SET-3

Series SSO

कोड नं. 56/3/P

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्र
 में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे
 और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित नहीं है ।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.

1

- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए:

$$\begin{aligned} \mathrm{CH}_2 &= \mathrm{C} - \mathrm{CH}_2 - \mathrm{OH} \\ &\mid \\ \mathrm{CH}_3 \end{aligned}$$

Write the IUPAC name of the given compound:

$$CH_2 = C - CH_2 - OH$$

$$CH_3$$

2. Zn^{2+} के लवण सफेद हाते हैं जबकि Cu^{2+} के लवण स्पीन होते हैं । क्यों

Zn²⁺ salts are white while Cu²⁺ salts are coloured. Why?

3. निम्नलिखित युग्म में $\mathrm{S_{N}1}$ अभिक्रिया कौन अधिक तेज़ी से करेगा :

$$$^{\rm CH}_3$$_{\rm CH_3}-{\rm CH_2}-{\rm Br}$$$
 तथा ${\rm CH_3}-{\rm C-CH_3}$ $|$ $|$ $|$ $|$ $|$ $|$ $|$

Which would undergo S_N1 reaction faster in the following pair :

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{Br} \ \text{ and } \ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_3} \\ | \\ | \\ \operatorname{Br} \end{array}$$

4. Zn^{2+} के 1 मोल को Zn में अपचयन करने में कितने आवेश (चार्ज) की आवश्यकता होती ${\tilde \it k}$?

How much charge is required for the reduction of 1 mol of Zn²⁺ to Zn?

- 5. मक्खन की परिक्षिप्त प्रावस्था और परिक्षेपण माध्यम को लिखिए।

 Write the dispersed phase and dispersion medium of butter.
- **6.** कॉम्प्लेक्स $[Pt(en)_2Cl_2]^{2+}$ का आई.यू.पी.ए.सी. नाम लिखिए । इस कॉम्प्लेक्स द्वारा किस प्रकार की समावयवता दिखाई जाती है ?

अथवा

आई.यू.पी.ए.सी. पद्धति का उपयोग करते हुए निम्नलिखित उपसहसंयोजन यौगिकों के लिए सूत्रों को लिखिए :

- (i) हेक्साऐम्मीनकोबाल्ट(III) क्लोराइड
- (ii) पोटैशियम टेट्राक्लोराइडोनिकलेट(II)

QB365-Question Bank Software

1

1

1

2

2

Write down the IUPAC name of the complex $[Pt(en)_2Cl_2]^{2+}$. What type of isomerism is shown by this complex ?

OR

Using IUPAC norms write the formulae for the following coordination compounds:

2

2

- (i) Hexaamminecobalt(III) chloride
- (ii) Potassium tetrachloridonickelate(II)
- 7. निम्नलिखित को उनकी क्षारीय क्षमता के बढते क्रम में व्यवस्थित कीजिए :

(i)
$$C_6H_5 - NH_2$$
, $C_6H_5 - CH_2 - NH_2$, $C_6H_5 - NH - CH_3$

Arrange the following in increasing order of their basic strength:

(i)
$$C_6H_5 - NH_2$$
, $C_6H_5 - CH_2 - NH_2$, $C_6H_5 - NH - CH_3$

एक अवाष्पशील विलेय के विलयन का क्वथनांक एक शुद्ध विलायक से अधिक क्यों होता है ? क्वथनांक का उन्नयन एक अणुसंख्य गुणधर्म क्यों है ?

Why does a solution containing non-volatile solute have higher boiling point than the pure solvent? Why is elevation of boiling point a colligative property?

- H_2SO_3
- (ii) XeOF₄

Write the structures of the following molecules:

- (i) H_2SO_3
- (ii) XeOF₄
- 10. अभिक्रिया की दर परिभाषित कीजिए । दो कारक लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं ।

Define rate of reaction. Write two factors that affect the rate of reaction.

11. निम्नलिखित अभिक्रियाओं के प्रत्येक के मुख्य उत्पाद की संरचनाएँ लिखिए :

3

2

(i) $CH_3 - CH = C - CH_3 + HBr \longrightarrow CH_3$

(ii) $CH_3 - CH_2 - CH_2 - CH_3 - CH_3 + KOH$ एथेनॉल/ऊष्मा Br

(iii) $+ CH_3Cl$ निर्जलीय $AlCl_3$

Write the structure of the major product in each of the following reactions:

(i)
$$CH_3 - CH = C - CH_3 + HBr \longrightarrow CH_3$$

(ii)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_3 + KOH$$
 ethanol/heat Br

(iii)
$$\rightarrow$$
 + CH₃Cl \rightarrow anhyd. AlCl₃

Define the following terms :

- (i) Primitive unit cells
- (ii) Schottky defect
- (iii) Ferromagnetism

QB365-Question Bank Software जब तापमान $300~\mathrm{K}$ से $310~\mathrm{K}$ परिवर्तित होता है तब एक प्रथम कोटि की अभिक्रिया का दर स्थिरांक 2×10^{-2} से बढ़कर 4×10^{-2} हो जाता है । सिक्रियण ऊर्जा $(\mathrm{E_a})$ का परिकलन कीजिए ।

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

The rate constant of a first order reaction increases from 2×10^{-2} to 4×10^{-2} when the temperature changes from 300 K to 310 K. Calculate the energy of activation (E_a).

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

- 16. (a) निम्नलिखित कॉम्प्लेक्सों के संकरण और आकार लिखिए:
 - (i) $[CoF_6]^{3-}$
 - (ii) $[Ni(CN)_4]^{2-}$

(परमाण् क्रमांक : Co = 27, Ni = 28)

- (b) NH₃ और CO में से कौन-सा लिगैण्ड संक्रमण धातु के साथ अधिक स्थाई कॉम्प्लेक्स बनाता है और क्यों ?
- (a) Write the hybridization and shape of the following complexes:
 - (i) $[CoF_6]^{3-}$
 - (ii) $[Ni(CN)_4]^{2-}$

(Atomic number : Co = 27, Ni = 28)

- (b) Out of NH₃ and CO, which ligand forms a more stable complex with a transition metal and why?
- 17. निम्नलिखित पदों को परिभाषित कीजिए:
 - (i) ब्राउनियन गति
 - (ii) पेप्टीकरण
 - (iii) बहु-आण्विक (मल्टीमॉलिकूलर) कोलॉइड

Define the following terms:

- (i) Brownian movement
- (ii) Peptization
- (iii) Multimolecular colloids

3

3

3

3

- C₆H₅CONH₂ को C₆H₅NH₂ में (i)
- ऐनिलीन को फ़ीनॉल में (ii)
- एथेननाइट्राइल को एथेनऐमीन में (iii)

अथवा

जब ऐनिलीन को निम्नलिखित अभिकारकों के साथ उपचारित किया जाता है, तब सम्बद्ध रासायनिक समीकरणों को लिखिए:

- (i) ${
 m Br}_2$ जल
- $CHCl_3 + KOH$ (ii)
- **HCl** (iii)

How do you convert the following:

- C₆H₅CONH₂ to C₆H₅NH₂ (i)
- Aniline to phenol (ii)
- Ethanenitrile to ethanamine (iii)

OR

Write the chemical equations involved when aniline is treated with the following reagents:

- ${\rm Br}_2$ water (i)
- $CHCl_3 + KOH$ (ii)
- (iii) **HCl**

4

- (i) कमरे के तापमान पर N_2 कम अभिक्रियाशील है ।
- m (ii) वर्ग 16 के तत्त्वों के सभी हाइड्राइडों में $m H_2Te$ सबसे अधिक प्रभावशाली अपचायक $m \rat{R}$ ।
- (iii) गोताखोरों के उपकरण में हीलियम ऑक्सीजन के लिए एक तनुकारी के रूप में प्रयुक्त होती है।

Give reasons for the following:

- (i) N_2 is less reactive at room temperature.
- (ii) H_2 Te is the strongest reducing agent amongst all the hydrides of Group 16 elements.
- (iii) Helium is used in diving apparatus as a diluent for oxygen.
- 23. जवान बच्चों में मधुमेह और अवसाद (उदासी) की बढ़ती संख्या को देखकर, एक प्रसिद्ध स्कूल के प्रिंसिपल श्री लुगानी ने एक सेमिनार का आयोजन किया जिसमें अन्य प्रिंसिपलों और बच्चों के माता-पिताओं को आमंत्रित किया । यह निर्णय लिया गया कि स्कूलों में सड़े हुए खाने की वस्तुएँ बंद की जाएँ और स्वास्थ्यवर्धक वस्तुएँ जैसे सूप, लस्सी, दूध, आदि उपलब्ध कराई जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकाल की ऐसेम्बली के समय बच्चों को आधा घंटे का शारीरिक व्यायाम अनिवार्य रूप से कराया जाए । छः माह के पश्चात्, श्री लुगानी ने अधिकतर स्कूलों में फिर स्वास्थ्य परीक्षण कराया और बच्चों के स्वास्थ्य में अनुपम सुधार पाया गया ।

उपर्युक्त विवरण को पढ़कर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री लुगानी द्वारा किन मूल्यों (कम-से-कम दो) को प्रदर्शित किया गया ?
- (ii) एक विद्यार्थी के रूप में, आप इस विषय में कैसे जागरूकता फैलाएँगे ?
- (iii) उदासी दूर करने के ड्रग्स क्या हैं ? एक उदाहरण दीजिए ।
- (iv) एक मधुमेह के रोगी के लिए मिठाई बनाने के लिए जो मीठाकारी अभिकारक (मधुकर) प्रयुक्त होता है, उसका नाम दीजिए।

Seeing the growing cases of diabetes and depression among young children, Mr. Lugani, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Lugani conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Lugani?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are antidepressant drugs? Give an example.
- (iv) Name the sweetening agent used in the preparation of sweets for a diabetic patient.
- 24. (a) निम्नलिखित को कारण सहित स्पष्ट कीजिए:
 - (i) Zr और Hf लगभग समान परमाणु त्रिज्याओं वाले हैं।
 - (ii) संक्रमण धातुएँ विविध उपचयन अवस्थाएँ प्रदर्शित करते हैं ।
 - (iii) जलीय विलयन में Cu⁺ आयन स्थाई नहीं है ।
 - (b) निम्नलिखित समीकरणों को पूर्ण कीजिए:
 - (i) $2 \text{ MnO}_2 + 4 \text{ KOH} + \text{O}_2 \rightarrow$
 - (ii) $2 \text{ Na}_2\text{CrO}_4 + 2 \text{ H}^+ \rightarrow$

5

अथवा

E^0	Cr	Mn	Fe	Co	Ni	Cu
$E_{(M^{2+}/M)}^{0}$	- 0.91	- 1.18	- 0.44	- 0.28	-0.25	+ 0.34

 ${\bf E}^0$ मानों के दिए गए आँकडों से निम्नलिखित प्रश्नों के उत्तर दीजिए :

- ${
 m E}^0_{({
 m Cu}^{2+}/{
 m Cu})}$ मान क्यों अपवाद-स्वरूप धनात्मक है ? (i)
- ${
 m E}^0_{({
 m Mn}^{2+}/{
 m Mn})}$ मान क्यों अन्य तत्त्वों की तुलना में अधिक ऋणात्मक है ? (ii)
- (iii) कौन-सा प्रबलतर अपचायक है Cr^{2+} या Fe^{2+} ? कारण दीजिए ।
- ऐक्टिनॉयडें बहत्तर परास में उपचयन अवस्थाएँ क्यों दिखलाती हैं ? ऐक्टिनॉयडों और (b) लैन्थैनॉयडों के बीच रसायन की कोई एक समानता लिखिए ।

5

- Account for the following: (a)
 - Zr and Hf have almost similar atomic radii. (i)
 - Transition metals show variable oxidation states. (ii)
 - Cu⁺ ion is unstable in aqueous solution. (iii)
- (b)

(a)

(a)

Complete the following equations : (i) $2 \text{ MnO}_2 + 4 \text{ KOH} + \text{O}_2 \rightarrow$								
(ii) $2 \text{ Na}_2\text{CrO}_4 + 2 \text{ H}^+ \rightarrow$								
OR								
\mathbf{E}^{0}	Cr	Mn	Fe	Co	Ni	Cu		
(M^{2+}/M)	- 0.91	- 1.18	- 0.44	- 0.28	-0.25	+ 0.34		

From the given data of E^0 values, answer the following questions:

- Why is $E_{(Cu^{2+}/Cu)}^{0}$ value exceptionally positive? (i)
- Why is $E^0_{(Mn^{2+}/Mn)}$ value highly negative as compared to (ii) other elements?
- Which is a stronger reducing agent Cr²⁺ or Fe²⁺? Give (iii) reason.
- Why do actinoids show a wide range of oxidation states? Write one (b) similarity between the chemistry of lanthanoids and actinoids.

QB365-Question₂Bank Software

QB365-Question Bank Software 25. (a) C_2H_3OCl आण्विक सूत्र वाला एक यौगिक 'A' दर्शाई गई अभिक्रियाओं की शृंखला

$$(C_2H_3OCl)$$
 A $\xrightarrow{H_2/Pd-BaSO_4}$ B $\xrightarrow{\overline{\tau}\overline{\tau}}$ NaOH $\xrightarrow{\overline{s}\overline{s}\overline{s}}$ D

- (b) निम्नलिखित के बीच भेद (अन्तर) कीजिए :
 - (i) $C_6H_5 COCH_3$ और $C_6H_5 CHO$ में
 - (ii) बेन्ज़ोइक अम्ल और मेथिल बेन्ज़ोएट में
- (c) 2-मेथिलब्यूटेनेल की संरचना लिखिए।

अथवा

- (a) जब ऐसीटोन $(CH_3 CO CH_3)$ निम्नलिखित अभिकारकों से अभिक्रिया करता है, तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) Zn Hg/सांद्र HCl
 - (ii) $H_2N NHCONH_2/H^+$
 - (iii) CH_3MgBr और इसके बाद H_3O^+
- (b) निम्नलिखित को उनके क्वथनांक के बढ़ते हुए क्रम में व्यवस्थित कीजिए : ${\rm C_2H_5OH}, \ {\rm CH_3-CHO}, \ {\rm CH_3-COOH}$
- (c) यौगिकों के निम्नलिखित युग्म में अंतर करने के लिए एक सामान्य रासायनिक जाँच दीजिए:

CH₃CH₂CHO और CH₃CH₂COCH₃

QB365-Question3Bank Software

5

5

(a) A compound 'A' of molecular formula C_2H_3OCl undergoes a series of reactions as shown below. Write the structures of A, B, C and D in the following reactions:

$$(C_2H_3OCl) \ A \xrightarrow{\ H_2 \ / \ Pd \ - \ BaSO_4 \ } \ B \xrightarrow{\ dil. \ NaOH \ } \ C \xrightarrow{\ Heat \ } D$$

- (b) Distinguish between the following:
 - (i) $C_6H_5 COCH_3$ and $C_6H_5 CHO$
 - (ii) Benzoic acid and methyl benzoate
- (c) Write the structure of 2-methylbutanal.

OR

- (a) Write the structures of the main products when acetone $(CH_3 CO CH_3)$ reacts with the following reagents:
 - (i) Zn Hg/conc. HCl
 - (ii) $H_9N NHCONH_9/H^+$
 - (iii) CH₃MgBr and then H₃O⁺
- (b) Arrange the following in the increasing order of their boiling points:

$$C_2H_5OH$$
, $CH_3 - CHO$, $CH_3 - COOH$

(c) Give a simple chemical test to distinguish between the following pair of compounds:

5

5

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0.001\ M\right)\ \middle|\ \middle|\ Cu^{2+}\left(0.0001\ M\right)\ \middle|\ Cu\left(s\right)$$

दिया गया है :
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \text{ V}, \quad E^0_{(Cu^{2+}/Cu)} = +0.34 \text{ V}.$$

अथवा

- KCl विलयन के $0.20~{
 m mol~L^{-1}}$ की चालकता $2.48 \times 10^{-2}~{
 m S~cm^{-1}}~$ है । इसकी (a) मोलर चालकता और वियोजन-मात्रा (α) परिकलित कीजिए । दिया गया है $\lambda^{0}(K^{+}) = 73.5 \text{ S cm}^{2} \text{ mol}^{-1}$ और $\lambda^{0}(Cl^{-}) = 76.5 \text{ S cm}^{2} \text{ mol}^{-1}$.
- मर्करी सेल किस प्रकार की बैटरी है ? यह शुष्क (ड्राई) सेल की अपेक्षा अधिक (b) लाभदायक क्यों है ?

Calculate e.m.f. and <G for the following cell:

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0\cdot001\ M\right)\ \middle|\ \left|\ Cu^{2+}\left(0\cdot0001\ M\right)\ \middle|\ Cu\left(s\right)$$

Given:
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \text{ V}, \quad E^0_{(Cu^{2+}/Cu)} = +0.34 \text{ V}.$$

- conductivity of 0.20 mol L^{-1} The solution of KC1 (a) $2.48 \times 10^{-2} \text{ S cm}^{-1}$. Calculate its molar conductivity degree of dissociation (a). Given $\lambda^0(K^+) = 73.5 \text{ S cm}^2 \text{ mol}^{-1}$ and λ^{0} (Cl⁻) = 76.5 S cm² mol⁻¹.
- (b) What type of battery is mercury cell? Why is it more advantageous than dry cell?

CHEMISTRY MARKING SCHEME 2015 PATNA SET -56/3/P

Qu es.	Answers	Marks
1	2-Methyl prop-2-en-1-ol	1
2	Because of no unpaired electron in Zn ²⁺ Copper salts are coloured due to the presence of unpaired electrons in Cu ²⁺	1/2 +1/2
3	(CH ₃) ₃ C-Br	1
4	2F or 2x 96500C	1
5	Dispersed phase-liquid Dispersion medium- solid	1/2 +1/2
6	Dichloridobis-(ethane-1,2-diamine)platinum(IV) Geometrical or optical isomerism	1
	(i)[Co(NH ₃) ₆]Cl ₃	1
6	$(ii) K_2[NiCl_4]$	1 1
7	(i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$	1
	(ii)	
	NH ₂ NH ₂ NH ₃ CH ₃	1
8	Because on addition of a non volatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be increased, thus boiling point gets higher	1
	Because it depends on molality/ number of solute particles / $\Delta T_b \propto m$	1
9	F Xe F	1,1
	(i) (ii)	
10	Decrease in concentration of reactant or increase in concentration of product per unit time	1
	Factors: 1)concentration of reactant2)catalyst 3) temperature 4)Nature of reactant 5)pressure 6)surface area (any two)	1/2 +1/2

11		1
11	$_{ m l}{ m Br}$	1
	$CH_3 - CH_2 - C - CH_3$	
	i) CH ₃	
	1)	
		1
	$_{ii)} \qquad CH_3 - CH_2 - CH = CH - CH_3$	1
	Br	
		1
	, CH ₃	
	iii)	
12	(i)Because phenoxide ion is more stable than CH ₃ CH ₂ O ion / due to resonance in phenol,	1
	oxygen acquires positive charge and releases H ⁺ ion easily whereas there is no resonance in	
	CH ₃ CH ₂ OH	
	(ii)Because of hydrogen bonding in ethanol	1
	(iii)Because it follows SN ₁ path way which results in the formation of stable (CH ₃) ₃ C ⁺ .	
10		1
13	$\Delta T_f = K_f m$ $T_f^0 - T_f = K_f W_B \times 1000$ $M_B \times W_A$	
	$\Delta T_{f} = K_{f} m$ $T_{f}^{0} - T_{f} = K_{f} W_{B} \times 1000$	1
	$\frac{1_f - 1_{f-}}{M_B \times W_A}$	
	Elegist 11 A	1
	$273K - T_{f} = 1.86K \text{ kg mol}^{-1} \text{ x} \xrightarrow{-319} \text{ x}$	1
	$62gmol^{-1}$	
	$T_f = (273-1.86) \text{ K}$	
		1
4.	T _f = 271.14K Or -1.86 ^o C	
14	(i) Unit cells having constituent particles at the corner positions.	1
	(ii) The defect occurs due to missing of equal no of cations and anions in a lattice.(iii) The permanent magnetism which arises when magnetic moments of substance are aligned in	1
	same direction.	1
15	$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$\sim K_1$ 2.303 R $T1$ $T2$	
	E_a	
	$\log \frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{E_a}{2.303 \times 8.314 J/K/mol} \left[\frac{1}{300} - \frac{1}{310} \right]$	
	E_a , 10	1
	$log2 = \frac{E_a}{19.147J/mol} \left[\frac{10}{300x310} \right]$	
	0.0040 v.40.445 v.200 v.240	
	$E_a = \frac{0.3010 \times 19.147 \times 300 \times 310}{10}$	1
	$E_a = 53598 J/mol$ or $53.598 kJ/mol$	

		_				
16	$(i)[CoF_6]^{3-}$ sp ³ d ² octahedral	1/2 1/2				
	(ii) $[Ni(CN)_4]^{2-}$ dsp ² square planar	1/2 1/2				
	(b) CO, because of synergic /back bonding with metal	1/2 1/2				
17	(i) The zig-zag motion of the colloidal particles due to unbalanced bombardment by the particles of dispersion medium.					
	(ii) The conversion of precipitate into colloidal sol by adding small amount of an electrolyte.					
	(iii) On dissolution a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range.	1				
18	(i)Greater solubility of impurities in molten state.	1				
	(ii)Silica reacts with impurity FeO to form slag (FeSiO ₃) / acts as a flux to remove impurities.	1				
	(iii)Cast iron is harder than pigiron / has lesser content of carbon.	1				
19	i)Buna –S Butadiene Styrene $CH_2=CH-CH=CH_2$ $C_6H_5CH=CH_2$.	1/2				
	ii)Glyptal Ethylene Glycol Pthalic acid	1/2				
	COOH	1/2				
	СООН	1/2				
	HO−CH ₂ CH ₂ −OH					
	iii)Polyvinyl chloride Vinyl ChlorideCH ₂ =CH-Cl	1/2 1/2				
	(Note: half mark for name/s and half mark for structure/s)	/2 /2				
20	CH = N — OH					
	 (CHOH) ₄	1				
	CH ₂ QH					
	i) Chaon					
	R-CH-C-O					
	$R-CH-C-O$ (ii)Because of zwitter ion nature of amino acid / NH_3	1				
	(iii)Because vitamin C is soluble in water.	1				
		1				

24					
24	a)				
	i) Due to lanthanoid contraction.	1			
	ii) Due to incomplete filling of d- orbitals/ comparable energies of (n-1)d & ns electrons.	1			
	iii)Because it undergoes disproportionation reaction in aqueous solution/oxidation of a metal in a solvent depends on the nature of the solvent. Cu ⁺ is unstable in water thats why it undergoes oxidation.	1			
	b)				
	$2MnO_a + 4KOH + O_a \rightarrow 2K_aMnO_a + 2H_aO_a$	1			
	i) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + H_2O + 2Na^+$	1			
	II) $2Na_2CIO_4 + 2II \rightarrow Na_2CI_2O_7 + II_2O + 2INa$	1			
	OR				
	a) (i) Paggues of high AgH ⁰ Play A. H ⁰				
24	 (i) Because of high ΔaH°&low Δ_{hyd} H°. (ii)Because of more stability of Mn²⁺ (3d⁵) 	1			
	(iii)Cr ²⁺ , because in +3 oxidation state Cr is more stable (t ³ _{2g} orbital)	1/2, 1/2			
	b) Due to comparable energies of 5f,6d,7s orbitals.				
	Both show contraction in size/ both show main oxidation state +3/both are electro positive and	1			
25	very reactive/ both exhibit magnetic and spectral properties. (any one)	1			
	OH				
	a) CH ₃ CO Cl CH ₃ CHO CH ₃ CH- CH ₂ - CHO CH ₃ CH= CH- CHO	1/2 ,1/2			
	a) CH_3CO CI CH_3 CHO CH_3CH - CH_2 - CHO CH_3CH = CH - CHO (D)				
		1/2, 1/2			
	b) i)On adding Tollen's reagent C ₆ H ₅ CHO forms silver mirror whereas C ₆ H ₅ COCH ₃ does not.	1			
	ii)On adding NaHCO ₃ solution benzoic acid gives brisk effervescence but methyl	1			
	benzoate does not.				
	c) CH ₃ CH ₂ - CH- CHO (or any other distinguishing test)	1			
	CH_3				
25					
25	OR				
	a)i) CH ₃ CH ₂ CH ₃	1			
	ii) CH ₃ –C=N-NHCONH ₂				
L		1			

		1 1
	CH ₃	1
	CH_3	
	iii)CH ₃ — C –OH	1
	CH_3	
	b) CH ₃ CHO< CH ₃ CH ₂ OH< CH ₃ COOH	1
	c)On adding Tollen's reagent CH ₃ CH ₂ CHO forms silver mirror whereas	1
	CH ₃ CH ₂ COCH ₃ does not (or any other distinguishing test).	
26	Mg Mg ²⁺ (0.001) Cu ²⁺ (0.0001M) Cu	
	$E_{Cell}^0 = E_{R}^0 - E_{L}^0$	
	=[0.34-(-2.37)]V	
	=2.71V	
	$E_{\text{cell}} = E_{\text{Cell}}^{\text{o}} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[Cu2+]}$	1
	$E_{\text{cell}} = E^{\circ}_{\text{Cell}} - \frac{0.059}{n} V \log \frac{[Mg2+]}{[cu2+]}$ $= 2.71 \text{V} - \frac{0.059}{2} \text{V} \log 10^{-3} / 10^{-4}$ $= 2.71 - 0.0295 \text{ V} \log 10$ $= 2.71 - 0.0295$ $= 2.6805 \text{ V}$ $\Delta G = -n\text{FE}_{\text{cell}}$	
	=2.71-0.0295 V log 10	1
	=2.71-0.0295 =2.71-0.0295	
	=2.6805 V	1
	ETILO	
	$\Delta G = -nFE_{cell}$	
	$= -2x96500 \text{ C mol}^{-1} \text{ x2.68 V}$	1/2
	$= -517240 \text{Jmol}^{-1}$	1/2
	= -517.240 kJ/mol	
	317.240 KJ/III0I OR	1
	OK .	
	a) $M=0.20M$ $K=2.48X10^{-2}S/cm$	
26		
	$\Lambda_m = \frac{K}{M} \times 1000 \text{ Scm}^2/\text{mol}$	1/2
	$\Lambda_m = \frac{2.48 \times 10^{-2}}{0.20} \times 1000 \text{ Scm}^2/\text{mol}$	
	$= 124 \text{ Scm}^2/\text{mol}$	1
	\sim Λ_m	
	$u - \frac{1}{\sqrt{m^0}}$	1/2
	$\alpha = \frac{\Lambda_m}{\Lambda_m^0}$	

$\Lambda_m^0 = \lambda^0 K^+ + \lambda C l^-$	
=73.5+76.5	
= 150	
$\alpha = \frac{124}{150} = 0.82$ Or 82%	1
Primary battery or cell, potential remains constant throughout its life.	1,1

