रोल नं.
Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे
- Please check that this question paper contains $\mathbf{1 5}$ printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains $\mathbf{3 0}$ questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

QB365-Question Bank Software

सामान्य निर्देश:
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न-पत्र में कुल 30 प्रश्न हैं। प्रश्न 1 से 8 तक के प्रश्न अति-लघुउत्तरीय प्रश्न हैं और प्रत्येक एक अंक का है।
(iii) प्रश्न 9 से 18 में प्रत्येक प्रश्न दो अंक का है, प्रश्न 19 से 27 में प्रत्येक प्रश्न तीन अंक का है और प्रश्न 28 से 30 में प्रत्येक प्रश्न पाँच अंक का है ।
(iv) तीन अंकों वाले प्रश्नों में से एक मूल्यपरक प्रश्न है ।
(v) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है । तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और पाँच अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है ।
(vi) कैलकुलेटर के उपयोग की अनुमति नहीं है। तथापि यदि आवश्यक हो तो आप लघुगणकीय सारणी का प्रयोग कर सकते हैं।
(vii) जहाँ आवश्यक हो आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~mA}^{-1} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \\
& \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

General Instructions :

(i) All questions are compulsory.
(ii) There are $\mathbf{3 0}$ questions in total. Questions No. 1 to $\mathbf{8}$ are very short answer type questions and carry one mark each.
(iii) Questions No. 9 to 18 carry two marks each, questions 19 to 27 carry three marks each and questions $\mathbf{2 8}$ to $\mathbf{3 0}$ carry five marks each.
(iv) One of the questions carrying three marks weightage is value based question.
(v) There is no overall choice. Question Bank Software an internaf choice has been provided in one question of two marks, one question of three marks and all three questions of five marks each weightage. You have to attempt only one of the choices in such questions.
(vi) Use of calculators is not permitted. However, you may use log tables if necessary.
(vii)

You may use the following values of physical constants wherever necessary:

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1 \cdot 6 \times 10^{-19} \mathrm{C} \\
& \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~mA}^{-1} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \\
& \mathrm{~m}_{\mathrm{e}}=9 \cdot 1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

1. अनन्त लम्बाई के दो धारावाही समान्तर चालकों के बीच बेल की संकल्पना का उपयोग करते हुए एक ऐम्पियर धारा की परिभाषा दीजिए।
Using the concept of force between two infinitely long parallel current carrying conductors, define one ampere of current.
2. $5 \times 10^{19} \mathrm{~Hz}$ आवृत्ति की तरंग विद्युत्-चुम्बकीय स्पेक्ट्रम के किस भाग से संबंध रखती है ?

To which part of the electromagnetic spectrum does a wave of frequency $5 \times 10^{19} \mathrm{~Hz}$ belong?
3. दो समान गेंदें जिन पर ' q ' कूलॉम के समान धनावेश हैं समान लम्बाई की दो विद्युत्रोधी डोरियों से निलंबित हैं । इनके बीच लगने वाले बल पर क्या प्रभाव होगा जब इन दोनों गेंदों के बीच कोई प्लास्टिक की चादर रख दी जाए ?

Two equal balls having equal positive charge ' q ' coulombs are suspended by two insulating strings of equal length. What would be the effect on the force when a plastic sheet is inserted between the two ?
4. प्रकाश के फ़ोटॉन चित्रण के आधार पर विकिरण की तीव्रता को परिभाषित कीजिए । इसका एस.आई. (S.I.) मात्रक लिखिए ।
Define intensity of radiation on the basis of photon picture of light. Write its S.I. unit.
5. किसी तार में B से A दिशा की ओर प्रवाहित विद्युत् धारा घट रही है । चित्र में दर्शाए अनुसार इस तार के ऊपर स्थित किसी धातु के लूप (पाश) में प्रेरित धारा की दिशा ज्ञात कीजिए ।

The electric current flowing in a wire in the direction from B to A is decreasing. Find out the direction of the induced current in the metallic loop kept above the wire as shown.

6. नाभिकीय β-क्षय में न्यूट्रिनों का संसूचन प्रायोगिक रूप में केठिन क्यों पाया जाता है ?

Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?
7. d.c. वोल्टता की तुलना में a.c. वोल्टता के उपयोग को प्राथमिकता क्यों दी जाती है ? दो कारण दीजिए।

Why is the use of a.c. voltage preferred over d.c. voltage ? Give two reasons.
8. 1.25 अपवर्तनांक के पारदर्शी पदार्थ से बने किसी उभयोत्तल लेंस को 1.33 अपवर्तनांक के जल में डुबोया गया है । क्या यह लेंस अभिसारी के रूप में व्यवहार करेगा अथवा अपसारी के रूप में ? कारण दीजिए ।

A biconvex lens made of a transparent material of refractive index 1.25 is immersed in water of refractive index $1 \cdot 33$. Will the lens behave as a converging or a diverging lens? Give reason.

QB365-Question Bank Software

9. परमाणु के रदफफोर्ड मांडल का उपयोग करते हुए हाइड्रोजन परमाणु में इलेक्ट्रॉन की कुल ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए। इलेक्ट्रॉन की कुल ऊर्जा ऋणात्मक होने का क्या अर्थ है ?

अथवा

बोर के परमाणु मॉडल के अभिगृहीतों का उपयोग करके इलेक्ट्रॉन की n वीं कक्षा की त्रिज्या के लिए व्यंजक व्युत्पन्न कीजिए । इस प्रकार बोर की त्रिज्या के लिए व्यंजक प्राप्त कीजिए ।

Using Rutherford model of the atom, derive the expression for the total energy of the electron in hydrogen atom. What is the significance of total negative energy possessed by the electron?

OR

Using Bohr's postulates of the atomic model, derive the expression for radius of $\mathrm{n}^{\text {th }}$ electron orbit. Hence obtain the expression for Bohr's radius.
10. धारिता C के किसी समान्तर पट्टिका संधारित्र को विभव V तक आवेशित किया गया। इसके पश्चात् इसे समान धारिता के किसी अन्य संधारित्र, जो आवेशित नहीं है, से संयोजित किया जाता है । संयुक्त निकाय में संचित ऊर्जा और आरम्भ में एकल संधारित्र में संचित ऊर्जा का अनुपात ज्ञात कीजिए।

A parallel plate capacitor of capacitance C is charged to a potential V. It is then connected to another uncharged capacitor having the same capacitance. Find out the ratio of the energy stored in the combined system to that stored initially in the single capacitor.
11. किसी समान्तर पट्टिका संधारित्र के आवेशित होने के प्रकरण पर विचार करते हुए यह दर्शाइए कि विस्थापन धारा के कारण पद को सम्मिलित करने के लिए ऐम्पियर के परिपथीय नियम को किस प्रकार व्यापक बनाने की आवश्यकता होती है ।

Considering the case of a parallel plate capacitor being charged, show how one is required to generalize Ampere's circuital law to include the term due to displacement current.

QB365-Question Bank Software

12. किसी सेल जिसका विद्युत्-वाहक बल (emf) ' E ' तथा आन्तरिक प्रतिरोध ' r ' है, किसी चर प्रतिरोधक ' R ' के सिरों से संयोजित किया गया है । सेल की टर्मिनल वोल्टता ' V ' और धारा ' T ' के बीच विचरण को दर्शाने के लिए ग्राफ़ खींचिए। इस ग्राफ़ का उपयोग करके यह दर्शाइए कि सेल का विद्युत्-वाहक बल (emf) और इसके आन्तरिक प्रतिरोध का निर्धारण किस प्रकार किया जा सकता है ।
A cell of emf ' E ' and internal resistance ' r ' is connected across a variable resistor ' R '. Plot a graph showing variation of terminal voltage ' V ' of the cell versus the current ' I '. Using the plot, show how the emf of the cell and its internal resistance can be determined.
13. परिपथ आरेख की सहायता से किसी $p-n$ संधि डायोड के अर्ध-तरंग दिष्टकारी के रूप में कार्य करने की व्याख्या कीजिए ।
Explain, with the help of a circuit diagram, the working of a p-n junction diode as a half-wave rectifier.
14. किसी ताँबे के तार, जिसकी अनुप्रस्थ-काट का क्षेत्रफल $1.0 \times 10^{-7} \mathrm{~m}^{2}$ है तथा जिससे 1.5 A धारा प्रवाहित हो रही है, में चालन इलेक्ट्रॉनों की औसत अपवाह चाल का आकलन कीजिए । यह मानिए कि चालन इलेक्ट्रॉनों का घनत्व $9 \times 10^{28} \mathrm{~m}^{-3}$ है ।
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area $1.0 \times 10^{-7} \mathrm{~m}^{2}$ carrying a current of 1.5 A . Assume the density of conduction electrons to be $9 \times 10^{28} \mathrm{~m}^{-3}$.
15. किसी समद्विबाहु समकोण प्रिज़्म ABC के फलक AB पर दर्शाए अनुसार एकवर्णी प्रकाश की दो किरणें अभिलम्बवत् आपतन करती हैं । काँच के प्रिज़्म के अपवर्तनांक किरणों ' 1 ' व ' 2 ' के लिए क्रमश: 1.35 और 1.45 हैं । इन किरणों का प्रिज़्म में प्रवेश करने के पश्चात् का पथ आरेखित कीजिए ।

QB365 - Question Bank Software

Two monochromatic rays of light are incident normally on the face $A B$ of an isosceles right-angled prism ABC . The refractive indices of the glass prism for the two rays ' 1 ' and ' 2 ' are respectively 1.35 and $1 \cdot 45$. Trace the path of these rays after entering through the prism.

16. संचार प्रणाली में निम्नलिखित के कार्य लिखिए :
(i) ट्रान्सड्यूसर
(ii) पुनरावर्तक

Write the functions of the following in communication systems :
(i) Transducer
(ii) Repeater
17. (i) अनुचुम्बकीय पदार्थ एवं (ii) प्रतिचुम्बकीय पदार्थ की उपस्थिति में चुम्बकीय क्षेत्र रेखाओं का व्यवहार आरेख खींचकर दर्शाइए । इस विभेदनकारी लक्षण की व्याख्या किस प्रकार की जाती है ?

Show diagrammatically the behaviour of magnetic field lines in the presence of (i) paramagnetic and (ii) diamagnetic substances. How does one explain this distinguishing feature?
18. CE विन्यास में $\mathrm{n}-\mathrm{p}-\mathrm{n}$ ट्रांज़िस्टर प्रवर्धक का परिपथ आरेख खींचिए । किस अवस्था में यह ट्रांज़िस्टर प्रवर्धक के रूप में कार्य करता है ?

Draw a circuit diagram of n-p-n transistor amplifier in CE configuration.
Under what condition does the transistor act as an amplifier?

QB365-Question Bank Software

19. (a) ध्रुवण की परिघटना का उपयोग करते हुए यह दर्शाइए कि प्रकाश की अनुप्रस्थ प्रकृति का निदर्शन किस प्रकार किया जा सकता है ।
(b) दो पोलेरॉइडों P_{1} तथा P_{2} को इस प्रकार रखा गया है कि इनके पारित-अक्ष एक-दूसरे के लम्बवत् हों । तीव्रता I_{o} का अध्रुवित प्रकाश P_{1} पर आपतित है । किसी तीसरे पोलेरॉइड P_{3} को P_{1} और P_{2} के बीच इस प्रकार रखा गया है कि इसका पारित-अक्ष P_{1} के पारित-अक्ष से 30° का कोण बनाए। $\mathrm{P}_{1}, \mathrm{P}_{2}$ और P_{3} से गुज़रने वाले प्रकाश की तीव्रता निर्धारित कीजिए।
(a) Using the phenomenon of polarisation, show how transverse nature of light can be demonstrated.
(b) Two polaroids P_{1} and P_{2} are placed with their pass axes perpendicular to each other. Unpolarised light of intensity I_{o} is incident on P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its pass axis makes an angle of 30° with that of P_{1}. Determine the intensity of light transmitted through $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}.
20. दो कुण्डलियों के बीच 'अन्योन्य प्रेरकत्व' पद की परिभाषा लिखिए। दो लम्बे समाक्ष सोलेनॉइडों, जिनमें प्रत्येक की लम्बाई l तथा त्रिज्याएँ r_{1} और $r_{2}\left(r_{2} \gg r_{1}\right)$ हैं, के युगल के अन्योन्य प्रेरकत्व के लिए व्यंजक प्राप्त कीजिए। इन दो सोलेनॉइडों में लपेटों की कुल संख्या क्रमश: N_{1} और N_{2} है ।

Define the term 'mutual inductance' between the two coils.
Obtain the expression for mutual inductance of a pair of long coaxial solenoids each of length l and radii r_{1} and $\mathrm{r}_{2}\left(\mathrm{r}_{2} \gg \mathrm{r}_{1}\right)$. Total number of turns in the two solenoids are N_{1} and N_{2} respectively.
21. निम्नलिखित के उत्तर दB365-Question Bank Software
(a) मीटर सेतु में प्रतिरोधकों के बीच संयोजनों को कॉपर की मोटी पट्टी का क्यों बनाया जाता है ?
(b) मीटर सेतु के तार पर सामान्यत: संतुलन बिन्दु को मध्य में प्राप्त करने को प्राथमिकता क्यों दी जाती है ?
(c) मीटर सेतु के तार के लिए किस पदार्थ का उपयोग किया जाता है और क्यों ?

अथवा

चित्र में दर्शाए अनुसार $\mathrm{R} \Omega$ का कोई प्रतिरोध विभवमापी से धारा लेता है। विभवमापी का कुल प्रतिरोध $\mathrm{R}_{\mathrm{o}} \Omega$ है । विभवमापी को V वोल्टता की आपूर्ति की जाती है । जब सर्पी सम्पर्क विभवमापी तार के मध्य में है, तब R के सिरों पर वोल्टता के लिए व्यंजक व्युत्पन्न कीजिए।

Answer the following :
(a) Why are the connections between the resistors in a meter bridge made of thick copper strips ?
(b) Why is it generally preferred to obtain the balance point in the middle of the meter bridge wire?
(c) Which material is used for the meter bridge wire and why?

OR

QB365-Question Bank Software

A resistance of $R \Omega$ draws current from a potentiometer as shown in the figure. The potentiometer has a total resistance $R_{0} \Omega$. A voltage V is supplied to the potentiometer. Derive an expression for the voltage across R when the sliding contact is in the middle of the potentiometer.

22. किसी 20 cm फ़ोकस दूरी के उत्तल लेंस को 20 cm वक्रता त्रिज्या के उत्तल दर्पण के समाक्ष रखा गया है । दोनों के बीच की दूरी 15 cm है । कोई बिन्दुकित बिम्ब उत्तल लेंस के सामने 60 cm दूरी पर रखा है । इस संयोजन द्वारा प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए । इस प्रतिबिम्ब की स्थिति और प्रकृति निर्धारित कीजिए

A convex lens of focal length 20 cm is placed coaxially with a convex mirror of radius of curvature 20 cm . The two are kept at 15 cm from each other. A point object lies 60 cm in front of the convex lens. Draw a ray diagram to show the formation of the image by the combination. Determine the nature and position of the image formed.
23. किसी श्रेणी LCR परिपथ पर कोई वोल्टता $\mathrm{V}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t}$ अनुप्रयुक्त की जाती है । एक चक्र में औसत क्षयित शक्ति के लिए व्यंजक व्युत्पन्न कीजिए ।
किस अवस्था में (i) यद्यपि परिपथ में विद्युत् धारा प्रवाहित हो रही है फिर भी शक्ति-क्षय नहीं होता, (ii) परिपथ में अधिकतम शक्ति-क्षय होता है ?

A voltage $\mathrm{V}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t}$ is applied to a series LCR circuit. Derive the expression for the average power dissipated over a cycle.

Under what condition is (i) no power dissipated even though the current flows through the circuit,
(ii) maximum power dissipated in the circuit?

QB365 - Question Bank Software

24. ऊर्जा बैंड आरेखों के आधार पर चालको, अर्धचालको और विद्युत्रोधियों के बीच किन्हीं दो विभेदनकारी लक्षणों को लिखिए।

Write any two distinguishing features between conductors, semiconductors and insulators on the basis of energy band diagrams.
25. पिछले कुछ समय से आरती अपनी बहन राधा की कुछ दोषपूर्ण शारीरिक गतियों, अस्थिरता और क्रियाकलापों में समन्वय में कमी का प्रेक्षण कर रही थी । वह यदा-कदा तीव्र सिरदर्द की शिकायत भी करती थी । आरती ने अपने माता-पिता से राधा की डाॅक्टरी-जाँच का सुझाव दिया । डॉक्टर ने राधा का गहन परीक्षण किया और यह निदान किया कि राधा ब्रेन-ट्यूमर से पीड़ित है ।
(a) आपके अनुसार आरती ने किन मूल्यों को प्रदर्शित किया ?
(b) रेडियोआइसोटोप किस प्रकार डॉक्टरों की ब्रेन-ट्यूमर का निदान करने में सहायता करते हैं ?

For the past some time, Aarti had been observing some erratic body movement, unsteadiness and lack of coordination in the activities of her sister Radha, who also used to complain of severe headache occasionally. Aarti suggested to her parents to get a medical check-up of Radha. The doctor thoroughly examined Radha and diagnosed that she has a brain tumour.
(a) What, according to you, are the values displayed by Aarti?
(b) How can radioisotopes help a doctor to diagnose brain tumour?
26. संचार के दो मूल ढंग (विधाएँ) लिखिए । आयाम मॉडुलन की प्रक्रिया की व्याख्या कीजिए । किसी व्यवस्था आरेख को खींचकर यह दर्शाइए कि किसी ज्यावक्रीय वाहक तरंग पर मॉडुलक सिग्नल के अध्यारोपण द्वारा किस प्रकार आयाम मॉडुलित सिग्नल प्राप्त किया जाता है ।
Write two basic modes of communication. Explain the process of amplitude modulation. Draw a schematic sketch showing how amplitude modulated signal is obtained by superposing a modulating signal over a sinusoidal carrier wave.

QB365 - Question Bank Software

27. कोई इलेक्ट्रॉन सूक्ष्मदर्शी 50 kV की वोल्टता द्वारा त्वरित इलेक्ट्रॉंनो का उपयोग करता है । इलेक्ट्रॉनों से संबद्ध दे-बॉग्ली तरंगदैर्घ्य निर्धारित कीजिए। अन्य कारकों, जैसे आंकिक द्वारक आदि को समान मानते हुए, किसी इलेक्ट्रॉन सूक्ष्मदर्शी की विभेदन क्षमता की तुलना किसी ऐसे प्रकाशिक सूक्ष्मदर्शी जिसमें पीले प्रकाश का उपयोग होता है, कैसे की जाती है ?
An electron microscope uses electrons accelerated by a voltage of 50 kV . Determine the de-Broglie wavelength associated with the electrons. Taking other factors, such as numerical aperture etc. to be same, how does the resolving power of an electron microscope compare with that of an optical microscope which uses yellow light?
28. वान्डे ग्राफ़ जनित्र का नामांकित आरेख खींचिए । यह दर्शाने के लिए कि, किस प्रकार किसी बड़े गोले के भीतर किसी आवेशित छोटे गोले को रखकर बड़े गोले पर विशाल मात्रा में आवेश को स्थानान्तरित किया जा सकता है, इस जनित्र का कार्यकारी सिद्धान्त लिखिए । इस मशीन के उपयोग का उल्लेख कीजिए तथा इसकी सीमाएँ भी लिखिए-।

अथवा

(a) किसी एकसमान विद्युत्-क्षेत्र $\overrightarrow{\mathrm{E}}$ की उपस्थिति में द्विध्रुव आघूर्ण $\overrightarrow{\mathrm{p}}$ वाले किसी द्विध्रुव पर कार्य करने वाले बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए ।
(b) चित्र में दर्शाए अनुसार दो खोखले संकेन्द्रीं गोलों S_{1} तथा S_{2} पर विचार कीजिए जिन पर क्रमश: 2 Q तथा 4 Q आवेश परिबद्धि है । (i) इनसे गुज़रने वाले विद्युत् फ्लक्स का अनुपात ज्ञात कीजिए । (ii) यदि S_{1} के भीतरी स्थान में वायु के स्थान पर परावैद्युतांक ' ε_{r} ' का कोई माध्यम भर दिया जाए, तो गोले S_{1} से गुज़रने वाले विद्युत् फ्लक्स में क्या परिवर्तन होगा ? आवश्यक व्यंजक व्युत्पन्न कीजिए ।

QB365 - Question Bank Software

Draw a labelled diagram of Van de Graaff generator. State its working principle to show how by introducing a small charged sphere into a larger sphere, a large amount of charge can be transferred to the outer sphere. State the use of this machine and also point out its limitations.

OR

(a) Deduce the expression for the torque acting on a dipole of dipole moment \vec{p} in the presence of a uniform electric field $\overrightarrow{\mathrm{E}}$.
(b) Consider two hollow concentric spheres, S_{1} and S_{2}, enclosing charges $2 Q$ and $4 Q$ respectively as shown in the figure. (i) Find out the ratio of the electric flux through them. (ii) How will the electric flux through the sphere S_{1} change if a medium of dielectric constant ' ε_{r} ' is introduced in the space inside S_{1} in place of air ? Deduce the necessary expression.

29. (a) यंग के द्विझिरी प्रयोग में, संक्षेप में वर्णन कीजिए कि द्विझिरी के सामने स्थित पर्दे पर चमकीली और काली धारियाँ (फ्रिंज) किस प्रकार प्राप्त की जाती हैं । इस प्रकार फ्रिंज चौड़ाई के लिए व्यंजक प्राप्त कीजिए ।
(b) यंग के द्विझिरी प्रयोग में निम्निष्ठ और उच्चिष्ठ की तीव्रताओं का अनुपात $9: 25$ है । दोनों झिरीयों की चौड़ाइयों का अनुपात ज्ञात कीजिए ।

अथवा
(a) संक्षेप में वर्णन कीजिए कि किसी एकवर्णी प्रकाश स्रोत द्वारा प्रदीप्त किसी एकल पतली झिरी के कारण किसी पर्दे पर विवर्तन पैटर्न किस प्रकार प्राप्त किया जाता है । इस प्रकार द्वितीयक उच्चिष्ठ और द्वितीयक निम्निष्ठ की कोणीय चौड़ाई के लिए शर्तें प्राप्त कीजिए ।

QB365 - Question Bank Software

(b) $2 \times 10^{-6} \mathrm{~m}$ द्वारक की एकल झ़री द्वारा होने वाल विवर्तन का अध्ययन करने के लिए बारी-बारी से सोडियम के प्रकाश की 590 nm और 596 nm की दो तरंगदैर्घ्यों का उपयोग किया गया । झिरी और पर्दे के बीच की दूरी 1.5 m है। दोनों प्रकरणों में प्राप्त विवर्तन पैटर्नों में पहले उच्चिष्ठ की स्थितियों के बीच पृथकन परिकलित कीजिए।
(a) In Young's double slit experiment, describe briefly how bright and dark fringes are obtained on the screen kept in front of a double slit. Hence obtain the expression for the fringe width.
(b) The ratio of the intensities at minima to the maxima in the Young's double slit experiment is $9: 25$. Find the ratio of the widths of the two slits.

OR

(a) Describe briefly how a diffraction pattern is obtained on a screen due to a single narrow slit illuminated by a monóchromatic source of light. Hence obtain the conditions for the angular width of secondary maxima and secondary minima.
(b) Two wavelengths of sodium light of 590 nm and 596 nm are used in turn to study the diffraction taking place at a single slit of aperture $2 \times 10^{-6} \mathrm{~m}$. The distance between the slit and the screen is 1.5 m . Calculate the separation between the positions of first maxima of the diffraction pattern obtained in the two cases.
30. (a) चुम्बकीय क्षेत्र में किसी आवेशित कण की परिक्रमण आवृत्ति के लिए व्यंजक व्युत्पन्र कीजिए और यह दर्शाइए कि यह आवृत्ति कण के वेग अथवा उसकी ऊर्जा पर निर्भर नहीं है ।
(b) साइक्लोट्रॉन का व्यवस्था आरेख खींचिए । इसकी संरचना का आवश्यक विस्तृत विवरण देते हुए व्याख्या कीजिए कि आवेशित कणों को त्वरित करने के लिए इसका उपयोग किस प्रकार किया जाता है ।

अथवा

(a) चल कुण्डली गैल्वेनोमीटर का नामांकित आरेख खींचिए । इसके सिद्धान्त और कार्यप्रणाली का संक्षेप में वर्णन कीजिए ।

QB365 - Question Bank Software

(b) निम्नलिखित के उत्तर दीजिए :
(i) गैल्वेनोमीटर की कुण्डली के बीच नर्म लोहे के बेलनाकार क्रोड को रखना क्यों आवश्यक है ?
(ii) किसी गैल्वेनोमीटर की धारा सुग्राहिता में वृद्धि करने का तात्पर्य यह नहीं है कि उसकी वोल्टता सुग्राहिता में भी अनिवार्यतः वृद्धि हो जाएगी । कारण देते हुए व्याख्या कीजिए।
(a) Deduce an expression for the frequency of revolution of a charged particle in a magnetic field and show that it is independent of velocity or energy of the particle.
(b) Draw a schematic sketch of a cyclotron. Explain, giving the essential details of its construction, how it is used to accelerate the charged particles.

OR

(a) Draw a labelled diagram of a moving coil galvanometer. Describe briefly its principle and working.
(b) Answer the following :
(i) Why is it necessary to introduce a cylindrical soft iron core inside the coil of a galvanometer?
(ii) Increasing the current sensitivity of a galvanometer may not necessarily increase its voltage sensitivity. Explain, giving reason.

MARKING SCHEME

SET 55/1

Q. No	Expected Answer / Value Points	Marks	Total Marks
1.	Definition : One ampere is the value of steady current which when maintained in each of the two very long, straight, parallel conductors of negligible cross section and placed one metre apart in vaccum, would produce on each of these conductors a force equal of $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ of its length. Alternatively If the student writes $\mathrm{F}=\frac{\mu_{o}}{2 \pi} \frac{I_{1} I_{2}}{R} \mathrm{~L}$ and says that when $I_{1}=I_{2}=1$ ampere $\mathrm{R}=1$ meter and $\mathrm{L}=1$ meter, then $\mathrm{F}=2 \times 10^{-7} \mathrm{~N}$ Award full 1 mark Alternatively If the student draws any one of the two diagram, as shown,	1	1
2.	X - rays $/ \gamma$-rays	1	1
3.	Force decreases	1	1
4.	Intensity of radiation depends on the number of photons incident per unit area per unit time. [Note: Also accept the definition: 'number of quanta of radiation per unit area per unit time'. Also accept if the student writes: All photons, of a particular frequency, have the same kinetic energy and momentum, irrespective of the intensity of incident radiation. Alternatively The amount of light energy / Photon energy, incident per metre square per second is called intensity of radiation SI Unit: W/m or $\mathrm{J} /\left(\mathrm{s}-\mathrm{m}^{2}\right)$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
5.	Clockwise Alternatively	1	1

Outside Delhi SET I Page 1 of 17

QB365-Question Bank Software

6.	Neutrinos are neutral (chargeless), (almost) massless particles that hardly interact with matter. Alternatively The neutrinos can penetrate large quantity of matter without any interaction OR Neutrinos are chargeless and (almost) massless particles.	1	1
7.	Any two of the following (or any other correct) reasons : i. AC can be transmitted with much lower energy losses as compared to DC ii. AC voltage can be adjusted (stepped up or stepped down) as per requirement. iii. AC current in a circuit can be controlled using (almost) wattless devices like the choke coil. iv. AC is easier to generate.	$1 / 2+1 / 2$	1
8.	As a diverging lens Light rays diverge on going from a rarer to a denser medium. [Alternatively Also accept the reason given on the basis of lens marker's formula.]	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
9.	As per Rutherford's model $\begin{aligned} & \frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r^{2}} \\ & \Rightarrow m v^{2}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r} \\ & \text { Total energy }=\text { P.E }+ \text { K.E. } \\ &=-\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r}+\frac{1}{2} m v^{2} \\ &=-\frac{1}{2} \cdot \frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r}=-\frac{1}{8 \pi \epsilon_{o}} \frac{z e^{2}}{r} \end{aligned}$ Negative Sign implies that Electron - nucleus form a bound system. Alternatively Electron - nucleus form an attractive system) OR Derivation of radius of nth orbit Bohr's radius For the electron, we have Bohr's Postulate $\left(m v r=\frac{n h}{2 \pi}\right)$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{o}} \frac{z e^{2}}{r^{2}}
\] \\
and \(m v r=\frac{n h}{2 \pi}\)
\[
\therefore m^{2} v^{2} r^{2}=\frac{n^{2} h^{2}}{4 \pi^{2}}
\] \\
and \(m v^{2} r=\frac{1}{4 \pi \epsilon_{o}} z e^{2}\)
\[
\therefore \mathrm{r}=\frac{\epsilon_{o} n^{2} h^{2}}{\pi z e^{2} m}
\] \\
Bohr's radius (for \(\mathrm{n}=1\)) \(=\epsilon_{o} \quad h^{2} / \pi z e^{2} m\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 10. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Formula for energy stored \& \(1 / 2\) \\
New value of capacitance \& \(1 / 2\) \\
Calculation of ratio \& 1 \\
\hline
\end{tabular} \\
Energy stored in a capacitor \(=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}\) (any one) \\
Capacitance of the (parallel) combination \(=\mathrm{C}+\mathrm{C}=2 \mathrm{C}\) \\
Here, total charge, Q, remains the same \\
\(\therefore\) initial energy \(=\frac{1}{2} \frac{Q^{2}}{C}\) \\
And final energy \(=\frac{1}{2} \frac{Q^{2}}{2 C}\) \\
\(\therefore \frac{\text { final energy }}{\text { initial energy }}=\frac{1}{2}\) \\
[Note : If the student does the correct calculations by assuming the voltage across the \\
(i) Parallel or (ii) Series combination to remain constant \((=\mathrm{V})\) and obtain the answers as (i) \(2: 1\) or (ii) \(1: 2\), award full marks]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline 11. \& | Statement of Ampere's circuital law $1 / 2$
 Showing inconsistency during the process of charging 1
 Displacement Current $1 / 2$ |
| :--- |
| According to |
| Ampere's circuital Law $\oint \vec{B} d \vec{l}=\mu_{0} I$ |
| (a) |
| (b) |
| (c) |
| Applying ampere's circuital law to fig (a) we see that, during charging, the right hand side in Ampere's circuital law equals $\mu_{0} I$ |
| However on applying it to the surfaces of the fig (b) or fig (c), the right hand side is zero. | \& $1 / 2$

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

QB365-Question Bank Software

	Hence, there is a contradiction. We can remove the contradiction by assuming that there exists a current (associated with the changing electric field during charging), known as the displacement current. When this current ($=\frac{d \phi_{E}}{d t}$) is added on the right hand side, Ampere's circuital law, the inconsisitency disappears. It was, therefore necessary, to generalize the Ampere's circuital law, as $\oint \vec{B} d \vec{l}=\mu_{0} I_{c}+\mu_{0} \in_{o} \frac{d \Phi_{E}}{d t}$ [Note : If the student does the reasoning by using the (detailed) mathematics, relevant to displacement current, award full 2 marks]	1/2	2
12.	Relation between V and I $1 / 2$ Graph $1 / 2$ Determination of emf and internal resistance $1 / 2+1 / 2$ The relation between V and I is $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$ Hence, the graph, between V and I, has the form shown below. For point A, I=0, Hence, $\mathrm{V}_{\mathrm{A}}=\mathrm{E}$ For point B, V=0, Hence, $\mathrm{E}=\mathrm{I}_{\mathrm{B}} \mathrm{r}$ Therefore, $\mathrm{r}=\frac{E}{I_{B}}$ Alternatively: emf (E) equals the intercept on the vertical axis. Internal resistance (r) equals the negative of the slope of the graph.	$1 / 2$ $1 / 2$ $1 / 2$	2
13.	Circuit diagram 1 Working 1	1	

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Working: \\
During one half of the input AC, the diode is forward biased and a current flows through \(\mathrm{R}_{\mathrm{L}}\). \\
During the other half of the input AC, the diode is reverse biased and no current flows through the load \(\mathrm{R}_{\mathrm{L}}\). \\
Hence, the given AC input is rectified \\
[Note : If the student just draws the waveforms, for the input AC voltage and output voltage (without giving any explanation) \\
(award \(1 / 2\) mark only for "working")
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 14. \& \begin{tabular}{|ll|}
\hline Formula \& \(1 / 2\) \\
Substitution and calculation \& \(1 / 2+1\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\& \mathrm{I}=\text { neA } \mathrm{V}_{\mathrm{d}} \\
\& \mathrm{~V}_{\mathrm{d}}=\frac{I}{\text { neA }}=\frac{1.5}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.0 \times 10^{-7}} \mathrm{~m} / \mathrm{s} \\
\& =1.048 \times 10^{-3} \mathrm{~m} / \mathrm{s}(\approx 1 \mathrm{~mm} / \mathrm{s})
\end{aligned}
\] \& \(1 / 2\)
\(1 / 2\)

1 \& 2

\hline 15. \& | Tracing of Path of Ray 1 1
 Tracing of Path of Ray 2 1 |
| :--- |
| [Note : If the student just writes (without drawing any diagram) that angle of incidence for both rays ' 1 ' and ' 2 ' on face AC equals 45°, and says that it is less than critical angle for ray ' 1 ' (which therefore gets refracted) and more than critical angle for ray ' 2 ' (which undergoes total internal reflection), award only $1 / 2+1 / 2$ marks.] | \& 1 \& 2

\hline 16. \& | Function of Transducer 1
 Function of Repeater 1 |
| :--- |
| Transducer : Any device that converts one form of energy to another. Repeater : A repeater accepts the signal from the transmitter, amplifies and retransmits it to the receiver. | \& 1

1 \& 2

\hline
\end{tabular}

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline 17. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Diagrams \& \(1 / 2+1 / 2\) \\
Explanations \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
A paramagnetic material tends to move from weaker to stronger regions of the magnetic field and hence increases the number of lines of magnetic field passing through it. \\
[Alternatively: A paramagnetic material, dipole moments are induced in the direction of the field.] \\
A diamagnetic material tends to move from stronger to weaker regions of the magnetic field and hence, decreases the number of lines of magnetic field passing through it. \\
[Alternatively: A diamagnetic material, dipole moments are induced in the opposite direction of the field.] \\
[Note: If the student just writes that a paramagnetic material has a small positive susceptibility \((0<\mathrm{X}<\varepsilon)\) and a diamagnetic material has a negative susceptibility \((-1 \leq X<0)\), award the \(1 / 2\) mark for the second part of the question.]
\end{tabular} \& 1/2 \& 2 \\
\hline 18. \& \begin{tabular}{l}
\begin{tabular}{|lll|}
\hline \begin{tabular}{l}
Circuit diagram \\
Condition
\end{tabular} \& \& 5 \\
\hline
\end{tabular} \\
Condition : The transistor must be operated close to the centre of its active region. \\
Alternatively \\
The base- emitter junction of the transistor must be (suitably) forward biased and the collector - emitter junction must be (suitably) reverse biased.
\end{tabular} \& \(11 / 2\)

$1 / 2$ \& 2

\hline
\end{tabular}

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline 19. \& \begin{tabular}{l}
a) Demonstration of transverse nature of light \\
b) Calculation of intensity through \(\mathrm{P}_{1} \mathrm{P}_{2} \& \mathrm{P}_{3}\) \\
a) \\
Light from the sodium lamp passing through the single Polaroid sheet (\(\mathrm{P}_{1}\)) does not show any variation in intensity when this sheet is rotated. \\
However, if the light, transmitted by \(\mathrm{P}_{1}\), is made to pass through another Polaroid sheet \(\left(\mathrm{P}_{2}\right)\) the light intensity, coming out of \(\mathrm{P}_{2}\), varies from a maximum to zero, and again to maximum, when \(\mathrm{P}_{2}\) is rotated. \\
These observations are consistent only with the transverse nature of light waves. \\
b) Intensity of light transmitted through \(\mathrm{P}_{1}=\mathrm{I}_{0} / 2\) \\
Intensity of light transmitted through \(\mathrm{P}_{3}=\left(\mathrm{I}_{0} \nmid 2\right) \times \cos ^{2} 30^{\circ}\)
\[
=3 \mathrm{I}_{0} / 8
\] \\
Intensity of light transmitted through \(\mathrm{P}_{2}=\frac{3}{8} I_{o} \cos ^{2} 60^{\circ}\)
\[
=\frac{3}{32} I_{o}
\] \\
[Note : If the student takes the intensity of light transmitted through \(\mathrm{P}_{1}\) as \(I_{o}\) and calculates the intensity through \(\mathrm{P}_{3}\) and \(\mathrm{P}_{2}\) as \(\frac{3}{4} I_{o}\) and \(\frac{3}{16} I_{o}\) award \(1 / 2+1 / 2=1\) mark for part (b)]
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 20. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Definition of mutual induction \& 1 \\
Obtaining the expression \& 2 \\
\hline
\end{tabular} \\
Mutual inductance, between a pair of coils, equals the magnetic flux, linked with one of them, due to a unit current flowing in the other. \\
Alternatively \\
The mutual inductance, for a pair of coils, equals the emf induced, in one of them, when the current in the other coil is changing at a unit rate.
\end{tabular} \& 1

$1 ⁄ 2$ \&

\hline
\end{tabular}

QB365-Question Bank Software

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline 22. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Ray diagram \& 1 \\
Nature of final image \& \(1 / 2\) \\
Position of final image \& \(11 / 2\) \\
\hline
\end{tabular} \\
For the convex lens
\[
\begin{aligned}
\& \mathrm{u}=-60 \mathrm{~cm}, \mathrm{f}=+20 \mathrm{~cm} \\
\& \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \text { gives } \mathrm{v}=+30 \mathrm{~cm}
\end{aligned}
\] \\
For the convex mirror
\[
\mathrm{u}=+(30-15) \mathrm{cm}=15 \mathrm{~cm}, \mathrm{f}=+\frac{20}{2} \mathrm{~cm}=10 \mathrm{~cm}
\] \\
\(\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\) gives \(\mathrm{v}=+30 \mathrm{~cm}\) \\
Final image is formed at the distance of 30 cm from the convex mirror (or 45 cm from the convex lens) to the right of the convex mirror. The final image formed is a virtual image.
\end{tabular} \& 1

$11 / 2$

1
$1 / 2$

$1 / 2$
$1 / 2$ \& 3

\hline 23. \& | $\begin{array}{ll} \text { Deriving the expression for average power } & 2 \\ \text { Condition for no power dissipation } & 1 / 2 \\ \text { Condition for maximum power dissipation } & 1 / 2 \end{array}$ |
| :--- |
| Applied voltage $=V_{0} \sin \omega t$ |
| Current in the circuit $=\mathrm{I}_{\mathrm{o}} \sin (\omega t-\phi)$ |
| where ϕ is the phase lag of the current with respect to the voltage applied, |
| Hence instantaneous power dissipation $\begin{aligned} & =V_{0} \sin \omega t \times \mathrm{I}_{0} \sin (\omega t-\phi) \\ & =\frac{V_{0} I_{0}}{2}[2 \sin \omega t \cdot \sin (\omega t-\phi] \\ & =\frac{V_{0} I_{0}}{2}[\cos \phi-\cos (2 \omega t-\phi] \end{aligned}$ |
| Therefore, average power for one complete cycle $=\text { average of }\left[\frac{V_{0} I_{0}}{2}[\cos \phi-\cos (2 \omega t-\phi]]\right.$ |
| The average of the second term over a complete cycle is zero . |
| Hence, average power dissipated over one complete cycle $=\frac{V_{0} I_{0}}{2} \cos \phi$ |
| [Note : Please also accept alternative correct approach.] | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

QB365-Question Bank Software

	Conditions (i) No power is dissipated when $\mathrm{R}=0$ (or $\phi=90^{\circ}$) [Note: Also accepts if the student writes 'This condition cannot be satisfied for a series LCR circuit".] (ii) Maximum power is dissipated when $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ or $\omega L=\frac{1}{\omega C}($ or $\phi=0)$	$1 / 2$ $1 / 2$	3
24.	Energy band diagrams $11 / 2$ Two distinguishing features $11 / 2$ (ii) (b) (c) Two distinguishing features: (i) In conductors, the valency bandand conduction band tend to overlap (or nearly overlap) while in insulators they are seperated by a large energy gap and in semiconductors are separated by a small energy gap. (ii) The conduction band, of a conductor, has a large number of electrons available for electrical conduction. However the conduction band of insulators is almost empty while that of the semi- conductor has only a (very) small number of such electrons avilable for electrical conduction.	$1 / 2$ $1 / 2+1 / 2$ 1 $1 / 2$	3
25.	Values displayed 2 Diagnosis 1 (a) keen observer/ helpful/ concerned / responsible/ respectful towards elders. (Any two) (b) The doctor can trace and observe, the difference between the movement of an appropriate radio- isotope through a normal brain and a brain having tumor in it. [Note : Also accept any other appropriate explanation.]	$1+1$ 1	3

QB365-Question Bank Software

\begin{tabular}{|c|c|c|c|}
\hline 26. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Two basic modes of communication \& \(1 / 2+1 / 2\) \\
Process of Amplitude Modulation \& 1 \\
Schematic Sketch \& 1 \\
\hline
\end{tabular} \\
Two basic modes of communication are \\
i. Point - to -point \\
ii. Broadcast \\
In Amplitude modulation the amplitude of a carrier wave is made to vary, with time, in the same way as the modulating signal varies with time
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1

1 \& 3

\hline 27. \& | $\begin{aligned} & \hline \begin{array}{ll} \hline \begin{array}{l} \text { Formula } \\ \text { Calculation of debroglie wavelength } \\ \text { Comparison } \end{array} & 2 \\ \lambda=\frac{1}{2} & 2 \\ \sqrt{2 m e V} & \text { or } \lambda=\frac{12.27}{\sqrt{V}} A^{0} \\ \lambda=\frac{h}{\sqrt{2}} \\ \therefore \lambda=\frac{6.63 \times 10^{-34}}{\sqrt{\left(2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 50 \times 10^{3}\right)}} \\ \lambda=5.33 \times 10^{-12} \mathrm{~m} \end{array} \\ & \end{aligned}$ |
| :--- |
| The resolving power of an electron microscope is much better than that of optical microscope. |
| [Note : If the student writes R.P $\alpha \frac{1}{\lambda}$, award this $1 / 2$ mark] | \& $1 / 2$

1

1
$1 / 2$ \& 3

\hline 28. \& | Diagram 2
 Principle and working 2
 Use and limitation $1 / 2+1 / 2$ |
| :--- |
| [Note : Award 1 mark only if the diagram is not labelled] | \& 2 \&

\hline
\end{tabular}

QB365-Question Bank Software

QB365-Question Bank Software

QB365-Question Bank Software

QB365-Question Bank Software

	$\begin{aligned} & \therefore \text { Seperation }=\frac{3(596-590) \times 10^{-9}}{2 \times 10^{-6}} \times 1.5 \mathrm{~m} \\ & =13.5 \mathrm{x} \times 10^{-3} \mathrm{~m}(=13.5 \mathrm{~mm}) \end{aligned}$	1	5
30.	(a) Expression for frequency Frequency Independent of ' v ' or energy (b) Sketch of cyclotron (a) When a particle of mass ' m ' and charge ' q ', moves with a velocity \mathbf{V}, in a uniform magnetic field \boldsymbol{B}, it experiences a force \boldsymbol{F} where $\vec{F}=q(\vec{v} \times \overrightarrow{B)}$ \therefore Centripetal force $\frac{m v^{2}}{r}=2 v B_{\perp}$ $\therefore r=\frac{m v}{q B_{\perp}}$ \therefore frequency $=\frac{v}{2 \pi r}=\frac{q B_{\perp}}{2 \pi m}$ \therefore It is independent of the velocity or the energy of the particle. Construction: The cyclotron is made up of two hollow semi-circular disc like metal containers, D_{1} and D_{2}, called dees. It uses crossed electric and magnetic fields. The electric field is provided by an oscillator of adjustable frequency. [Note: Award this mark even if the student labels the diagram properly without writing the details of the construction.] Working: In a cyclotron, the frequency of the applied alternating field is adjusted to be equal to the frequency of revolution of the charged particles in the magnetic field. This ensures that the particles get accelerated every time	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 1 1	

QB365-Question Bank Software

