SET-2

Series GBM/2

कोड नं. Code No. 56/2/2

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पृस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short-answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short-answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short-answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carries 4 marks.
- (vi) Questions number 24 to 26 are long-answer questions and carry 5 marks each.

1

- (vii) Use log tables, if necessary. Use of calculators is not allowed.
- 1. निम्नलिखित यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{aligned} & \text{CH}_3 \\ & \mid \\ & \text{CH}_2 = \text{CH} - \text{C} - \text{OH} \\ & \mid \\ & \text{CH}_3 \end{aligned}$$

Write the IUPAC name of the following compound:

$$\begin{aligned} & \text{CH}_3 \\ & \text{CH}_2 = \text{CH} - \text{C} - \text{OH} \\ & \text{|} \\ & \text{CH}_3 \end{aligned}$$

2.	पेन्टेन	$({ m C}_5{ m H}_{12})$ के समावयवों में से उसको लिखिए जो प्रकाश-रासायनिक क्लोरीनीकरण पर	
	केवल	। एक मोनोक्लोराइड देता है ।	1
		ong the isomers of pentane (C_5H_{12}) , write the one which on cochemical chlorination yields a single monochloride.	
3.		लेखित वर्ग-16 के तत्त्वों के हाइड्राइडों को उनके अम्लीय सामर्थ्य के घटते हुए क्रम में स्थित कीजिए :	1
		$\mathbf{H_2O},\ \mathbf{H_2S},\ \mathbf{H_2Se},\ \mathbf{H_2Te}$	
		ange the following hydrides of Group-16 elements in the decreasing or of their acidic strength:	
		$\mathrm{H_2O},~\mathrm{H_2Se},~\mathrm{H_2Te}$	
4.	उस य	गौगिक का सूत्र क्या है जिसमें तत्त्व P से एच.सी.पी. जालक बनता है और Q तत्त्व के	
	परमाप्	गु 2/3 अष्टफलकीय रिक्तियों <mark>को भरते हैं ?</mark>	1
		at is the formula of a compound in which the element P forms hcp ce and atoms of Q occupy 2/3 rd of octahedral voids?	
5.	उत्प्रेरा	ण के प्रक्रम में विशोषण की क्या भूमिका है ?	1
		at is the role of desorption in the process of catalysis?	
6.	(a)	निम्नलिखित संकुल के समावयव का आई.यू.पी.ए.सी. नाम लिखिए :	
		$[\mathrm{Co(NH_3)_5Cl}]\mathrm{SO_4}$	
	(b)	निम्नलिखित के लिए सूत्र लिखिए :	
		डाइऐम्मीनक्लोरिडोनाइट्रिटो-N-प्लैटिनम(II)	2
	(a)	Write the IUPAC name of the isomer of the following complex : $[\text{Co(NH}_3)_5\text{Cl}]\text{SO}_4$	
	(1-)		
	(b)	Write the formula for the following: Diamminechloridonitrito-N-platinum(II)	

7. एक गैल्वैनी सेल में, निम्नलिखित सल अभिक्रिया होती है :

$$\operatorname{Zn}\left(\mathrm{s}\right) + 2\operatorname{Ag}^{+}\left(\mathrm{aq}\right) \longrightarrow \operatorname{Zn}^{2+}\left(\mathrm{aq}\right) + 2\operatorname{Ag}\left(\mathrm{s}\right) \quad \operatorname{E}_{\dot{\mathsf{Her}}}^{0} = +1.56\ \mathrm{V}$$

- (a) क्या इलेक्ट्रॉनों के प्रवाह की दिशा ज़िंक से सिल्वर है या सिल्वर से ज़िंक ?
- (b) जब सेल क्रियाशील होता है तो ${
 m Zn}^{2+}$ आयनों और ${
 m Ag}^+$ आयनों की सांद्रता पर कैसा प्रभाव पडेगा ?

2

2

In a galvanic cell, the following cell reaction occurs :

$$\operatorname{Zn}\left(s\right) + 2\operatorname{Ag}^{+}\left(aq\right) \longrightarrow \operatorname{Zn}^{2+}\left(aq\right) + 2\operatorname{Ag}\left(s\right) \quad \operatorname{E}_{\operatorname{cell}}^{0} = +1.56\operatorname{V}$$

- (a) Is the direction of flow of electrons from zinc to silver or silver to zinc?
- (b) How will concentration of Zn²⁺ ions and Ag⁺ ions be affected when the cell functions?
- 8. निम्नलिखित आयनों में :

$$Mn^{3+}$$
, V^{3+} , Cr^{3+} , Ti^{4+}

(परमाणु क्रमांक : Mn = 25, V = 23, Cr = 24, Ti = 22)

- (a) कौन-सा आ<mark>यन ज</mark>लीय विलयन में सबसे अधिक स्थायी है ?
- (b) कौन-सा आयन प्रबलतम ऑक्सीकारक है ?
- (c) कौन-सा आयन रंगहीन है ?
- (d) किस आयन के पास उच्चतम संख्या में अयुग्मित इलेक्ट्रॉन हैं ?

In the following ions:

$$Mn^{3+}$$
, V^{3+} , Cr^{3+} , Ti^{4+}

(Atomic no.: Mn = 25, V = 23, Cr = 24, Ti = 22)

- (a) Which ion is most stable in an aqueous solution?
- (b) Which ion is the strongest oxidizing agent?
- (c) Which ion is colourless?
- (d) Which ion has the highest number of unpaired electrons?

QB365-Question Bank Software

56/2/2

9.	निम्नलि	. QB365-Question Bank Software ाखित रूपांतरणों की अधिकतम दी चरणों में कीजिए :	2
	(a)	प्रोपीन से ऐसीटोन	
	(b)	प्रोपेनॉइक अम्ल से 2-हाइड्रॉक्सीप्रोपेनॉइक अम्ल	
		अथवा	
	निम्नलि	ाखित में होने वाली अभिक्रिया को लिखिए :	2
	(a)	ईटार्ड अभिक्रिया	
	(b)	वोल्फ-किश्नर अपचयन	
	Do th	e following conversions in not more than two steps:	
	(a)	Propene to Acetone	
	(b)	Propanoic acid to 2-hydroxypropanoic acid	
		OR	
	Write	e the reaction involved in the following :	
	(a)	Etard reaction	
	(b)	Wolff-Kishner reduction	
10.		शील विलेय डा <mark>लकर बनाए गए विलयन सम्बन</mark> ्धी राउल्ट नियम लिखिए । क्लोरोफॉर्म व न का विलयन <mark>राउल्</mark> ट नियम से <mark>किस प्रकार का</mark> विचलन दिखाता है और क्यों ?	2
	type	Raoult's law for a solution containing non-volatile solute. What of deviation from Raoult's law is shown by a solution of chloroform acetone and why?	
11.	निम्नलि	ाखित बहुलकों के एकलकों के नाम और संरचनाएँ लिखिए :	5
	(a)	बेकेलाइट	
	(b)	पॉलिवाइनिलक्लोराइड (PVC)	
	(c)	ब्यूना-S	
	Write polyn	e the names and structures of the monomers of the following ners:	
	(a)	Bakelite	
	(b)	PVC	
	(c)	Buna-S	
		ADDAT Associate Danle Coffesions	

12.	(a)	QB365-Question Bank Software क्रिस्टल क्षेत्र विपाटन ऊर्जा की परिभाषा दीजिए। क्रिस्टल क्षेत्र सिद्धांत के आधार पर	
	` '	$ ext{d}^4$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $ ext{Δ_0} > ext{P}$ है ।	
	(b)	$[\mathrm{Ni}(\mathrm{CN})_4]^{2-}$ प्रतिचुम्बकीय है जबिक $[\mathrm{NiCl}_4]^{2-}$ अनुचुम्बकीय है । कारण दीजिए । (Ni का परमाणु क्रमांक = 28)	3
	(a)	Define crystal field splitting energy. On the basis of crystal field theory, write the electronic configuration for d^4 ion if $\Delta_0 > P$.	
	(b)	$[{\rm Ni(CN)_4}]^{2-}$ is diamagnetic whereas $[{\rm NiCl_4}]^{2-}$ is paramagnetic. Give reason. (At. no. of Ni = 28)	
13.	क्या हो	ता है जब	
	(a)	(CH ₃) ₃ C – OH को 573 K पर Cu के साथ उपचा <mark>रित</mark> किया जाता है,	
	(b)	ऐनिसोल की CH ₃ Cl / निर्जल AlCl ₃ के साथ अभिक्रिया करते हैं,	
	(c)	फीनॉल की यशद रज के साथ अभिक्रिया करते हैं ?	
	अपने उ	त्तर की पुष्टि के लिए रासाय <mark>निक समीकरण लिखिए</mark> ।	3
		happens when	Ū
	(a)	$(CH_3)_3C$ – OH is treated with Cu at 573 K,	
	(b)	Anisole is treated with CH ₃ Cl / anhydrous AlCl ₃ ,	
	(c)	Phenol is treated with Zn dust?	
	Write	chemical equations in support of your answer.	
14.	निम्नलि	खित के लिए कारण दीजिए :	3
	(a)	Eu^{2+} एक प्रबल अपचायक है ।	
	(b)	डाइक्रोमेट आयन का नारंगी रंग क्षारीय माध्यम में पीला हो जाता है।	
	(c)	संक्रमण धातुओं के $\operatorname{E}^0(\operatorname{M}^{2+}/\operatorname{M})$ मान अनियमित परिवर्तन दिखाते हैं ।	
	Accou	nt for the following:	
	(a)	Eu ²⁺ is a strong reducing agent.	
	(b)	Orange colour of dichromate ion changes to yellow in alkaline medium.	
	(c)	$E^{0}(M^{2+}\!/M)$ values for transition metals show irregular variation.	
56/2/2		QB365-Question Bank Software	

15.	निम्नि	लेखित पदों को परिभाषित कीजिए :	3
	(a)	पूतिरोधी	
	(b)	धनायनी अपमार्जक	
	(c)	विस्तृत स्पेक्ट्रम प्रतिजैविक	
	Defi	ne the following terms:	
	(a)	Antiseptic	
	(b)	Cationic detergent	
	(c)	Broad spectrum antibiotic	
16.		M KOH विलयन के कॉलम का वैद्युत प्रतिरोध $4.55 imes 10^3 m ohm है। इसका व्यासएवं लम्बाई 45.5 m cm है। इसकी मोलर चालकता का परिकलन कीजिए।$	3
	1 cm	electrical resistance of a column of 0.05 M KOH solution of diameter and length 45.5 cm is 4.55×10^3 ohm. Calculate its molar uctivity.	
17.	निम्नरि	लेखित पदों को एक-एक उदाहरण के साथ परिभाषित कीजिए :	3
	(a)	द्रव-विरोधी कोलॉइड	J
	(b)		
	(c)	O/W इमल्शन (पायस)	
		अथवा	
	भौतिव	त अधिशोषण <mark>और रासायनिक अधिशोषण के बीच</mark> तीन अंतर लिखिए ।	3
		ne the follow <mark>ing t</mark> erms with an example in each:	
	(a)	Lyophobic colloids	
	(b)	Homogeneous catalysis	
	(c)	O/W emulsion	
		OR	
	Writ	e three differences between Physisorption and Chemisorption.	
18.	٠,	स (मोलर द्रव्यमान = $180~{ m g~mol^{-1}}$) के किसी जलीय विलयन का क्वथनांक $20^{\circ}{ m C}$ है। इसी विलयन के हिमांक की गणना कीजिए। जल के मोलल स्थिरांक ${ m K_f}$	
	और]	$K_{ m b}$ के मान क्रमश: $1\cdot 86~{ m K~kg~mol^{-1}}$ और $0\cdot 512~{ m K~kg~mol^{-1}}$ हैं ।	3
	point cons	lution of glucose (Molar mass = 180 g mol^{-1}) in water has a boiling t of $100 \cdot 20^{\circ}$ C. Calculate the freezing point of the same solution. Molal tants for water K_f and K_b are $1 \cdot 86 \text{ K kg mol}^{-1}$ and $0 \cdot 512 \text{ K kg mol}^{-1}$ ectively.	

		<u>•</u>	\sim $0E$	336	5-0	<u>uestio</u>	n Bai	nk So	ftware
19.	(ล)	मडल	पारष्करण	का	ासदा	त लिखिए			,

- (b) फेन प्लवन विधि में संग्राहियों की क्या भूमिका है ? संग्राही का एक उदाहरण दीजिए ।
- (c) ${\rm Fe_2O_3}$ से ${\rm Fe}$ को कम ताप पर प्राप्त करने के लिए एक अपचायक का नाम लिखिए ।

3

3

(a) Write the principle of Zone refining.

- (b) What is the role of collectors in froth floatation process? Give an example of a collector.
- (c) Write the name of a reducing agent to obtain Fe from ${\rm Fe_2O_3}$ at low temperature.
- 20. (a) सोडियम परमाणु की त्रिज्या क्या है यदि यह बी.सी.सी. संरचना के रूप में क्रिस्टलीकृत होता है जिसके कोष्ठिका कोर की लम्बाई $400~\mathrm{pm}$ है ?
 - (b) दिए गए अशुद्ध क्रिस्टल की जाँच कीजिए:

$$X^{+}$$
 Y^{-} X^{+} Y^{-}

- (i) इस प्रकार के दोष के लिए उपयोग किए जाने वाले पद का नाम लिखिए।
- (ii) जब XY क्रिस्टल को द्विसंयोजक (\mathbb{Z}^{2+}) अशुद्धि के साथ डोपित किया जाता है तो क्या परिणाम होता है ?
- (a) What is the radius of sodium atom if it crystallises in bcc structure with the cell edge of 400 pm?
- (b) Examine the given defective crystal:

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{-} Y^{+} Y^{-}

- (i) Write the term used for this type of defect.
- (ii) What is the result when XY crystal is doped with divalent (Z^{2+}) impurity?

QB365-Question Bank Software

56/2/2

(a)
$$CH_2 - CH_3 \xrightarrow{Br_2, 35}$$
 ?

(b)
$$CH_3 + HBr \longrightarrow ?$$

(c)
$$HO - CH_2$$
 \xrightarrow{OH} $HCl, 35$ \hookrightarrow

Draw the structures of the major monohalo product for each of the following reactions:

(a)
$$CH_2 - CH_3 \longrightarrow 3$$
 Br_2 , heat

(b)
$$CH + HBr \longrightarrow ?$$

(c)
$$HO - CH_2$$
 OH $HCl, heat$?

22. कारण दीजिए:

- (a) एथेनैल की तुलना में प्रोपेनोन नाभिकस्नेही संकलन अभिक्रियाओं के प्रति कम अभिक्रियाशील है।
- (b) $O_2N CH_2 COOH$ का pKa मान CH_3COOH से कम है ।
- (c) $(CH_3)_2CH-CHO$ ऐल्डोल संघनन देता है जबिक $(CH_3)_3C-CHO$ नहीं देता । Give reasons :
- (a) Propanone is less reactive than ethanal towards nucleophilic addition reactions.
- (b) $O_2N CH_2 COOH$ has lower pKa value than CH_3COOH .
- (c) $(CH_3)_2CH CHO$ undergoes aldol condensation whereas $(CH_3)_3C CHO$ does not.

QB365-Question Bank Software

3

23. टी.वी. में एक प्रोग्राम में ब्रेंड तथा दूसर बेकरी उत्पादों में पार्टिशियम ब्रोमेट और पोटैशियम आयोडेट जैसे कार्सिनोजेन्स (कैंसरकारी रसायनों) की उपस्थिति देखने के बाद, वीना, बारहवीं कक्षा की छात्रा, ने दूसरों को खाद्य-पदार्थों में इन कार्सिनोजेन से होने वाले नुकसान (हानिकर प्रभाव) के बारे में जागृत करने का निश्चय किया । वह स्कूल प्रधानाचार्य से मिली और उनसे आग्रह किया कि वे कैन्टीन ठेकेदार को आदेश दें कि वह विद्यार्थियों को सैन्डविच, पिज्जा, बर्गर और दूसरे बेकरी उत्पाद न बेचे । प्रधानाचार्य ने तत्काल कदम उठाते हुए कैन्टीन ठेकेदार को बेकरी उत्पादों की जगह प्रोटीन एवं विटामिन से भरपूर खाना जैसे फल, सलाद, अंकुरित पदार्थ, आदि रखने का आदेश दिया । इस निर्णय का सभी माता-पिता तथा विद्यार्थियों ने स्वागत किया ।

उपर्युक्त उद्भरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) वीना द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (b) आमतौर से उपस्थित ब्रेड में कार्बोहाइड्रेट का कौन-सा पॉलिसैकैराइड घटक होता है ?

4

- (c) प्रोटीनों की द्वितीयक संरचनाओं के दो प्रकार लिखिए।
- (d) जल विलेय विटामिन के दो उदाहरण दीजिए।

After watching a programme on TV about the presence of carcinogens (cancer causing agents) Potassium bromate and Potassium iodate in bread and other bakery products, Veena, a class XII student, decided to make others aware about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct the canteen contractor to stop selling sandwiches, pizzas, burgers and other bakery products to the students. The principal took an immediate action and instructed the canteen contractor to replace the bakery products with some proteins and vitamins-rich food like fruits, salads, sprouts, etc. The decision was welcomed by the parents and students.

After reading the above passage, answer the following questions:

- (a) What are the values (at least two) displayed by Veena?
- (b) Which polysaccharide component of carbohydrates is commonly present in bread?
- (c) Write the two types of secondary structures of proteins.
- (d) Give two examples of water soluble vitamins.

QB365-Question Bank Software (a) निम्नलिखित के लिए कारण दीजिए:

- (i) वर्ग-15 के तत्त्वों के हाइड्राइडों में ${
 m BiH_3}$ प्रबलतम अपचायक है।
- (ii) Cl_2 एक विरंजक के रूप में कार्य करता है।
- (iii) उत्कृष्ट गैसों के क्वथनांक बहत कम होते हैं।
- (b) निम्नलिखित संरचनाओं को आरेखित कीजिए :
 - (i) $H_4P_2O_7$
 - (ii) XeOF₄

3+2=5

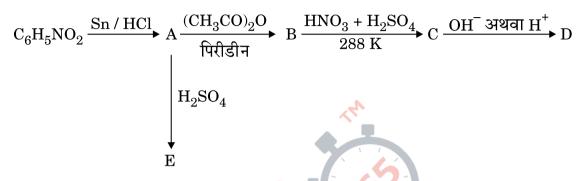
अथवा

- (a) हालाँकि नाइट्रोजन और क्लोरीन की विद्युत्-ऋणात्मकता लगभग समान होती है फिर भी नाइट्रोजन हाइड्रोजन आबंध बनाता है जबकि क्लोरीन नहीं बनाता । क्यों ?
- (b) F_2 के जल से अभिक्रिया करने पर क्या होता है ?
- (c) Ca_3P_2 को जल में घोलने से निकलने वाली गैस का नाम लिखिए ।
- (d) उस उत्कृष्ट गैस स्पीशीज़ का सूत्र लिखिए जो ${
 m IBr}_2^-$ के साथ समसंरचनात्मक है ।
- (e) समीकरण को पूरा कीजिए :

 $[\text{Fe}(\text{H}_2\text{O})_6]^{2+} + \text{NO} \longrightarrow$

5

- (a) Account for the following:
 - (i) BiH₃ is the strongest reducing agent in Group 15 elements hydrides.
 - (ii) Cl₂ acts as a bleaching agent.
 - (iii) Noble gases have very low boiling points.
- (b) Draw the structures of the following:
 - $H_4P_2O_7$
 - (ii) XeOF₄


OR

- (a) Although nitrogen and chlorine have nearly same electronegativity yet nitrogen forms hydrogen bonding while chlorine does not. Why?
- (b) What happens when F_2 reacts with water?
- (c) Write the name of the gas evolved when Ca₃P₂ is dissolved in water.

- (d) Write the formula of a noble gas species which is isostructural with IBr_{2}^{-} .
- (e) Complete the equation:

$$[Fe(H_2O)_6]^{2+} + NO \longrightarrow$$

25. निम्नलिखित अभिक्रियाओं में A, B, C, D और E की संरचनाएँ लिखिए :

5

5

अथवा

- (a) जब बेन्ज़ीन डाइएज़ोनियम क्लोराइड निम्नलिखित अभिकारकों से अभिक्रिया करता है, तब प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) CuCN
 - (ii) CH₃CH₂OH
 - (iii) Cu/HCl
- (b) निम्नलिखित <mark>को उनके क्षारकीय प्राब</mark>ल्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए : ${
 m CH_3NH_2,\,(CH_3)_2NH,\,C_6H_5NH_2,\,C_6H_5CH_2NH_2}$
- (c) ऐनिलीन और ऐथिल ऐमीन में विभेद करने के लिए एक रासायनिक परीक्षण लिखिए। Write the structures of A, B, C, D and E in the following reactions:

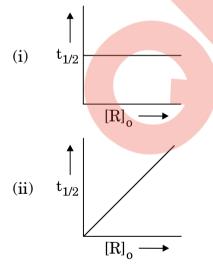
$$C_{6}H_{5}NO_{2} \xrightarrow{Sn / HCl} A \xrightarrow{(CH_{3}CO)_{2}O} B \xrightarrow{HNO_{3} + H_{2}SO_{4}} C \xrightarrow{OH^{-} \text{ or } H^{+}} D$$

$$\downarrow H_{2}SO_{4}$$

$$\downarrow E$$

OR

(a) Write the structures of the main products when benzene diazonium chloride reacts with the following reagents:


- (i) CuCN
- (ii) CH₃CH₂OH
- (iii) Cu/HCl
- (b) Arrange the following in the increasing order of their basic strength:

$$CH_3NH_2$$
, $(CH_3)_2NH$, $C_6H_5NH_2$, $C_6H_5CH_2NH_2$

(c) Write one chemical test to distinguish between Aniline and Ethyl amine.

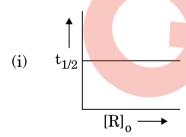
26. (a) एक प्रथम कोटि की अभिक्रिया के 75% वियोजन (पूर्ण) होने में 40 मिनट लगते हैं। इसके $\mathbf{t}_{1/2}$ की गणना कीजिए।

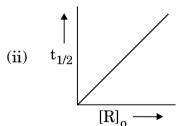
(b) दिए गए आलेखों में अभिक्रिया की कोटि की प्रागुक्ति कीजिए:

जहाँ [R], अभिकारक की प्रारम्भिक सांद्रता है।

(दिया गया है : $\log 2 = 0.3010$, $\log 4 = 0.6021$)

3+2=5


 $QB365 ext{-}Question\ Bank\ Software$ $2\ NO + O_2 \longrightarrow 2\ NO_2$ अभिक्रिया के लिए निम्नलिखित आँकड़े प्राप्त हुए :


प्रयोग	[NO] / M	$[O_2]$ / M	$ m NO_2$ के विरचन का प्रारम्भिक वेग / M $ m min^{-1}$
1	0.3	0.2	$7{\cdot}2\times10^{-2}$
2	0.1	0.1	6.0×10^{-3}
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	$2 \cdot 40 \times 10^{-2}$

- NO और O_2 के प्रति अभिक्रिया की कोटि ज्ञात कीजिए। (a)
- अभिक्रिया का वेग नियम और कुल कोटि को लिखिए (b)
- वेग स्थिरांक (k) की गणना कीजिए | (c)
- A first order reaction is 75% completed in 40 minutes. Calculate its (a) $t_{1/2}$.

5

Predict the order of the reaction in the given plots: (b)

where $[R]_0$ is the initial concentration of reactant.

(Given: $\log 2 = 0.3010$, $\log 4 = 0.6021$)

OR

*QB365-Question Bank Software*The following data were obtained for the reaction:

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

Experiment	[NO] / M	[O ₂] / M	Initial rate of formation of NO_2 / $M min^{-1}$
1	0.3	0.2	$7{\cdot}2\times10^{-2}$
2	0.1	0.1	6.0×10^{-3}
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	$2 \cdot 40 \times 10^{-2}$

- (a) Find the order of reaction with respect to NO and O_2 .
- (b) Write the rate law and overall order of reaction.
- (c) Calculate the rate constant (k).

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

FOREIGN 2017 - Set - 56/2/2

Q.NO	VALUE POINTS	MARK		
•		S		
1	2-Methylbut-3-en-2-ol	1		
2	Neopentane , C(CH ₃) ₄	1		
3	$H_2Te > H_2Se > H_2S > H_2O$	1		
4	P_3Q_2	1		
5	To make the surface available again for more reaction to	1		
	occur / To remove the product formed from the surface of			
	the catalyst.			
6	a. Pentaamminesulphatocobalt(III) chloride	1		
	b.[Pt(NH ₃) ₂ Cl(NO ₂)]	1		
7	a. Zinc to silver	1		
	b. Concentration of Zn ²⁺ ions will increase and Ag ⁺ ions will	1		
	decrease.			
8	a. Cr ³⁺	1/2		
	b.Mn ³⁺	1/2		
	c. Ti ⁴⁺	1/2		
	d. Mn ³⁺	1/2		
9	a.	1		
	H ₂ 0 [O]			
	$CH_3CH=CH_2$ \longrightarrow $CH_3CH(OH)CH_3$ \longrightarrow CH_3COCH_3 $CrO3$			
	H			
	b.			
	Br2/Red P i) aq KOH or NaOH	1		
	$CH_3CH_2COOH \longrightarrow CH_3CH(Br)COOH \longrightarrow CH_3CH (OH)COOH $ ii) H^+	1		
	(or any other suitable method)			
	OR			
9	a.Etard reaction:			
	a			
	$\begin{array}{c} \text{CH}_{3} \\ + \text{ CrO}_{2}\text{Cl}_{2} \xrightarrow{\text{CS}_{2}} \end{array} \begin{array}{c} \text{CH(OCrOHCl}_{2})_{2} \\ \xrightarrow{\text{H}_{3}\text{O}^{*}} \end{array} \begin{array}{c} \text{CHO} \end{array}$			
	+ ClO ₂ Cl ₂	1		
	Toluene Chromium complex Benzaldehyde			

	or	
	Toluene (i) CrO2Cl2, CS2 (ii) H3O+ Benzaldehyde	
	b.Wolff-Kishner reduction:	
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	
	or	
	c=0 (i) NH2NH2 (ii) KOH/ethylene glycol , heat	1
10	The relative lowering of vapour pressure of a solution is equal to the mole fraction of the solute. / The vapour pressure of a solution of a non-volatile solute is equal to the vapour pressure of the pure solvent at that temperature multiplied by its mole fraction. Negative deviation due to formation of Hydrogen bond	1
	between chloroform and acetone.	1/2 + 1/2
11	a. Phenol & Formaldehyde OH & HCHO	1/2+1/2
	b.Vinyl chloride, CH ₂ =CHCl	1/2+1/2
	c. 1,3-Butadiene & styrene CH = CH ₂	
	CH ₂ =CH-CH=CH ₂ and	1/2+ 1/2
12	a. It is the magnitude of difference in energy between the two sets of d orbital i.e. t_2g and e_g	1
	$t_{2g}^4 eg^0$	1
	b. In $[Ni(CN)_4]^{2^-}$, CN^- is a strong field ligand and pairing takes place whereas in $[NiCl_4]^{2^-}$, due to the presence of Cl^- , a weak field ligand no pairing occurs / diagrammatic representation	1
L	1 0. 1 1 1 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1

40	(011) 0 011 1 1 1 1 1	1/ 1/
13.	a. (CH ₃) ₃ C-OH undergoes dehydration.	1/2 + 1/2
	CH C OH Cu CH C CH	
	$CH_3 - CH_3 \xrightarrow{CH_3} CH_3 - CH_2$ $CH_3 - CH_3 \xrightarrow{CH_3} CH_2$	
	b. Methyl group is introduced at ortho and para positions.	
	OCH.	1/2+1/2
	OCH, OCH,	
	+CH ₃ Cl Anhyd. AlCl ₃ +	
	CH.	
	c. Phenol is converted to benzene.	
	ОН	
		1/2+ 1/2
	$+$ Zn \longrightarrow $+$ ZnO	
	The state of the s	
14	a. Eu ²⁺ (4f ⁷) is a strong reducing agent because Eu ³⁺ is more	1
	stable than Eu ²⁺ .	
	b. Dichromate ion changes to chromate ion	
	OH ⁻	1
	$Cr_2O_7^{2-}$ (orange) \rightarrow CrO_4^{2-} (yellow)	
	c. Due to the irregular variation in ionisation enthalpies (sum	
	of 1 st and 2 nd ionisation enthalpies), heat of sublimation and	1
	enthalpy of hydration/ due to irregular electronic	
	configurations from left to right in a period which changes the	
	ionisation potential.	
15	a. Antiseptics are the chemicals which either kill or prevent	
	growth of microbes on living tissues.	1
	b. Cationic detergents are quarternary ammonium salts of amines	
	with acetates, chlorides or bromides as anions / detergents whose	1
	cationic part is involved in cleansing action. c. Antibiotics which kill or inhibit a wide range of Gram-positive	
	and Gram-negative bacteria.	1
16	$A = \pi r^2$	
	$= 3.14 \times 0.5 \times 0.5 \text{ cm}^2$	
	$= 0.785 \text{ cm}^2$	1/2
	<i>I</i> = 45.5 cm	-
	$\rho = R \times A/I$	
	$\rho = 4.55 \times 10^{3} \Omega \times 0.785 \text{ cm}^{2} / 45.5 \text{ cm}$	
	$\rho = 78.5 \Omega \text{ cm}$	1/2
	P	/ 2
	conductivity , κ = 1/ ρ	1/2
	$= 1/78.5 \text{ S cm}^{-1} = 0.0127 \text{ S cm}^{-1}$	1/2
	1/10.00 0 0 m 0.012/ 0 0 m	12

	molar conductivity Λ m = κ x 1000	/c	1/2			
	= 0.0127 S cm ⁻¹ x 1000/0.05 mol	/cm ³				
	$= 254.77 \text{S cm}^2 \text{mol}^{-1}$					
	or					
	$A = \pi r^2$					
	$= 3.14 \times 0.5 \times 0.5 \text{ cm}^2$					
	$= 0.785 \text{ cm}^2$		1/2			
	<i>I</i> = 45.5 cm					
	$G^* = I/A = 45.5 \text{ cm} / 0.785 \text{ cm}^2$					
	= 57.96 cm ⁻¹		1/2			
	$K = G^*/R$	14h	1/2			
	= $57.96 \text{ cm}^{-1}/4.55 \times 10^3 \Omega = 1.27$	× 10 ⁻² S cm ⁻¹	1/2			
	Λm = к x 1000/C	1 /	1/2			
	= $[1.27 \times 10^{-2} \text{S cm}^{-1}] \times 1000 / 0$.05 mol/cm ³				
	= 254.77 S cm ² mol ⁻¹	4.46	1/2			
17	a. The particles of the dispersed p	hase have no affinity for the				
	dispersion medium/solvent repell		1/2+ 1/2			
	sols.Example: metal and their sulp	phides				
		BP.				
	b. The reactant and the catalyst a	re in the same phase.				
	HCI(I)		1/2 + 1/2			
	$CH_3COOCH_3(I) + H_2O(I) \longrightarrow CH_3COOCH_3(I)$	COOH(aq) + CH₃OH(aq)				
		5~				
	c. Oil is dispersed in water/Oil is o	dispersed phase and water is				
	dispersion medium.		1/2+ 1/2			
	Ex- milk					
	(0	r any other correct example)				
	OR					
17	Physisorption	Chemisorption	1+1+1			
	1 Because of van der Waals	Caused by chemical				
	forces	bond formation				
	2 Reversible	Irreversible				
	3 Enthalpy of adsorption is	Enthalpy of adsorption is				
	low(20-40 kJ/mol)	high(80-240)kJ/mol				
	(Or a	any other correct difference)				
18	Given: T _b of glucose solution= 100	0.20°C				
	$\Delta T_b = K_b.m$					

	m= 0.20/ 0.512 m= 0.390 mol/kg	1
	$\Delta T_f = K_f$. m $\Delta T_f = 1.86$ K kg/mol x 0.390 mol/kg	1/2
	$\Delta T_f = 0.725 \text{ K}$	1/2
	Freezing point of solution = 273.15K - 0.725 = 272.425K	1
19	a) Zone Refining – Impurities are more soluble in the melt than in the solid metal.	1
	b) Collectors enhance non- wettability of the mineral particles.Ex Pine oil/ fatty acids	1
	c) Carbon monoxide (CO)	1
20	a. For bcc structure $a = 4r / \sqrt{3}$ or $r = \sqrt{3}a/4$ $r = \sqrt{3} \times 400 \text{ pm } /4$	1/2
	= 1.732 x 400 pm/4 = 173.2 pm b.	1/2
	(i) Impurity defect (ii) Cationic vacancies are created.	1
21	a. b. C. CH CH CH 2C1 HO CH 2C1	1,1,1
22	 a. Due to steric hindrance and +I effect caused by two alkyl groups in propanone. b. Due to electron withdrawing nature of -NO₂ group which 	1/2+ 1/2
	increases the acidic strength and decreases the pK _a value . c. $(CH_3)_2CH$ -CHO has one α -H atom whereas α - H atom is absent in $(CH_3)_3C$ -CHO.	1
23	(i)Concerned, caring, socially alert, leadership (or any other 2 values)	1/2 + 1/2
	(ii)starch	1

Ī		1/2 + 1/2				
	(iii) α -Helix and β -pleated sheets					
	(iv)Vitamin B / B_1 / B_2 / B_6 / C (any two)					
24	a. (i) Thermal stability of hydrides decreases down the group/ Bond dissociation enthalpy decreases down the group.					
	(ii) Because Cl ₂ in presence of moisture liberates nascent					
	oxygen. (iii) Interatomic interactions are weak					
	b.(i) (ii)					
	P P Xe F	1,1				
	OR OR					
24	a) Size of nitrogen is smaller than Chlorine.					
	b) $2F_2 + 2H_2O \rightarrow 4HF + O_2 / HF$ and O_2 are produced c) PH_3 /Phosphine					
	d) XeF ₂					
	e) $[Fe(H_2O)_6]^{2+} + NO - \rightarrow [Fe(H_2O)_5(NO)]^{2+} + H_2O$	1				
25		1×5=5				
	ŅHCOCH₃ HŅ CH₃					
	NH ₂					
	$(A) \qquad (B) \qquad (C) \qquad ^{NO_2}$					
	(D) (E) NH ₂					
	NH ₃ HSO ₄					
	NO ₂					
	OR					
l .						

25	a. i) iii) iii)	
	CI CI	1,1,1
	b. $C_6H_5NH_2 < C_6H_5CH_2NH_2 < CH_3NH_2 < (CH_3)_2NH$	1
	c. Add NaNO ₂ + HCl to both the compounds at 273K followed by addition of phenol. Aniline gives orange dye (or any other correct test)	1
26.	k= <u>2.303</u> log <u>[A]</u> ₀ t [A]	1/2
	$= 2.303 \log 100$ $40 25$ $= 2.303 \log 4$ 40	1/2
	$= 2.303 \log 100$ $40 25$ $= 2.303 \log 4$ 40 $= 2.303 \times 0.6021$ 40 $k = 0.0347 \text{ min}^{-1}$ $t_{1/2} = 0.693$	1/2
	N .	1/2
	t $_{1/2} = 0.693$ = 19.98 min = 20min 0.0347 min ⁻¹ b. (i) first order reaction (ii) zero order reaction	1 1 1
	OR	
26	(a) Rate = k [NO] ^x [O ₂] ^y 7.2 X 10^{-2} = k[0.3] ^x [0.2] ^y Eqn (1) 6.0 X 10^{-3} = k[0.1] ^x [0.1] ^y Eqn (2) 2.88 X 10^{-1} = k[0.3] ^x [0.4] ^y Eqn (3) 2.40 X 10^{-2} = k[0.4] ^x [0.1] ^y	

Dividing eqn 4 by eqn 2	
$2.40 \times 10^{-2} = k[0.4]^{x} [0.1]^{y}$	
$6.0 \times 10^{-3} = k[0.1]^{x} [0.1]^{y}$	1
x=1	
Dividing eqn 3 by eqn 1	
$2.88 \times 10^{-1} = k[0.3]^{x} [0.4]^{y}$	
$7.2 \times 10^{-2} = k[0.3]^{x} [0.2]^{y}$	1
y = 2	
order w.r.t. NO = 1, order w.r.t O_2 is 2	1/2 , 1/2
(b) Rate law	
Rate = $k [NO]^1 [O_2]^2$; The overall order of the reaction is 3.	1/2 + 1/2
c. rate constant k = <u>rate</u> = <u>7.2 X 10⁻²</u>	
$[NO]^{1}[O_{2}]^{2}$ 0.3 $X(0.2)^{2}$	
k= 6.0 mol ⁻² L ² min ⁻¹	1

			4 (0)	
1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena	21	,	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	