SET - 3

Series	: SS	O/1					कोड नं.	56 /
							Code No.	
रोल नं.							परीक्षार्थी कोड को	उत्तर-पुस्ति
Roll No.							पर अवश्य लिखें ।	

नका के मुख-पृष्ठ पर अवश्य लिखे ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 12 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पस्तिका के मख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।

Sorios · SSO/1

- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पर्वाहन में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will only read the question paper and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सेद्धान्तिक) **CHEMISTRY** (Theory)

निर्धारित समय : 3 घण्टे। [अधिकतम अंक : 70 Time allowed: 3 hours 1 [Maximum Marks : 70

सामान्य निर्देश :

- **सभी** प्रश्न अनिवार्य हैं । *(i)*
- प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है । (ii)
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक निर्धारित हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघ्-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक निर्धारित हैं ।
- प्रश्न-संख्या 23 मल्याधारित प्रश्न है और इसके लिए 4 अंक निर्धारित हैं ।
- (vi) प्रश्न-संख्या 24 से 26 दीर्घ-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 5 अंक हैं।
- (vii) यदि आवश्यक हो तो **लॉग टेबल** का उपयोग कर सकते हैं । **कैलकुलेटर** के उपयोग की अनुमित **नहीं** है।

56/1/3/D 1 [P.T.O.

General Instructions:

- (i) All questions are compulsory.
- (ii) Q. no. 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Q. no. 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Q. no. 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Q. no. 23 is a value based question and carry 4 marks.
- (vi) Q. no. 24 to 26 are long answer questions and carry 5 marks each.
- (vii) Use log tables if necessary, use of calculators is not allowed.
- 1. $BaCl_2$ और KCl में से कौन ऋणात्मक चार्ज वाले कोलाइडी सॉल का स्कंदन अधिक प्रभावशाली ढंग से करेगा ? कारण दीजिए ।

Out of $BaCl_2$ and KCl, which one is more effective in causing coagulation of a negatively charged colloidal Sol? Give reason.

1

1

1

1

2. उस यौगिक का सूत्र क्या होगा जिसमें Y तत्त्व ccp जालक बनाता है और X चतुष्फलकीय रिक्ति का 1/3वाँ भाग घेरता है ?

What is the formula of a compound in which the element Y forms ccp lattice and atoms of X occupy 1/3rd of tetrahedral voids?

3. H_3PO_4 की क्षारकता क्या है ?

What is the basicity of H_3PO_4 ?

4. दिये गये यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

Write the IUPAC name of the given compound:

1

2

2

2

5. निम्न युग्म में कौन S_N^2 अभिक्रिया अधिक तीव्रता से करेगा और क्यों ?

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{Br} \ \operatorname{तथा} \ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_3} \\ | \\ \operatorname{Br} \end{array}$$

Which would undergo S_N^2 reaction faster in the following pair and why?

$$CH_{3} - CH_{2} - Br \text{ and } CH_{3} - C - CH_{3}$$

$$Br$$

6. राउल्ट नियम से धनात्मक विचलन से क्या तात्पर्य है ? एक उदाहरण दीजिए । धनात्मक विचलन के लिये $\Delta_{\rm mix} H$ का चिह्न क्या है ?

What is meant by positive deviations from Raoult's law? Give an example. What is the sign of $\Delta_{mix}H$ for positive deviation?

अथवा/OR

6. एजियोट्रोप्स को परिभाषित कीजिए । राउल्ट नियम से धनात्मक विचलन से प्राप्त एजियोट्रोप किस प्रकार का होता है ? एक उदाहरण दीजिए ।

Define azeotropes. What type of azeotrope is formed by positive deviation from Raoult's law? Give an example.

7. (a) सिल्वर क्लोराइड के जलीय विलयन के विद्युत अपघटन में कैथोड पर निम्न अभिक्रियाएँ होती हैं :

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$
 $E^{\circ} = +0.80 \text{ V}$

$$H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(g)$$
 $E^\circ = 0.00 \text{ V}$

उनके मानक अपचयन इलेक्ट्रोड विभव (E°) के मानों के आधार पर कैथोड पर किस अभिक्रिया की संभावना है और क्यों ?

(b) सीमांत मोलर चालकता को परिभाषित कीजिए । विद्युत् अपघट्य की चालकता सांद्रण के घटने के साथ क्यों कम होने लगती है ?

56/1/3/D 3 [P.T.O.

(a)	Following reaction	s occur	at	cathode	during	the	electrolysis	of	aqueous	silver
	chloride solution :									

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$
 $E^{\circ} = +0.80 \text{ V}$

$$H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(g)$$
 $E^{\circ} = 0.00 \text{ V}$

On the basis of their standard reduction electrode potential (E°) values, which reaction is feasible at the cathode and why?

- Define limiting molar conductivity. Why conductivity of an electrolyte solution (b) decreases with the decrease in concentration?
- संक्रमण तत्व क्या हैं ? संक्रमण तत्वों की दो विशेषताओं को लिखिए । 8. 2 What are the transition elements? Write two characteristics of the transition elements.
- कॉम्प्लेक्स $[Cr(NH_3)_2Cl_2(en)]Cl$ (en = ethylenediamine) का आई.यू.पी.ए.सी. नाम 9. (i) लिखिये ।
 - निम्न कॉम्प्लेक्स का सुत्र लिखिए : (ii)
 - पेन्टाऐमाइननाइटाइटो-o-कोबाल्ट (III). 2 Write down the IUPAC name of the following complex: (i)

2

Write the formula for the following complex: (ii) Pentaamminenitrito-o-Cobalt (III).

 $[Cr(NH_3)_2Cl_2(en)]Cl$ (en = ethylenediamine)

निम्न अभिक्रियाओं में प्रयुक्त अभिकारकों के नाम दीजिए : 10. Name the reagents used in the following reactions:

(i)
$$CH_3 - CO - CH_3 \xrightarrow{?} CH_3 - CH_3 - CH_3$$

OH

(ii)
$$C_6H_5 - CH_2 - CH_3 \xrightarrow{?} C_6H_5 - COO^-K^+$$

- निम्न बहुलकों के एकलकों के नाम व उनकी संरचनायें लिखिए : 11.
 - नायलॉन-6, 6 (i)
 - **PHBV** (ii)
 - (iii) नीओप्रीन 3

Write the names and structures of the monomers of the following polymers:

- Nylon-6, 6 (i)
- **PHBV** (ii)
- (iii) Neoprene

- 12. निम्न अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए:
 - (i) $CH_3 C = O$ (i) $H_2N NH_3$ (ii) $KOH/Glycol, \Delta$?
 - (ii) $C_6H_5 CO CH_3 \xrightarrow{\text{NaOH/I}_2} ? + ?$
 - (iii) $CH_3 COONa \xrightarrow{NaOH / CaO} ?$

3

Predict the products of the following reactions:

- (i) $CH_3 C = O \xrightarrow{(i) H_2N NH_3} CH_3$ (ii) KOH/Glycol, Δ ?
- (ii) $C_6H_5 CO CH_3 \xrightarrow{\text{NaOH/I}_2} ? + ?$
- (iii) $CH_3 COONa \xrightarrow{NaOH / CaO} ?$

- 13. निम्न रूपांतरण आप कैसे करेंगे ?
 - (i) फीनॉल को ऐनिसॉल में
 - (ii) प्रोपैन-2-ऑल को 2-मेथिलप्रोपैन-2-ऑल में
 - (iii) ऐनिलीन को फीनॉल में

3

How do you convert the following:

- (i) Phenol to anisole
- (ii) Propan-2-ol to 2-methylpropan-2-ol
- (iii) Aniline to phenol

अथवा/OR

13. (a) निम्न अभिक्रिया की क्रिया-विधि को लिखिए:

$$2CH_3CH_2OH \xrightarrow{\qquad \qquad } CH_3CH_2 - O - CH_2CH_3$$

(b) सैलिसिलिक ऐसिड के ऐसीटीलीकरण से सम्बद्ध समीकरण को लिखिए ।

3

(a) Write the mechanism of the following reaction:

$$2CH_3CH_2OH \xrightarrow{H^+} CH_3CH_2 - O - CH_2CH_3$$

(b) Write the equation involved in the acetylation of Salicylic acid.

[P.T.O.

- 14. (i) निम्न में से कौन डाईसैकेराइड है : स्टार्च, माल्टोस, फ्रक्टोस, ग्लूकोस ?
 - (ii) रेशेदार प्रोटीन और गोलाकार प्रोटीन में क्या अंतर है ?
 - (iii) बच्चों में किस विटामिन की कमी के कारण हड्डी में कुरूपता हो जाती है ?

3

3

- (i) Which one of the following is a disaccharide: Starch, Maltose, Fructose, Glucose?
- (ii) What is the difference between fibrous protein and globular protein?
- (iii) Write the name of vitamin whose deficiency causes bone deformities in children.
- 15. निम्न के कारण दीजिए:
 - (a) t-ब्यूटिल ब्रोमाइड की अपेक्षा n-ब्यूटिल ब्रोमाइड का क्वथनांक उच्चतर होता है।
 - (b) रैसेमिक मिश्रण प्रकाशकीय निष्क्रिय हैं।
 - (c) नाभिकस्नेही प्रतिस्थापन अभिक्रियाओं के प्रति हैलोएरीन्स की सक्रियता बढ़ जाती है यदि o/p पोजीशन पर नाइट्रो ग्रुप (–NO₂) उपस्थित हो ।

Give reasons:

- (a) n-Butyl bromide has higher boiling point than t-butyl bromide.
- (b) Racemic mixture is optically inactive.
- (c) The presence of nitro group (-NO₂) at o/p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions.
- 16. बेन्जीन के 49 g में बेन्जोइक अम्ल का 3.9 g घुलने पर हिमांक में 1.62 K का अवनमन हो जाता है । वैन्ट हाफ कारक को परिकलित कीजिए और विलेय के स्वभाव की प्रागुक्ति कीजिए (संगुणित या विघटित) $\bf 3$ (दिया गया : बेन्जोइक एसिड का मोल द्रव्यमान = $\bf 122$ g $\bf mol^{-1}$, बेन्जीन के लिये $\bf K_f = 4.9$ K kg $\bf mol^{-1}$)
 - 3.9 g of benzoic acid dissolved in 49 g of benzene shows a depression in freezing point of 1.62 K. Calculate the van't Hoff factor and predict the nature of solute (associated or dissociated).

(Given : Molar mass of benzoic acid = 122 g mol^{-1} , K_f for benzene = $4.9 \text{ K kg mol}^{-1}$)

- 17. (i) जिंक के परिष्करण करने की विधि के पीछे जो सिद्धान्त होता है उसका संकेत कीजिए ।
 - (ii) कॉपर के निष्कर्षण में सिलिका की क्या भूमिका होती है ?
 - (iii) व्यापारी लोह का विशुद्ध रूप लोह का कौन रूप है ?
 - (i) Indicate the principle behind the method used for the refining of zinc.
 - (iii) Which form of the iron is the purest form of commercial iron?

What is the role of silica in the extraction of copper?

56/1/3/D 6

(ii)

18.	मोलर द्रव्यमान 27 g $\mathrm{mol^{-1}}$ के साथ एक तत्व कोर लम्बाई $4.05 \times 10^{-8}~\mathrm{cm}$ वाली एक क्यूबिक यूनिट
	सेल बनाता है । यदि घनत्व $2.7~{ m g~cm^{-3}}$ हो, तो क्यूबिक यूनिट सेल का स्वरूप क्या है $?$

3

An element with molar mass 27 g mol⁻¹ forms a cubic unit cell with edge length 4.05×10^{-8} cm. If its density is 2.7 g cm⁻³, what is the nature of the cubic unit cell?

- 19. (a) आप निम्न को कैसे समझाएँगे ?
 - (i) लैंथैनोयड संकुचन की अपेक्षा ऐक्टिनोयड संकुचन अधिक है ।
 - (ii) संक्रमण धातुएँ रंगीन यौगिक बनाती हैं।
 - (b) निम्न समीकरण को पूर्ण कीजिए:

3

$$2MnO_4^- + 6H^+ + 5NO_2^- \longrightarrow$$

- (a) How would you account for the following:
 - (i) Actinoid contraction is greater than lanthanoid contraction.
 - (ii) Transition metals form coloured compounds.
- (b) Complete the following equation:

$$2MnO_4^- + 6H^+ + 5NO_2^- \longrightarrow$$

- 20. (i) कॉम्प्लेक्स $[Pt(NH_3)_2Cl_2]$ के ज्यामितीय समावयव को आरेखित कीजिए ।
 - (ii) क्रिस्टल फील्ड सिद्धान्त के आधार पर यदि $\Delta_{0} < P$ हो तो d^{4} का इलेक्ट्रॉन विन्यास लिखिए ।
 - (iii) कॉम्प्लेक्स $[Ni(CO)_4]$ का संकरण और चुम्बकीय प्रकृति लिखिए । (प.सं. Ni = 28)

3

- (i) Draw the geometrical isomers of complex $[Pt(NH_3)_2Cl_2]$.
- (ii) On the basis of crystal field theory, write the electronic configuration for d^4 ion if $\Delta_o < P$.
- (iii) Write the hybridization and magnetic behaviour of the complex $[Ni(CO)_4]$. (At.no. of Ni = 28)
- 21. निम्न सेल की 25 °C पर emf परिकलित कीजिए:

 $Fe \mid Fe^{2+}(0.001 \; M) \parallel H^{+}(0.01 \; M) \mid H_{2}(g) \; (1 \; bar) \mid Pt(s)$

$$E^{\circ}(Fe^{2+} \mid Fe) = -0.44 \text{ V} \quad E^{\circ}(H^{+} \mid H_{2}) = 0.00 \text{ V}$$

3

Calculate emf of the following cell at 25 °C:

Fe | Fe²⁺(0.001 M) || H⁺(0.01 M) | H₂(g) (1 bar) | Pt(s)

$$E^{\circ}(Fe^{2+} \mid Fe) = -0.44 \text{ V} \quad E^{\circ}(H^{+} \mid H_{2}) = 0.00 \text{ V}$$

56/1/3/D 7 [P.T.O.

- 22. निम्न अवलोकनों के लिये कारण दीजिए:
 - (i) चर्मशोधन के बाद चमड़ा सख्त हो जाता है ।
 - (ii) द्रव विरोधी सॉल की अपेक्षा द्रवस्नेही सॉल अधिक स्थायी होता है ।
 - (iii) जब हैबर प्रक्रम द्वारा अमोनिया बनाया जाता है तब CO को दूर रखना आवश्यक होता है ।

3

4

Give reasons for the following observations:

- (i) Leather gets hardened after tanning.
- (ii) Lyophilic sol is more stable than lyophobic sol.
- (iii) It is necessary to remove CO when ammonia is prepared by Haber's process.
- 23. एक प्रसिद्ध स्कूल के प्रिसिंपल श्री राय ने एक सेमिनार का आयोजन किया और उसमें उन्होंने बच्चों के अभिभावकों तथा और स्कूलों के प्रिसिंपलों को आमंत्रित किया और सबने मिलकर बच्चों में मधुमेह तथा उदासी जैसी बीमारियों के बढ़ने के गंभीर विषय पर विचार-विमर्श किया । उन्होंने निर्णय किया कि स्कूलों में सड़े हुए खाद्य पदार्थ पर प्रतिबन्ध लगाया जाये और स्वास्थ्यवर्धक पदार्थ जैसे सूप, लस्सी, दूध आदि उपलब्ध कराया जाय । साथ ही स्कूलों में प्रात:कालीन एसेम्बली के समय बच्चों को आधे घंटे की शारीरिक कसरत कराई जाये । छ: माह के पश्चात् श्री राय ने एक स्वास्थ्य निरीक्षण पुन: कराया और देखा गया कि बच्चों के स्वास्थ्य में अनुपम सुधार हुआ है ।

उपरोक्त को पढ़ने के बाद निम्न के उत्तर दीजिए :

- (i) श्री राय द्वारा किन मूल्यों (कम से कम दो) को दर्शाया गया है ?
- (ii) एक विद्यार्थी के रूप में इस विषय में आप कैसे जागरूकता फैलायेंगे ?
- (iii) शान्तिकारक क्या हैं ? एक उदाहरण दीजिए ।
- (iv) एस्पैर्टेम का उपयोग क्यों ठंडे भोज्य पदार्थ और पेय में ही सीमित होता है ?

Mr. Roy, the principal of one reputed school organized a seminar in which he invited parents and principals to discuss the serious issue of diabetes and depression in students. They all resolved this issue by strictly banning the junk food in schools and to introduce healthy snacks and drinks like soup, lassi, milk etc. in school canteens. They also decided to make compulsory half an hour physical activities for the students in the morning assembly daily. After six months, Mr. Roy conducted the health survey in most of the schools and discovered a tremendous improvement in the health of students.

After reading the above passage, answer the following:

- (i) What are the values (at least two) displayed by Mr. Roy?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are tranquilizers? Give an example.
- (iv) Why is use of aspartame limited to cold foods and drinks?

24. जलीय विलयन में मेथिल ऐसीटेट के जल-अपघटन के लिये निम्न परिणाम प्राप्त हुये थे :

t/s	0	30	60
[CH ₃ COOCH ₃]/mol L ⁻¹	0.60	0.30	0.15

- (i) दिखलाइए कि यह एक छद्म प्रथम कोटि अभिक्रिया के अनुसार है क्योंकि जल का सांद्रण स्थिर रहता है ।
- (ii) समय 30 से 60 सेकण्ड के बीच अभिक्रिया की औसत दर परिकलित कीजिए । (दिया गया है $\log 2 = 0.3010$, $\log 4 = 0.6021$)

For the hydrolysis of methyl acetate in aqueous solution, the following results were

5

t/s	0	30	60
[CH ₃ COOCH ₃]/mol L ⁻¹	0.60	0.30	0.15

- (i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- (ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds. (Given $\log 2 = 0.3010$, $\log 4 = 0.6021$)

अथवा/OR

24. (a) एक अभिक्रिया $A + B \longrightarrow P$ के लिये दर दी गई है

दर =
$$k[A][B]^2$$

obtained:

- (i) यदि B का सांद्रण दो गुना कर दिया जाये तो अभिक्रिया की दर कैसे प्रभावित होगी ?
- (ii) यदि A बहुत अधिक मात्रा में मौजूद हो तो अभिक्रिया की कुल कोटि क्या है ?
- (b) एक प्रथम कोटि अभिक्रिया 50% पूरी होने में 30 मिनट लेती है । इस अभिक्रिया को 90% पूर्ण होने में जो समय लगेगा उसका परिकलन कीजिए ।

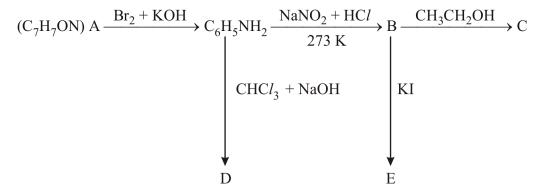
$$(\log 2 = 0.3010)$$

(a) For a reaction $A + B \longrightarrow P$, the rate is given by

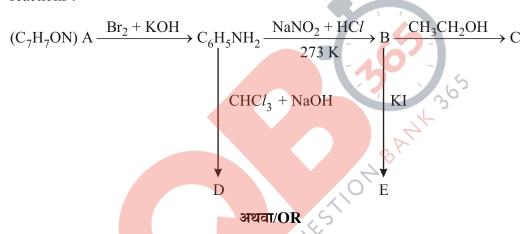
Rate =
$$k[A][B]^2$$

- (i) How is the rate of reaction affected if the concentration of B is doubled?
- (ii) What is the overall order of reaction if A is present in large excess?
- (b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.(log 2 = 0.3010)

56/1/3/D 9 [P.T.O.


- निम्न के कारण देते हुए स्पष्ट कीजिए : 25. (a) HF से HI की ओर अम्लीय स्वभाव बढ़ता है । (i) ऑक्सीजन और सल्फर के हिमांक और क्वथनांक के बीच बड़ा अंतर है। (ii) (iii) नाइट्रोजन पेन्टाहैलाइडें नहीं बनाता है । निम्न की संरचनाएँ आरेखित कीजिए : (b) (i) ClF_3 (ii) 5 XeF₄ Account for the following: (a) Acidic character increases from HF to HI. (i) (ii) There is large difference between the melting and boiling points of oxygen and sulphur. Nitrogen does not form pentahalide. Draw the structures of the following: (b) (i) ClF_3 (ii) XeF₄ अथवा/OR फॉस्फोरस का कौन एलोट्रॉप अधिक सक्रिय है और क्यों ? 25. (i) सुपरसोनिक जेट प्लेन ओजोन पर्त के अवक्षय के लिए कैसे जिम्मेदार हैं ? (ii) Cl, की अपेक्षा F, की आबन्ध वियोजन एन्थेल्पी कम क्यों है ? (iii) मौसमिवज्ञान में अवलोकन के लिये बैलूनों में भरने के लिये किस उत्कृष्ट गैस का प्रयोग किया जाता (iv) निम्न समीकरण को पूरा कीजिए: (v) $XeF_2 + PF_5 \longrightarrow$ 5 Which allotrope of phosphorus is more reactive and why? (i) (ii) How the supersonic jet aeroplanes are responsible for the depletion of ozone layers? (iii) F_2 has lower bond dissociation enthalpy than Cl_2 . Why? Which noble gas is used in filling balloons for meteorological observations? (iv)
 - $XeF_2 + PF_5 \longrightarrow$

(v)


56/1/3/D 10

Complete the equation:

26. अणु सूत्र C_7H_7ON का एक एरोमेटिक यौगिक 'A' नीचे दिये गये के अनुसार एक अभिक्रिया शृंखला देता है । निम्न अभिक्रियाओं में A, B, C, D और E की संरचनाएँ लिखिए :

An aromatic compound 'A' of molecular formula C_7H_7ON undergoes a series of reactions as shown below. Write the structures of A, B, C, D and E in the following reactions:

- 26. (a) जब एनिलीन नि<mark>म्न अ</mark>भिकारकों के <mark>साथ अ</mark>भिक्रिया करता है तब मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) Br₂ जल
 - (ii) HCl
 - (iii) (CH₃CO)₂O / pyridine
 - (b) निम्न को उनके क्वथनांक के बढ़ते क्रम में लिखिए :

$$C_2H_5NH_2, C_2H_5OH, (CH_3)_3N$$

(c) निम्न यौगिकों के युग्म में पहचान करने के लिये एक सामान्य रासायनिक जाँच दीजिए :

5


5

56/1/3/D 11 [P.T.O.

- (a) Write the structures of main products when aniline reacts with the following reagents:
 - (i) Br₂ water
 - (ii) HCl
 - (iii) (CH₃CO)₂O / pyridine
- (b) Arrange the following in the increasing order of their boiling point :

$$C_2H_5NH_2$$
, C_2H_5OH , $(CH_3)_3N$

(c) Give a simple chemical test to distinguish between the following pair of compounds:

Qu es.	Answers	Marks
1	BaCl ₂ because it has greater charge / +2 charge	1/2 +1/2
2	X_2Y_3	1
3	3	1
4	2, 5 - dinitrophenol	1
5	CH ₃ -CH ₂ -Br	1/2 +1/2
	Because it is a primary halide / (1 ⁰) halide	
6.	When vapour pressure of solution is higher than that predicted by Raoult's law /	1
	the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than	1/2
	those between the solute-solute and solvent-solvent molecules/A-A or B-B molecules. Eg. ethanol-acetone/ethanol-cyclohexane/ CS_2 -acetone or any other correct example $\Delta_{mix}H$ is positive	1/2
	OR	
	(a) Azeotropes are binary mixtures having the same composition in the liquid and vapour phase	1
	and he'll at a constant temperature	1
	and boil at a constant temperature. (b) Minimum boiling azeotrope eg - ethanol + water or any other example	1,
	(b) Minimum boiling azeotrope	1/2
	eg - ethanol + water or <mark>any o</mark> ther exam <mark>ple</mark>	1/2
7.	$(i)Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	1/2
	Reaction with higher E^0 value / ΔG^0 negative	1/2
	(ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero	1/2
	Number of ions per unit volume decreases	1/2
8.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.	1
	1) Variable oxidation states	1/2 +1/2
	2) Form coloured ion	
•	Or any other two correct characteristics	
9.	1) Diamminedichloridoethylenediaminechromium(III) chloride	1+1
	2) $[Co(NH_3)_5(ONO)]^{2+}$	

10	(i)LiAlH ₄ / NaBH ₄ /H ₂ , Pt	1
	(ii)KMnO ₄ , KOH	1
11	(i)Hexamethylene diamine NH ₂ (CH ₂) ₆ NH ₂ and	1/2
	adipic acid HOOC- (CH ₂) ₄ - COOH	1/2
	(ii)3 hydroxybutanoic acid CH ₃ CH(OH)CH ₂ COOH and	1/2
	3 hydroxypentanoic acid CH ₃ CH ₂ CH(OH)CH ₂ COOH	1/2 1/2
	(iii)Chloroprene H ₂ C=C(Cl)CH=CH ₂ IUPAC names are accepted	72
	Note: ½ mark for name /s and ½ mark for structure / s	1/2
12	(i)CH ₃ CH ₂ CH ₃	1
	(ii) C ₆ H ₅ COONa + CHI ₃	1/2, 1/2
	(iii)CH ₄	1
13	(i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ CH_3X $C_6H_5OCH_3$ Or	
	$C_6H_5OH + Na \rightarrow C_6H_5ONa $	
		1
	(ii)CH ₃ CH(OH)CH ₃ CrO_3 or $Cu/573$ K CH_3COCH_3 (i)CH ₃ MgX (CH ₃) ₂ C(OH)CH ₃	
	(ii)H ₂ O	1
	(iii) $C_6H_5NH_2$ NaNO ₂ + HCl $C_6H_5N_2Cl$ H ₂ O warm C_6H_5OH	
	0701/	1
	OR OR	
10		
13	a)	
	H	
	(i) $CH_3-CH_2-O-H + H^* \longrightarrow CH_3-CH_2-O-H$	1/2
	C+ H	1/2
	(ii) $CH_3CH_2 - \overset{\smile}{O} : + CH_3 - CH_2 - \overset{\smile}{O} : + CH_3 - CH_2 - \overset{\smile}{O} - CH_2CH_3 + H_2O$	
	H H	
	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H$	1
	b)	
	COOH COOH	
	OCOCH ₃	
	$(CH_3CO)_2O \longrightarrow COCOCH_3 + CH_3COOH$	
		1
		1

		T
	(Acetyl chloride instead of acetic anhydride may be used)	
14	(i)Maltose	1
	(ii) fibrous proteins: parallel polypeptide chain, insoluble in water	1
	Globular proteins: spherical shape, soluble in water, (or any 1 suitable difference)	1
	(iii) Vitamin D	
15	(i)Larger surface area, higher van der Waals' forces, higher the boiling point	1
	(ii)Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii) - NO ₂ acts as Electron withdrawing group or -I effect	1
16.		
	$\Delta T_f = i K_f m$	1/2
	$\Delta T_f = i K_f \frac{m_b \times 1000}{M_b \times m_a}$	
	Wib A IIIa	
	$1.62 \text{ K} = i \times 4.9 \text{ K kg mol}^{-1} \times 3.9 \text{ g} \times 1000$	
	$122 \text{ gmol}^{-1} \qquad 49 \text{ kg}$	1
	i = 0.506	1/2
	Or by any other correct method	
	As i<1, therefore solute gets associated.	1
	Tis 1 (1), increase solute gets associated.	1
17	(i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure	1
	metal gets deposited on cathode from anode.	1
	(ii)Silica acts as flux to remove iron oxide which is an impurity as slag or FeO + SiO ₂ \rightarrow FeSiO ₃ (iii)Wrought iron	1
18	$d = \underline{z} \times \underline{M}$	1/2
	$\mathrm{a^3N_A}$	
	$z = \underline{d} \underline{a}^3 \underline{N}_A$	
	$7 - 2.7 \text{ g cm}^{-3} \text{ y } 6.022 \text{ y } 10^{23} \text{ mol}^{-1} \text{ y } (4.05 \text{ y } 10^{-8} \text{cm})^3$	
	$z = \frac{2.7 \text{ g cm}^{-3} \text{ x } 6.022 \text{ x} 10^{23} \text{ mol}^{-1} \text{ x } (4.05 \text{ x } 10^{-8} \text{cm})^{3}}{27 \text{ g mol}^{-1}}$	1
		1/2
	$= 3.999 \approx 4$ Figure 3.994 as the call/fee	1
	Face centered cubic cell/ fcc	
19	(i) 5f orbital electrons have poor shielding effect than 4f	1
	(ii)due to d-d transition / or the energy of excitation of an electron from lower d orbital to higher	1
	d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital. (iii) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$	
1	$(III) \angle IVIIIO_4 + 0 \Pi + 3 IVO_2 \rightarrow 2 IVIII + 3 \Pi_2O + 3 IVO_3$	1

20	(i)	
	H ₁ N NH ₁ H ₂ N C1	
	P P 1	
	CI CI NH, cis-isomer trans-isomer	1
	cis-isomer trans-isomer	
	$(ii)t_2$ g^3 e g^1	1
	(iii) sp ³ , diamagnetic	1/2+ 1/2
21	The cell reaction : $Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$	
	$E_{cell}^{o} = E_{c}^{o} - E_{a}^{o}$	
	$E_{cell} - E_c - E_a$ = $[0-(-0.44)]V=0.44V$	
	$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \underline{0.059} \log \left[Fe^{2+} \right]$	
	$2 \qquad \left[H^{+} \right]^{2}$	1
	$E_{cell} = 0.44 \text{ V} - \underline{0.059} \log (0.001)$	
	$\frac{3605}{2} \cdot 108 \frac{\sqrt{31001}}{2}$	
	$E_{cell} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$ $= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$ $= 0.44 \text{ V} - 0.0295 \text{ V}$ $= \approx 0.410 \text{ V}$	1
	0.44 M = 0.050 1 = (.10)	
	$= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$	
	= 0.44 V - 0.0295 V	
	=≈ 0.410 V	1
	-~ 0.410 V	1
22	(i) mutual coagulation	1
	(ii)strong interaction between dispersed phase and dispersion medium or solvated layer	1
	(iii)CO acts as a poison for catalyst or iron	1
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy, caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg:	1/2 , 1/2
	equanil (or any other suitable example)	1
	(iv) Aspartame is unstable at cooking temperature.	

24 (a) $k = 2.303 \log [A_0]$ $k = 2.303 \log 0.60$ 30 0.30 1/2 $k = \underline{2.303} x 0.301 = 0.023 s^{-1}$ 30 $k = 2.303 \log 0.60$ 1/2 0.15 $k = 2.303 \times 0.6021 = 0.023 \text{ s}^{-1}$ As k is constant in both the readings, hence it is a pseudofirst order reaction. 1/2 ii) Rate = $-\Delta [R]/\Delta t$ 1/2 = -[0.15 - 0.30]60-30 $= 0.005 \text{ mol } L^{-1} s^{-1}$ OR a) 24. (i) Rate will increase 4 times of the actual rate of reaction. (ii) Second order reaction 1 + 1b) 1/2 $30\min =$ 0.693

	$k = 0.0231 \text{min}^{-1}$	1/2
	$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A_0} \right]$ [A]	
	$t = \underbrace{2.303}_{0.0231} \log \underbrace{100}_{10}$	1/2
	$t = \frac{2.303}{0.0231} \min$	72
25	t = 99.7 min	1
25	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic character observed. (ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8 (iii)Due to non availability of d orbitals	1
	(b)	1
	(ii)Oxygen exists as diatomic O ₂ molecule while sulphur as polyatomic S ₈ (iii)Due to non availability of d orbitals (b)	1
25	FF	
	OR (i) White Phosphorus because it is less stable due to angular strain (ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer. Or NO+O ₃ → NO ₂ + O ₂ (iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the lone pairs of fluorine	1/2, 1/2 1

	(iv)Helium	1
	$(v) XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	1
26.	(·/2·3·- [] [0]	1x5=
20.	t N→C	IAJ-
	$CONH_2$ $N \equiv NCI$ $N \triangleq C$	5
	$A = \bigcup_{B = \bigcup_{C \in A}} C = \bigcup_{D \in A} \bigcup_{E \in A} C = \bigcup_{E \in A} \bigcup_{C \in A} \bigcup_{E \in A} \bigcup_{C \in A} \bigcup_{C$	
	$A = \bigcup_{C = \bigcup_{C \in \mathcal{C}} B = \bigcup_{C \in \mathcal{C}} C = \bigcup_{C \in \mathcal{C}} B = \bigcup_{C \in \mathcal{C}} C = \bigcup_{C \in C$	
	OR	
26.	OK .	
20.	. :)	
	a. i)	
	Br 1 P	
	Br NH ₃ C1 NHCOCH ₃	1
		1
		1
	Br ::\ ::\	
	Br ii) iii)	
		1
	b. $(CH_3)_3N < C_2H_5NH_2 < C_2H_5OH$	1
	c. By Hinsberg test secondary amines (CH ₃) ₂ NH shows ppt formation which is insoluble	1
		1
	7.	
	in tertiary amines (CH ₃) ₃ N do not react with benzene sulphonyl choride	
	in tertiary annines (C113)314 do not react with benzene surphonyr enorthe	
		1