SET-1

Series GBM/2

कोड नं. Code No. 56/2/1

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 5 are very short-answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short-answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short-answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carries 4 marks.
- (vi) Questions number 24 to 26 are long-answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is not allowed.
- 1. उस यौगिक का सूत्र क्या है जिसमें तत्त्व P से सी.सी.पी. जालक बनता है और Q तत्त्व के परमाणु 2/3 चतुष्फलकीय रिक्तियों को भरते हैं ?

What is the formula of a compound in which the element P forms ccp lattice and atoms of Q occupy $2/3^{rd}$ of tetrahedral voids?

1

1

2. निम्नलिखित वर्ग-16 के तत्त्वों के हाइड्राइडों को उनके तापीय स्थायित्व के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 $\mathrm{H_2O},\ \mathrm{H_2S},\ \mathrm{H_2Se},\ \mathrm{H_2Te}$

Arrange the following hydrides of Group-16 elements in the increasing order of their thermal stability:

 H_2O , H_2S , H_2Se , H_2Te

QB365-Question Bank Software 3. उत्प्रेरण के प्रक्रम में विशोषण की क्या भूमिका है ?

What is the role of desorption in the process of catalysis?

4. निम्नलिखित यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

1

1

$$C_6H_5 - CH_2 - CH_2 - OH$$

Write the IUPAC name of the following compound:

$$C_6H_5 - CH_2 - CH_2 - OH$$

5. पेन्टेन (C_5H_{12}) के समावयवों में से उसको लिखिए जो प्रकाश-रासायनिक क्लोरीनीकरण पर केवल एक मोनोक्लोराइड देता है ।

Among the isomers of pentane (C_5H_{12}) , write the one which on photochemical chlorination yields a single monochloride.

6. निम्नलिखित रूपांतरणों को अधिकतम दो चरणों में कीजिए :

2

1

- (a) प्रोपीन से ऐसीटोन
- (b) प्रोपेनॉइक अम्ल से 2-हाइड्रॉक्सीप्रोपेनॉइक अम्ल

अथवा

निम्नलिखित में होने वाली अभिक्रिया को लिखिए:

2

- (a) ईटार्ड अभिक्रिया
- (b) वोल्फ-किश्नर अपचयन

Do the following conversions in not more than two steps :

- (a) Propene to Acetone
- (b) Propanoic acid to 2-hydroxypropanoic acid

OR.

Write the reaction involved in the following:

- (a) Etard reaction
- (b) Wolff-Kishner reduction

- **QB365-Question Bank Software** अणुसंख्य गुणधर्म क्या हैं ? उस अणुसंख्य गुणधर्म का नाम लिखिए जिसे बृहदाणुओं के 7. आण्विक द्रव्यमान ज्ञात करने के लिए प्रयक्त किया जाता है।

2

What are colligative properties? Write the colligative property which is used to find the molecular mass of macromolecules.

- निम्नलिखित संकुल के समावयव का आई.यू.पी.ए.सी. नाम लिखिए : 8. (a) $[Pt(NH_2)_2Cl_2]$
 - निम्नलिखित के लिए सूत्र लिखिए: (b) टेट्राऐम्मीनऐक्वाक्लोरिडोकोबाल्ट(III) नाइट्रेट

2

- Write the IUPAC name of the isomer of the following complex: (a) $[Pt(NH_3)_2Cl_2]$
- Write the formula for the following: (b) Tetraammineaquachloridocobalt(III) nitrate
- एक गैल्वैनी सेल में, निम्नलिखित सेल अभिक्रिया होती है: 9.

$$\operatorname{Zn}\left(\mathrm{s}\right) + 2\operatorname{Ag}^{+}\left(\mathrm{aq}\right) \longrightarrow \operatorname{Zn}^{2+}\left(\mathrm{aq}\right) + 2\operatorname{Ag}\left(\mathrm{s}\right) \quad \operatorname{E}_{\stackrel{\circ}{\mathsf{Her}}}^{0} = + 1.56\ \mathrm{V}$$

- क्या इलेक्ट्रॉनों के प्रवाह की दिशा ज़िंक से सिल्वर है या सिल्वर से ज़िंक ? (a)
- जब सेल क्रियाशील होता है तो Zn^{2+} आयनों और Ag^{+} आयनों की सांद्रता पर कैसा (b) प्रभाव पडेगा ?

2

In a galvanic cell, the following cell reaction occurs:

$$\operatorname{Zn}\left(s\right) + 2\operatorname{Ag}^{+}\left(aq\right) \longrightarrow \operatorname{Zn}^{2+}\left(aq\right) + 2\operatorname{Ag}\left(s\right) \quad \operatorname{E}_{\operatorname{cell}}^{0} = +1.56\operatorname{V}$$

- Is the direction of flow of electrons from zinc to silver or silver to (a) zinc?
- How will concentration of Zn²⁺ ions and Ag⁺ ions be affected when (b) the cell functions?

10. निम्नलिखित आयनों में :

$$Mn^{3+}$$
, V^{3+} , Cr^{3+} , Ti^{4+}

(परमाण क्रमांक : Mn = 25, V = 23, Cr = 24, Ti = 22)

- (a) कौन-सा आयन जलीय विलयन में सबसे अधिक स्थायी है ?
- (b) कौन-सा आयन प्रबलतम ऑक्सीकारक है ?
- (c) कौन-सा आयन रंगहीन है ?
- (d) किस आयन के पास उच्चतम संख्या में अयुग्मित इलेक्ट्रॉन हैं ?

In the following ions:

$$Mn^{3+}$$
, V^{3+} , Cr^{3+} , Ti^{4+}

(Atomic no. : Mn = 25, V = 23, Cr = 24, Ti = 22)

- (a) Which ion is most stable in an aqueous solution?
- (b) Which ion is the strongest oxidizing agent?
- (c) Which ion is colourless?
- (d) Which ion has the highest number of unpaired electrons?
- 11. 0.05 M KOH विलयन के कॉलम का वैद्युत प्रतिरोध $4.55 \times 10^3 \text{ ohm}$ है । इसका व्यास 1 cm एवं लम्बाई 45.5 cm है । इसकी मोलर चालकता का परिकलन कीजिए ।

The electrical resistance of a column of 0.05 M KOH solution of diameter 1 cm and length 45.5 cm is 4.55×10^3 ohm. Calculate its molar conductivity.

- 12. निम्नलिखित पदों को एक-एक उदाहरण के साथ परिभाषित कीजिए :
 - (a) द्रव-विरोधी कोलॉइड
 - (b) समांगी उत्प्रेरण
 - (c) O/W इमल्शन (पायस)

अथवा

भौतिक अधिशोषण और रासायनिक अधिशोषण के बीच तीन अंतर लिखिए।

Define the following terms with an example in each:

- (a) Lyophobic colloids
- (b) Homogeneous catalysis
- (c) O/W emulsion

OR.

Write three differences between Physisorption and Chemisorption.

2

3

3

3

QB365-Question Bank Software ग्लूकोस (मोलर द्रव्यमान = $180~{
m g~mol^{-1}}$) के किसी जलीय विलयन का क्वथनांक **13.** $100 \cdot 20 ^{\circ} \mathrm{C}$ है । इसी विलयन के हिमांक की गणना कीजिए । जल के मोलल स्थिरांक $\mathrm{K_{f}}$ और K_h के मान क्रमश: $1.86~{
m K~kg~mol^{-1}}$ और $0.512~{
m K~kg~mol^{-1}}$ हैं ।

A solution of glucose (Molar mass = 180 g mol^{-1}) in water has a boiling point of 100·20°C. Calculate the freezing point of the same solution. Molal constants for water K_f and K_b are $1{\cdot}86~K~kg~mol^{-1}$ and $0{\cdot}512~K~kg~mol^{-1}$ respectively.

3

3

3

- वाष्प प्रावस्था परिष्करण के सिद्धांत को लिखिए । 14. (a)
 - फेन प्लवन विधि में अवनमक की क्या भूमिका है? (b)
 - उच्च ताप पर आयरन को $\mathrm{Fe_2O_3}$ से प्राप्त करने वाले अपचायक का नाम लिखिए। (c)
 - Write the principle of vapour phase refining. (a)
 - (b) What is the role of depressant in froth floatation process?
 - Write the name of reducing agent to obtain iron from Fe₂O₃ at (c) high temperature.
- सोडियम परमाणु की त्रिज्या क्या है यदि यह बी.सी.सी. संरचना के रूप में **15.** (a) क्रिस्टलीकृत होता है जिसके कोष्ठिका कोर की लम्बाई 400 pm है ?
 - दिए गए अशुद्ध क्रिस्टल की जाँच कीजिए: (b)

$$X^{+}$$
 Y^{-} X^{+} Y^{-}

- इस प्रकार के दोष के लिए उपयोग किए जाने वाले पद का नाम लिखिए। (i)
- जब XY क्रिस्टल को द्विसंयोजक (\mathbb{Z}^{2+}) अशुद्धि के साथ डोपित किया जाता है (ii) तो क्या परिणाम होता है ?

- **QB365-Question Bank Software**
- (a) What is the radius of sodium atom if it crystallises in bcc structure with the cell edge of 400 pm?
- (b) Examine the given defective crystal:

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{-}

- (i) Write the term used for this type of defect.
- (ii) What is the result when XY crystal is doped with divalent (Z^{2+}) impurity?

16. कारण दीजिए:

- 3
- (a) एथेनैल की <mark>तुलना में प्रोपेनोन नाभिकस्नेही संकलन अभिक्रियाओं के प्रति कम</mark> अभिक्रियाशील है।
- (b) $O_2N CH_2 COOH$ का pKa मान CH_3COOH से कम है।
- (c) $(CH_3)_2CH CHO$ ऐल्डोल संघनन देता है जबिक $(CH_3)_3C CHO$ नहीं देता ।

Give reasons:

- (a) Propanone is less reactive than ethanal towards nucleophilic addition reactions.
- (b) $O_2N CH_2 COOH$ has lower pKa value than CH_3COOH .
- (c) $(CH_3)_2CH-CHO$ undergoes aldol condensation whereas $(CH_3)_3C-CHO$ does not.

निम्नलिखित बहुलको के एकलको के नाम और सरचनाएँ लिखिए : 3 17. टेरीलीन (a) टेफ्लॉन (b) नाइलॉन-6.6 (c) Write the names and structures of the monomers of the following polymers: Terylene (a) (b) Teflon Nylon-6,6 (c) क्रिस्टल क्षेत्र विपाटन ऊर्जा की परिभाषा दीजिए े क्रिस्टल क्षेत्र सिद्धांत के आधार पर 18. (a) d^4 आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $\Delta_\mathrm{o} < \mathrm{P}$ है । $[Ni(CN)_4]^{2-}$ रंगहीन है जबिक $[Ni(H_2O)_6]^{2+}$ हरा है । क्यों ? (b) 3 (Ni का परमाण क्रमांक = 28) Define crystal field splitting energy. On the basis of crystal field (a) theory, write the electronic configuration for d^4 ion if $\Delta_0 < P$. $[Ni(CN)_4]^{2-}$ is colourless whereas $[Ni(H_2O)_6]^{2+}$ is green. Why? (b) (At. no. of Ni = 28) क्या होता है जब 19. $(CH_3)_3C - OH$ को 573 K पर Cu के साथ उपचारित किया जाता है, (a) ऐनिसोल की CH3Cl/निर्जल AlCl3 के साथ अभिक्रिया करते हैं, (b) फीनॉल की यशद रज के साथ अभिक्रिया करते हैं ? (c)अपने उत्तर की पृष्टि के लिए रासायनिक समीकरण लिखिए। 3 What happens when $(CH_3)_3C$ – OH is treated with Cu at 573 K, (a)

- (b) Anisole is treated with CH₃Cl / anhydrous AlCl₃,
- (c) Phenol is treated with Zn dust?

Write chemical equations in support of your answer.

(a)
$$CH_2 - CH_3 \xrightarrow{Br_2, 35}$$
?

(b)
$$CH_3 + HBr \longrightarrow ?$$

(c)
$$HO - CH_2$$
 $HCl, 35$ GH

Draw the structures of the major monohalo product for each of the following reactions:

(a)
$$CH_2 - CH_3 \xrightarrow{Br_2, \text{ heat}} ?$$

(b)
$$CH + HBr \longrightarrow ?$$

(c)
$$HO-CH_2$$
 $HCl, heat$?

21. निम्नलिखित के लिए कारण दीजिए:

- (a) $\operatorname{Cu_2Cl_2}$ की तुलना में $\operatorname{CuCl_2}$ अधिक स्थायी होता है ।
- (b) 4d और 5d श्रेणी के तत्त्वों की परमाणु त्रिज्याएँ लगभग समान होती हैं।
- (c) परमैंगनेट अनुमापनों में हाइड्रोक्लोरिक अम्ल का उपयोग नहीं करते ।

Account for the following:

- (a) CuCl₂ is more stable than Cu₂Cl₂.
- (b) Atomic radii of 4d and 5d series elements are nearly same.
- (c) Hydrochloric acid is not used in permanganate titrations.

QB365-Question Bank Software

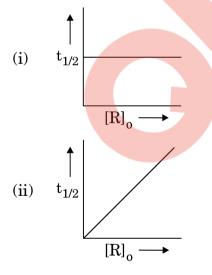
3

4

- (a) प्रशांतक
- (b) ऋणायनी अपमार्जक
- (c) विसंक्रामी

Define the following terms:

- (a) Tranquilizer
- (b) Anionic detergent
- (c) Disinfectant
- 23. टी.वी. में एक प्रोग्राम में ब्रेड तथा दूसरे बेकरी उत्पादों में पोटैशियम ब्रोमेट और पोटैशियम आयोडेट जैसे कार्सिनोजेन्स (कैंसरकारी रसायनों) की उपस्थित देखने के बाद, वीना, बारहवीं कक्षा की छात्रा, ने दूसरों को खाद्य-पदार्थों में इन कार्सिनोजेन से होने वाले नुकसान (हानिकर प्रभाव) के बारे में जागृत करने का निश्चय किया। वह स्कूल प्रधानाचार्य से मिली और उनसे आग्रह किया कि वे कैन्टीन ठेकेदार को आदेश दें कि वह विद्यार्थियों को सैन्डविच, पिज्जा, बर्गर और दूसरे बेकरी उत्पाद न बेचे। प्रधानाचार्य ने तत्काल कदम उठाते हुए कैन्टीन ठेकेदार को बेकरी उत्पादों की जगह प्रोटीन एवं विटामिन से भरपूर खाना जैसे फल, सलाद, अंकुरित पदार्थ, आदि रखने का आदेश दिया। इस निर्णय का सभी माता-पिता तथा विद्यार्थियों ने स्वागत किया।


उपर्युक्त उद्धरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) वीना द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (b) आमतौर से उपस्थित ब्रेड में कार्बोहाइड्रेट का कौन-सा पॉलिसैकैराइड घटक होता है ?
- (c) प्रोटीनों की द्वितीयक संरचनाओं के दो प्रकार लिखिए।
- (d) जल विलेय विटामिन के दो उदाहरण दीजिए ।

After watching a programme on TV about the presence of carcinogens (cancer causing agents) Potassium bromate and Potassium iodate in bread and other bakery products, Veena, a class XII student, decided to make others aware about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct the canteen contractor to stop selling sandwiches, pizzas, burgers and other bakery products to the students. The principal took an immediate action and instructed the canteen contractor to replace the bakery products with some proteins and vitamins-rich food like fruits, salads, sprouts, etc. The decision was welcomed by the parents and students.

QB365-Question Bank SoftwareAfter reading the above passage, answer the following questions:

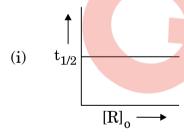
- (a) What are the values (at least two) displayed by Veena?
- (b) Which polysaccharide component of carbohydrates is commonly present in bread?
- (c) Write the two types of secondary structures of proteins.
- (d) Give two examples of water soluble vitamins.
- **24.** (a) एक प्रथम कोटि की अभिक्रिया के 75% वियोजन (पूर्ण) होने में 40 मिनट लगते हैं । इसके $\mathbf{t}_{1/2}$ की गणना कीजिए ।
 - (b) दिए गए आलेखों में अभिक्रिया की कोटि की प्रागुक्ति कीजिए:

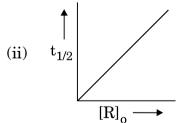
जहाँ [R] अभिकारक की प्रारम्भिक सांद्रता है।

(दिया गया है : $\log 2 = 0.3010$, $\log 4 = 0.6021$)

3+2=5

अथवा


 $QB365 ext{-}Question\ Bank\ Software$ $2\ NO + O_2 \longrightarrow 2\ NO_2$ अभिक्रिया के लिए निम्नलिखित आँकड़े प्राप्त हुए :


प्रयोग	[NO] / M	$[O_2]$ / M	$ m NO_2$ के विरचन का प्रारम्भिक वेग / M $ m min^{-1}$
1	0.3	0.2	$7 \cdot 2 \times 10^{-2}$
2	0.1	0.1	6.0×10^{-3}
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	$2 \cdot 40 \times 10^{-2}$

- NO और O_2 के प्रति अभिक्रिया की कोटि ज्ञात कीजिए । (a)
- अभिक्रिया का वेग नियम और कुल कोटि को लिखिए (b)
- वेग स्थिरांक (k) की गणना कीजिए | (c)
- A first order reaction is 75% completed in 40 minutes. Calculate its (a) $t_{1/2}$.

5

Predict the order of the reaction in the given plots: (b)

where $[R]_0$ is the initial concentration of reactant.

(Given: $\log 2 = 0.3010$, $\log 4 = 0.6021$)

OR

<u>QB365-Question Bank Software</u> The following data were obtained for the reaction:

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

Experiment	[NO] / M	[O ₂] / M	Initial rate of formation of NO_2 / $M min^{-1}$
1	0.3	0.2	$7\cdot2 imes 10^{-2}$
2	0.1	0.1	6.0×10^{-3}
3	0.3	0.4	$2 \cdot 88 \times 10^{-1}$
4	0.4	0.1	$2{\cdot}40\times10^{-2}$

- (a) Find the order of reaction with respect to NO and O_2 .
- (b) Write the rate law and overall order of reaction.
- (c) Calculate the rate constant (k).

25. (a) निम्नलिखित के लिए कारण दीजिए:

- (i) वर्ग-15 के तत्त्वों के हाइड्राइडों में BiH_3 प्रबलतम अपचायक है ।
- (ii) Cl_2 एक विरंजक के रूप में कार्य करता है ।
- (iii) उत्कृष्ट गैसों के क्वथनांक बहुत कम होते हैं।
- (b) निम्नलिखित संरचनाओं को आरेखित कीजिए :
 - $H_4P_2O_7$
 - ${\rm (ii)} \quad {\rm XeOF_4}$

3+2=5

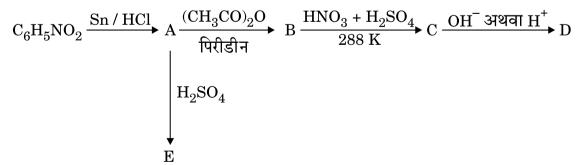
अथवा

- (a) हालाँकि नाइट्रोजन और क्लोरीन की विद्युत्-ऋणात्मकता लगभग समान होती है फिर भी नाइट्रोजन हाइड्रोजन आबंध बनाता है जबकि क्लोरीन नहीं बनाता । क्यों ?
- (b) F_2 के जल से अभिक्रिया करने पर क्या होता है ?
- (c) Ca_3P_2 को जल में घोलने से निकलने वाली गैस का नाम लिखिए ।
- (d) उस उत्कृष्ट गैस स्पीशीज़ का सूत्र लिखिए जो ${
 m IBr}_2^-$ के साथ समसंरचनात्मक है ।
- (e) समीकरण को पूरा कीजिए:

$$[Fe(H_2O)_6]^{2+} + NO \longrightarrow$$

5

5-Question Bank Software (a) Account for the following:


- BiH₃ is the strongest reducing agent in Group 15 elements (i) hydrides.
- Cl₂ acts as a bleaching agent. (ii)
- (iii) Noble gases have very low boiling points.
- (b) Draw the structures of the following:
 - $H_4P_2O_7$ (i)
 - $XeOF_4$ (ii)

OR

- Although nitrogen and chlorine have nearly same electronegativity (a) yet nitrogen forms hydrogen bonding while chlorine does not. Why?
- (b) What happens when F_2 reacts with water?
- Write the name of the gas evolved when Ca₃P₂ is dissolved in (c) water.
- Write the formula of a noble gas species which is isostructural (d) Fig. (Fe(H_2O)₆]²⁺ + NO \longrightarrow with IBr₂.
- Complete the equation: (e)

$$[\mathrm{Fe}(\mathrm{H_2O})_6]^{2+} + \mathrm{NO} \longrightarrow$$

निम्नलिखित अभिक्रियाओं में A. B. C. D और E की संरचनाएँ लिखिए: 26.

5

अथवा

- (a) जब बेन्ज़ीन डिइएज़ीनियम क्लीराइड निम्निलिखित अभिकारको से अभिक्रिया करता है, तब प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) CuCN
 - (ii) CH₃CH₂OH
 - (iii) Cu/HCl
- (b) निम्नलिखित को उनके क्षारकीय प्राबल्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए : ${
 m CH_3NH_2,\,(CH_3)_2NH,\,C_6H_5NH_2,\,C_6H_5CH_2NH_2}$
- (c) ऐनिलीन और ऐथिल ऐमीन में विभेद करने के लिए एक रासायनिक परीक्षण लिखिए।

5

Write the structures of A, B, C, D and E in the following reactions:

$$C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{(CH_3CO)_2O} B \xrightarrow{HNO_3 + H_2SO_4} C \xrightarrow{OH^- \text{ or } H^+} D$$
 $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{(CH_3CO)_2O} B \xrightarrow{HNO_3 + H_2SO_4} C \xrightarrow{OH^- \text{ or } H^+} D$

- (a) Write the structures of the main products when benzene diazonium chloride reacts with the following reagents:
 - (i) CuCN
 - (ii) CH₃CH₂OH
 - (iii) Cu/HCl
- (b) Arrange the following in the increasing order of their basic strength:

(c) Write one chemical test to distinguish between Aniline and Ethyl amine.

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

FOREIGN 2017 - Set - 56/2/1

Q.NO.	VALUE POINTS	MARKS
1	P_3Q_4	1
2	H_2 Te < H_2 Se < H_2 S < H_2 O	1
3	To make the surface available again for more reaction to occur / To	1
	remove the product formed from the surface of the catalyst.	
4	2 – Phenylethanol	1
5	Neopentane / C(CH ₃) ₄	1
6	a.	1
	H_2O [O]	
	$CH_3CH=CH_2$ \longrightarrow $CH_3CH(OH)CH_3$ \longrightarrow CH_3COCH_3 \longrightarrow CH_3COCH_3	
	H ⁺ Cros	
	b.	
	Br2/Red P i) aq KOH or NaOH	
	CH ₃ CH ₂ COOH → CH ₃ CH(Br)COOH	1
	ii)H ⁺	
	(or any other suitable method)	
6	a. Etard reaction:	
	$\begin{array}{c} \text{CH}_3 \\ + \text{ CrO}_2\text{Cl}_2 \\ \hline \text{Chromium complex} \end{array} \xrightarrow{\text{H}_3\text{O}^*} \begin{array}{c} \text{CHO} \\ \text{Benzaldehyde} \\ \\ \text{Or} \end{array}$	1
	Toluene (i) CrO2Cl2, CS2 (ii) H3O+ Benzaldehyde	
	b. Wolff-Kishner reduction:	
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	
	or	
	$c=0$ (ii) NH2NH2 $cH_2 + N_2$ (ii) KOH/ethylene glycol , heat	1

7	Properties that depend on the number of solute particles irrespective of their nature relative to the total number of particles present in the	1
	solution.	
	Osmotic Pressure	1
8	a.cis/ trans-diamminedichloridoplatinum(II)b.	1
	$[Co(NH_3)_4 (H_2O)CI] (NO_3)_2$	1
9	a. Zinc to silver	1
	b. Concentration of Zn ²⁺ ions will increase and Ag ⁺ ions will decrease.	1
10	a. Cr ³⁺	1/2
	b.Mn ³⁺	1/2
	c. Ti ⁴⁺	1/2
	d. Mn ³⁺	1/2
11	A= πr ² = 3.14 x 0.5 x 0.5 cm ² = 0.785 cm ² /= 45.5 cm	1/2
	$ρ = R \times A / I$ $ρ = 4.55 \times 10^{3} Ω \times 0.785 \text{ cm}^{2} / 45.5 \text{ cm}$ $ρ = 78.5 Ω \text{ cm}$ conductivity, $κ = 1/ρ$	1/2
	conductivity, κ = 1/ρ	1/2
	$= 1/78.5 \text{ S cm}^{-1} = 0.0127 \text{ S cm}^{-1}$	1/2
	molar conductivity $\Delta m = \kappa \times 1000/C$ = 0.0127 S cm ⁻¹ x 1000/0.05 mol/cm ³	1/2
	= 254.77 S cm ² mol ⁻¹	1/2
	or	
	$A = \pi r^2$	
	$= 3.14 \times 0.5 \times 0.5 \text{ cm}^2$	
	$= 0.785 \text{ cm}^2$	1/2
	<i>l</i> = 45.5 cm	
	$G^* = I/A = 45.5 \text{ cm}/0.785 \text{ cm}^2$	
	$= 57.96 \text{ cm}^{-1}$	1/2
	K= G*/ R	1/2
	= 57.96 cm ⁻¹ / $4.55 \times 10^3 \Omega = 1.27 \times 10^{-2} \text{ S cm}^{-1}$	1/2
	$\Lambda m = \kappa \times 1000/C$ = $[1.27 \times 10^{-2} \text{ S cm}^{-1}] \times 1000 / 0.05 \text{ mol/cm}^3$	1/2

	$= 254.77 \text{S cm}^2 \text{mol}^{-1}$	1/2			
12	a. The particles of the dispersed phase have no affinity for the	/2			
12	dispersion medium/solvent repelling (hating) colloidal sols.Example:	1/2+ 1/2			
	metal and their sulphides				
	b. The reactant and the catalyst are in the same phase.				
	$CH_3COOCH_3(I) + H_2O(I) \longrightarrow CH_3COOH(aq) + CH_3OH(aq)$				
	c. oil is dispersed in water/Oil is dispersed phase and water is				
	dispersion medium.	1/2+ 1/2			
	Ex- milk				
	(or any other correct example)				
	OR				
12	Physisorption Chemisorption	(1+1+1)			
	1 Because of van der Waals Caused by chemical				
	forces bond formation				
	2 Reversible Irreversible				
	3 Enthalpy of adsorption is Enthalpy of adsorption is				
	low(20-40 kJ/mol) high(80-240)kJ/mol				
	(Or any other correct difference)				
13	Given: T _b of glucose solution= 100.20°C				
	$\Delta T_b = K_b.m$				
	$\Delta T_b = K_b.m$ m = 0.20 / 0.512 m = 0.300 mol/kg	4			
	m= 0.390 mol/kg	1			
	$\Delta T_f = K_f \cdot m$	1/2			
	$\Delta T_f = 1.86 \text{ K kg/mol x 0.390 mol/kg}$	/2			
	$\Delta T_f = 0.725 \text{ K}$	1/2			
		- -			
	Freezing point of solution = 273.15K – 0.725				
	= 272.425K	1			
14	a. Metal is converted into a volatile compound which on strong	1			
	heating decomposes to give pure metal.				
	b. It selectively prevents one of the sulphide ores from coming to the	1			
	froth.				
	c. Coke	1			
15	a. For bcc structure				
	$a = 4r/\sqrt{3}$ or $r = \sqrt{3}a/4$	1/2			
	1				
	$r=\sqrt{3} \times 400 \text{ pm /4}$				

		T
	= 1.732 x 400 pm/4	
	= 173.2 pm	1/2
	b.	
	(i) Impurity defect	1
	(ii) Cationic vacancies are created.	1
16	a. Due to steric hindrance and +I effect caused by two alkyl groups in	1/2+ 1/2
	propanone.	
	b. Due to electron withdrawing nature of –NO ₂ group which	1
	increases the acidic strength and decreases the pK _a value.	1
	c. $(CH_3)_2CH$ -CHO has one α -H atom whereas α - H atom is absent in	4
47	(CH ₃) ₃ C-CHO.	1
17	a. Ethylene Glycol and Terephthalic acid	1/2 + 1/2
	HOH₂C-CH₂OH , p-HOOC-C ₆ H₄-COOH	
	b. Tetrafluoroethene , $CF_2 = CF_2$	1/2 + 1/2
	c. Hexamethylenediamine and adipic acid	
	$H_2N(CH_2)_6NH_2$, $HOOC(CH_2)_4COOH$	1/2 + 1/2
18	a. It is the magnitude of difference in energy between the two sets	
	of d orbital i.e. t ₂ g and e _g	1
	t ³ _{2g} eg ¹	1
	b. In [Ni(H ₂ O) ₆] ²⁺ , Ni ⁺² (3d ⁸) has two unpaired electrons which do not	
	pair up in the presence of weak field ligand H₂O.	1
19	a. (CH ₃) ₃ C-OH unde <mark>rgoes d</mark> ehydration.	1/2 + 1/2
	$CH_3 - C - OH \xrightarrow{Cu} CH_3 - C = CH_2$ $CH_3 - C - OH \xrightarrow{573K} CH_3 - C = CH_2$	
	b. Methyl group is introduced at ortho and para positions.	4, 4,
	OCH,	1/2+ 1/2
	OCH ₃	
	+CH ₃ Cl Anhyd. AlCl ₃ CH ₃	
	CS ₂ CH ₃	
	c. Phenol is converted to benzene.	
	OH	
	$+$ Zn \longrightarrow $+$ ZnO	1/2+ 1/2

20	a. b. C.	1,1,1
	CH 2C1	
21	a. In $CuCl_2$, Cu is in +2 oxidation state which is more stable due to high hydration enthalpy as compared to Cu_2Cl_2 in which Cu is in +1 oxidation state b. Due to lanthanoid contraction	1
	c. Because HCl is oxidised to chlorine.	1
22	 a. Neurologically active drugs / chemical compounds used for treatment of stress / anxiety and mild or even severe mental diseases. b. Anionic detergents are sodium salts of sulphonated long chain also hals or bydrosarbons / alkylbonatos or detergents. 	1
	alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. c. Disinfectants kill or prevent growth of microbes and are applied on inanimate / non living objects	1
23	(i)Concerned, caring, socially alert, leadership (or any other 2 values)	1/2 + 1/2
	(ii)starch	1
	(iii) α -Helix and β -pleated sheets	1/2 + 1/2
	(iv)Vitamin B / B_1 / B_2 / B_6 / C (any two)	1/2 + 1/2
24	k= <u>2.303</u> log <u>[A]</u> t [A]	1/2
	= 2 <u>.303 log 100</u>	1/
	$ \begin{array}{r} 40 & 25 \\ = 2.303 \log 4 \\ 40 \end{array} $	1/2
	= <u>2.303</u> X 0.6021 40	
	k = 0.0347 min ⁻¹	1/2
	$t_{1/2} = 0.693$,-
	k	1/2

	т —	
	$t_{1/2} = 0.693$ = 19.98 min = 20min 0.0347 min ⁻¹	1
	b. (i) First order reaction	1
	(ii) Zero order reaction	1
	OR	_
24	(a)	
	Rate = $k [NO]^x [O_2]^y$	
	7.2 X $10^{-2} = k[0.3]^{x} [0.2]^{y}$ Eqn (1)	
	$6.0 \times 10^{-3} = k[0.1]^{x} [0.1]^{y}$ Eqn (2)	
	$2.88 \times 10^{-1} = k[0.3]^{x} [0.4]^{y}$ Eqn (3)	
	$2.40 \times 10^{-2} = k[0.4]^{x} [0.1]^{y}$	
	Dividing eqn 4 by eqn 2	
	$\frac{2.40 \times 10^{-2} = k[0.4]^{x} [0.1]^{y}}{2.40 \times 10^{-2}}$	
	$6.0 \times 10^{-3} = k[0.1]^{x} [0.1]^{y}$	
	x=1	1
	Dividing eqn 3 by eqn 1	1
	$\frac{2.88 \times 10^{-1}}{2.88 \times 10^{-1}} = k[0.3]^{x} [0.4]^{y}$	
	$7.2 \times 10^{-2} = k[0.3]^{x} [0.2]^{y}$	
	y = 2	1
	y - 2	1
	order w.r.t. NO = 1, order w.r.t O_2 is 2	1/2 , 1/2
	Order W.I.t. 110 - 1, Order W.I.t 02 13 2	/2 , /2
	(b) Rate law	
	Rate = $k [NO]^1 [O_2]^2$, over all order of the reaction is 3.	1/2 + 1/2
	c. Rate constant $k = rate$ = 7.2×10^{-2}	/2 T /2
	[NO] ¹ [O ₂] ² $0.3 \times (0.2)^2$	
	$k = 6.0 \text{ mol}^{-2} \text{ L}^2 \text{ min}^{-1}$	1
25		1
25	a. (i) Thermal stability of hydrides decreases down the group/ Bond	1
	dissociation enthalpy decreases down the group.	1
	(ii) Because Cl ₂ in presence of moisture liberates nascent oxygen.	1
	(iii) Interatomic interactions are weak	1
	L (:)	
	b.(i) (ii)	
	P Xc	1 1
		1,1
	он он он	
	OR	

25	a) Size of Nitrogen is smaller than Chlorine.	1
	b) $2F_2 + 2H_2O \rightarrow 4HF + O_2 / HF$ and O_2 are produced	1
	c) PH ₃ /Phosphine	1
	d) XeF ₂	1
	e) $[Fe(H_2O)_6]^{2+} + NO - \rightarrow [Fe(H_2O)_5(NO)]^{2+} + H_2O$	1
26	C [C [] [C [] [C [C [C [C [C [C [C [C [C [C [] [C [C [C [C [C [C [C [C [C [C [)] C [C [C [C [C [C [C [C [C [C [] [C [C [C [C [C [C [C [C [C [C [] [C [C [C [C [C [C [C [C [C [C [] [C [] [C [C [C [C [C [C [C [C [C [C [] [C [C [C [C [C [C [C [C [C [C [] [C [C [C [] [C [C [C [] [C [C [-
26.		1×5=5
	NHCOCH₃ HN CH₃	
	NH ₂	
	(A) (B) (C) NO_2	
	$(A) \qquad (B) \qquad (C) \qquad ^{NO_2}$	
	(D) (E)	
	NH ₂ + -	
	NH ₃ HSO ₄	
	NO ₂	
	30	
	NO ₂	
	\otimes	
	15	
	J [×]	
	O O	
	OR	
		•

26	- '\ '''	
	a. i) iii) iii) CN	
	CI CI	1,1,1
	b. $C_6H_5NH_2 < C_6H_5CH_2NH_2 < CH_3NH_2 < (CH_3)_2NH$ c. Add $NaNO_2 + HCl$ to both the compounds at 273K followed by	1
	addition of phenol. Aniline gives orange dye (or any other correct test)	1

1	Dr. (Mrs.) Sangeeta Bhatia		12	Sh. S. Vallabhan	
				(6)	
2	Dr. K.N. Uppadhya		13	Dr. Bhagyabati Nayak	
				15	
3	Prof. R.D. Shukla		14	Ms. Anila Mechur	
				Jayachandran	
4	Sh. S.K. Munjal		15	Mrs. Deepika Arora	
				04	
5	Sh. D.A. Mishra		16	Ms. Seema Bhatnagar	
			5		
6	Sh. Rakesh Dhawan	0	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani		18	Dr. Azhar Aslam Khan	
	,				
8	Mrs. Preeti Kiran		19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat		20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena		21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar		22	Ms. Garima Bhutani	