}}$	1/2	3
22.	(a) Sketching of electric field lines (b) Magnitude and direction of net field in regions II and III (a) Sketching of electric field lines (b) Magnitude and direction of net field in regions II and III (a) Sketching of electric field lines (b) Magnitude and direction of net field in regions II and III (a) Sketching of electric field lines (b) Magnitude and direction of net field in regions II and III (a) Sketching of electric field lines (b) Magnitude and direction of net field in regions II and III (b) Magnitude and direction of net field in regions II and III (c) Sketching of electric field lines (d) Sketching of electric field lines (e) Sketching of electric field lines (field in electric field lines) (field in electric field lines (field in electric field lines) (field in electric field lines (field in electric field lines) (field in electric field lines (field in electric field lines) (field in electric field lines (field in electric field lines) (field in electric field lines (field in electric field lines) (field in electric field lines) (field in electric field lines)	1	
	b) (i) For region II, $E_{II} = \frac{1}{2 \in_0} (\sigma_1 - \sigma_2)$	1/2	
	towards right side / from Sheet A to Sheet B	1/2	
	(ii) For region III, $E_{III} = \frac{1}{2 \epsilon_0} (\sigma_1 + \sigma_2)$ towards right side /away from two sheets.	½ ½ ½	3

Foreign SET III Page 9 of 17

Final Draft

23.			
23.	a) Two values displayed by Puja and her father 1+1 b) Stating the phenomenon 1		
	 (a) Any one of the values displayed by Puja – curiosity / observation etc. Any one of the values displayed by father – concern / knowledge / sense of duty etc. (b) Interference of sunlight due to the soap bubble. 	1 1	3
24.	Calculation of charge on A, B and C Potential of A and C Result $q_{A} = \sigma. 4\pi a^{2}, q_{B} = -\sigma 4\pi b^{2}, q_{C} = \sigma. 4\pi c^{2}$ $V_{A} = k \left[\frac{q_{A}}{a} + \frac{q_{B}}{b} + \frac{q_{C}}{c} \right]$ $V_{C} = k \left[\frac{q_{A} + q_{B} + q_{C}}{c} \right]$ $\therefore V_{A} = V_{C}, \text{ we have}$ So, $k \left[\frac{q_{A}}{a} + \frac{q_{B}}{b} + \frac{q_{C}}{c} \right] = k \left[\frac{q_{A} + q_{B} + q_{C}}{c} \right]$ $\therefore \frac{q_{A}}{a} + \frac{q_{B}}{b} = \frac{q_{A}}{c} + \frac{q_{B}}{c}, \text{ putting the value of } q_{A}, q_{B},$	1 1	
25.	we get a+b=c Formula for self inductance 1 Substitution 1		3
	Result $L = \frac{\mu_0 N^2 A}{l} = \frac{\mu_0 N^2 A}{2\pi r}$	1	
	$=\frac{4\pi X 10^{-7} X (1200)^{2} X 12 X 10^{-4}}{2\pi X 0.15} H$	1	
	$L = 2.3 X 10^{-3} H$	1	3

2.5		1	
26.	Explanation with diagram 1		
	Two examples 1		
	Frequency range Reasons 1/2 1/2		
	Reasons 72		
	Communication satellite		
	/) (\forall \forall		
	Space wave		
	Micopart		
	N. K.		
	Los		
	¥	1/2	
	and the less than the less tha		
	30		
	The state of the s	1/	
	Explanation - Space wave propagates directly or by satellite from the	1/2	
	transmitting antenna to receiving antenna.	$\frac{1}{2} + \frac{1}{2}$	
	Examples – LOS and satellite communication	$\frac{72 + 72}{1/2}$	
	Frequency range > 40 MHz	1/2	
	Frequencies above 40 MHz do not get reflected by the ionosphere.	72	3
			3
27.			
	1. Division 1.		
	i) Distinction 1		
	ii) Polaroid & its working \frac{1}{2} + \frac{1}{2}		
	iii) Polarization of sunlight – explanation 1		
	i) In a beam of Unpolarized light, the vibrations of light vectors are in all	1	
	directions in a plane perpendicular to direction of propagation. In	1	
	polarized light, these vibrations are only along one direction.		
	ii) Polaroids consist of long chain of molecules aligned in a particular		
	direction. It polarizes light as it allows only one component of light	$\frac{1}{2} + \frac{1}{2}$	
	(electric vectors parallel to the pass axis) to pass through it while the other	/2 + 72	
	component is absorbed.		
	iii) The observer receives scattered light corresponding to only one of the two		
	sets of accelerated charges i.e. electrons oscillating perpendicular to the	1	
	direction of propagation.	1	3
	anoction of propugation.		
<u> </u>		<u> </u>	

Foreign SET III Page 11 of 17

Final Draft 12/3/2014 4:26 PM

28. 2 (a) Labelled ray diagram Considerations required in selection of lenses (i) for large magnifying power 1/2 (ii) high Resolution 1/2 (b) Calculation of the distance between objective and eye piece 2 (a) Objective 2 **Alternatively** Objective mirror Secondary Eyepiece (Note: deduct 1 mark for not labelling of the diagram) 1/2 For large magnifying power f_0 should be large and f_e should be small. For higher resolution diameter of the objective should be large. 1/2 (b) $\frac{1}{v_0} - \frac{1}{u_0} = \frac{1}{f_0}$ $\frac{1}{v_0} = \frac{1}{f_0} + \frac{1}{u_0} = \frac{1}{1.25} - \frac{1}{2.5} = \frac{1}{2.5}$ $v_0 = 2.5 \text{ cm}$ 1/2 1/2 $\frac{1}{2}$ $L = |f_0| + |f_e|$ (: $v_o = f_o$) = (2.5 + 5.0)cm = 7.5 cm 1/2

Foreign SET III Page 12 of 17

Final Draft

	0	OR .		
	(a) Three distinctive features between the patterns of interference and diffraction fringes.			
(b) Calculation of w	idth of slit.	2		
Interferen	ce	Diffraction	٦	
1. Width of central ma as that of the other	axima is same	Width of central maxima is more than of the other fringes.	1	
2. All bright fringes a intensity.	e of equal	2. Intensity of secondary maxima keeps on decreasing.	1	
3. Large number of fr	nges.	3. Only a small number of fringes.	1	
(0	r any other rel	evant difference)		
$(b) y_n = \frac{n\lambda D}{d}$ $n\lambda D$		BANITOS	1/2	
(b) $y_n = \frac{NAD}{d}$ $d = \frac{n\lambda D}{y_n}$ $= \frac{1 \times 500 \times 10^{-6}}{2.5 \times 10^{-3}}$ $= 2 \times 10^{-4} \text{ m}$	<u>0X 1</u> m	a Zit	1/2	
$= 2.5 \times 10^{-3}$ $= 2 \times 10^{-4} \text{ m}$	(=0.2mm)	OFB,	1	5
a) Expression for to b) Calculation of wa		2 1+1		
a) $mvr = \frac{nh}{2\pi}$			1/2	
$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$				
$r = \frac{e^2}{4\pi\epsilon_0 m v^2}$				
$r = \frac{ze^2}{4\pi\epsilon_0 m \left(\frac{nh}{2\pi mr}\right)}$	2		1/2	
$\Rightarrow r = \frac{\epsilon_0 n^2 h^2}{\pi m e^2}$			1/2	

Foreign SET III Page 13 of 17

Final Draft 12/3/2014 4:26 PM

Potential energy U =
$$-\frac{1}{4\pi\epsilon_0} \cdot \frac{e^2}{r}$$

= $-\frac{me^4}{4\epsilon_0 n^2 h^2}$

$$KE = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)^2$$

$$=\frac{n^2h^2\pi^2m^2e^4}{8\pi^2m\epsilon_0{}^2n^4h^4}$$

$$KE = \frac{me^4}{8\epsilon_o^2 n^2 h^2}$$

$$TE = KE + PE$$

$$TE = KE + PE$$

$$= -\frac{me^4}{8\epsilon_o^2 n^2 h^2}$$
1/2

(Note: If a candidate does not use Bohr's postulates and writes the final expression for the energy in terms of r award 1 mark.)

b) Rydberg formula :For first member of Lyman series

$$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$\lambda = \frac{4}{3R}$$
1/2

For first member of Balmer Series
$$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$$

If full marks if the student calculates the value of
$$\lambda$$
 in the two

[Note: Award full marks if the student calculates the value of λ in the two cases by taking the value of $R = 1.097 \times 10^7 \text{m}^{-1}$

OR

- 1 a) Definition of (i) half life
 - (ii) average life

Relationship of half life & average life with decay constant

 $\frac{1}{2} + \frac{1}{2}$

- b) Calculation of time taken
- (a) Definition:
 - Half life: Time taken by a radioactive nuclei to reduce to half (i) of the initial number of radio nuclei.

Foreign SET III Page 14 of 17

Final Draft

12/3/2014 4:26 PM

 $\frac{1}{2}$

1/2 $\frac{1}{2}$

	1	Г
(ii) Average life – Ratio of total life time of all radioactive nuclei,	1	
to the total number of nuclei in the sample.	1	
Relation between half life and decay constant:		
$T_{1/2} = \frac{0.693}{\lambda}$	1/2	
Relation between average life and decay constant $\tau = \frac{1}{\lambda}$	1/2	
(b)		
(b) $N = N_o e^{-\lambda t}$ $\frac{3}{4} N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$		
3 (0.2465)+	1/2	
$\frac{1}{4}N_o = N_o e^{-(0.3465)t}$, 2	
(0.3465)t 4		
$e^{(0.3403)t} = \frac{1}{3}$	1/2	
$0.3465 \times t = log_e(^4/_3)$		
$= 2.303[\log 4 - \log 3]$		
= 2.303[0.6020 - 0.4771]	1/2	
$= 2.303 \times 0.1249$		
2.303 ×0.1249		
$t = \frac{2.303 \times 0.1249}{0.3465}$		
1,2		
$\therefore t = 0.83 \text{ days or } 19.92 \text{ hours}$	1/2	
BK		
Alternatively:		
Also accept if the student takes $N=25\%$ $N_0=\frac{1}{4}$ N_0 and does the calculations as		
follows.		
) v		
$T_{\frac{1}{2}} = \frac{0.693}{\lambda} = \frac{0.693}{0.3465} = 2 \text{ days}$	1/2	
$\frac{1}{2}$ λ 0.3465 λ 2 days	72	
No.		
$N = = \frac{N_0}{2^n}$		
Time taken to reduce to $50\% = 2$ days	1/4	
or $\frac{25}{100} = \frac{1}{2^n}$ (one half)	1/2	
100 2"		
$\Rightarrow n=2$ Additional time taken		
to reduce to (one fourth) 25% - 2days	1/	
But $\frac{t}{-} = n$,	1/2	
But $\frac{t}{T_{\frac{1}{2}}} = n$, $\Rightarrow t = 4 \text{ days}$ \therefore Total time taken to reduce to one fourth (25%) = 2±2days		
$\Rightarrow t = 4 \text{ days}$: Total time taken to reduce to one fourth		
$\mathcal{J} \qquad (25\%)=2+2 \text{days} = 4 \text{days}$	1/2	5
	l	<u> </u>

Foreign SET III Page 15 of 17

Final Draft

1/2
1,
1/2
1/2
1/2
1
1/2
1
1/
1/2
1

Foreign SET III Page 16 of 17

Final Draft

(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.	1	
$I = neAv_d$ $= neA \frac{eE}{\tau} \tau$	1/2	
$I = neAv_d$ = $neA\frac{eE}{m}\tau$ ∴ current density $J = \frac{I}{A} = \frac{ne^2E\tau}{m}$	1/2	
(b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10 A$	1/2	
∴Potential drop across the 2Ω resistor =20V Therefore Potential across parallel combination of 40Ω and $10\Omega = 80$ V Current through 5Ω ; $I = \frac{80}{10}$ A= 8A ∴Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320$ W	1/2 1/2 1 1/2	5