Series OSR/C QB365 - Question Bank Software

कोड नं. 65/2 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में $oldsymbol{29}$ प्रश्न हैं। <
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्र
 में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे
 और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 29 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 100

Time allowed: 3 hours Maximum Marks: 100

OB365 - Question Bank Software सामान्य निर्देश :

- सभी प्रश्न अनिवार्य हैं। (i)
- इस प्रश्न पत्र में 29 प्रश्न हैं जो तीन खण्डों में विभाजित हैं : अ. ब तथा स । खण्ड अ में (ii) 10 प्रश्न हैं जिनमें से प्रत्येक एक अंक का है । खण्ड ब में 12 प्रश्न हैं जिनमें से प्रत्येक चार अंक का है । खण्ड स में 7 प्रश्न हैं जिनमें से प्रत्येक छ: अंक का है ।
- खण्ड अ में सभी प्रश्नों के उत्तर एक शब्द. एक वाक्य अथवा प्रश्न की आवश्यकता अनुसार (iii) दिए जा सकते हैं।
- पूर्ण प्रश्न पत्र में विकल्प नहीं हैं। फिर भी चार अंकों वाले 4 प्रश्नों में तथा छः अंकों वाले (iv)2 प्रश्नों में आन्तरिक विकल्प है। ऐसे सभी प्रश्नों में से आपको एक ही विकल्प हल करना है ।
- कैलकुलेटर के प्रयोग की अनुमति **नहीं है। यदि आवश्यक हो** तो आप लघुगणकीय सारणियाँ (v)JESTION BANK माँग सकते हैं।

General Instructions:

- All questions are compulsory. *(i)*
- The question paper consists of 29 questions divided into three sections A, (ii) B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- All questions in Section A are to be answered in one word, one sentence or (iii) as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- Use of calculators is **not** permitted. You may ask for logarithmic tables, if (v) required.

SECTION A

प्रश्न संख्या 1 से 10 तक प्रत्येक प्रश्न 1 अंक का है | Question numbers 1 to 10 carry 1 mark each.

1. निम्न का मान ज्ञात कीजिए :

$$\cot\left(\frac{\pi}{2}-2\cot^{-1}\sqrt{3}\right)$$

Find the value of the following:

$$\cot\left(\frac{\pi}{2}-2\cot^{-1}\sqrt{3}\,\right)$$

2. मान ज्ञात कीजिए:

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx$$

Evaluate:

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x$$

3. माना $*: R \times R \to R$, $(a, b) \to a + 4b^2$ द्वारा प्रदत्त एक द्विआधारी संक्रिया है । (-5)*(2*0) का परिकलन कीजिए ।

Let $*: R \times R \to R$ given by $(a, b) \to a + 4b^2$ is a binary operation. Compute (-5)*(2*0).

QB365 - Question Bank Software बिन्दु $(\alpha,\,\beta,\,\gamma)$ से गुज़रने वाली उस सरल रेखा का समीकरण लिखिए जो z-अक्ष के समान्तर 4. है ।

Write the equation of the straight line through the point (α, β, γ) and parallel to z-axis.

एक 3×3 आव्यूह के अवयव $a_{ij} = \frac{1}{2} \left| -3i + j \right|$ द्वारा प्रदत्त हैं । अवयव a_{32} का मान **5.** लिखिए।

The elements a_{ij} of a 3 × 3 matrix are given by $a_{ij} = \frac{1}{2} |-3i+j|$. Write the value of element a₃₂.

- सदिश \hat{i} + \hat{j} + \hat{k} तथा x-अक्ष के बीच का कोण ज्ञात कीजिए i6. Find the angle between x-axis and the vector $\hat{i} + \hat{j} + \hat{k}$.
- यदि $(2x ext{ 4})$ $\begin{pmatrix} x \\ -8 \end{pmatrix} = 0$ है, तो x का धनात्मक मान ज्ञात कीजिए।

If $(2x \ 4) \begin{pmatrix} x \\ -8 \end{pmatrix} = 0$, find the positive value of x.

यदि $\mid \overrightarrow{a} \mid = 8, \mid \overrightarrow{b} \mid = 3$ तथा $\mid \overrightarrow{a} \times \overrightarrow{b} \mid = 12$ है, तो \overrightarrow{a} तथा \overrightarrow{b} के बीच का 8. कोण ज्ञात कीजिए।

If $|\overrightarrow{a}| = 8$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 12$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Write the value of
$$\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix}$$

10.
$$\int \frac{\sin^6 x}{\cos^8 x} dx$$
 ज्ञात कीजिए।

Find
$$\int \frac{\sin^6 x}{\cos^8 x} dx$$
.

प्रश्न संख्या 11 से 22 तक प्रत्येक प्रश्न 4 अंक का है।

Question numbers 11 to 22 carry 4 marks each.

11. अवकल समीकरण
$$\left\{x\sin^2\left(\frac{y}{x}\right)-y\right\}dx+x\,dy=0$$
 का विशिष्ट हल ज्ञात कीजिए, दिया है कि जब $x=1$ है, तो $y=\frac{\pi}{4}$ है ।

Find the particular solution of the differential equation
$$\left\{x\sin^2\left(\frac{y}{x}\right)-y\right\}dx+x\;dy=0\;\text{, given that }y=\frac{\pi}{4}\;\text{, when }x=1.$$

12. दिखाइए कि

QB365 - Question Bank Software

$$\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \cos^{-1}\left(\frac{36}{85}\right)$$

अथवा

x के लिए हल कीजिए:

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x), [x > 0]$$

Show that

$$\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \cos^{-1}\left(\frac{36}{85}\right)$$

OR

Solve for x:

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1}(x), [x > 0]$$

13. सारणिकों के गुणधर्मों के प्रयोग से निम्न को सिद्ध कीजिए :

$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$

Using properties of determinants, prove the following:

$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$

QB365 - Question Bank Software 14. अवकल समीकरण $x\frac{\mathrm{d}y}{\mathrm{d}x}+y=x\cos x+\sin x$, दिया है कि $y\left(\frac{\pi}{2}\right)=1$, को हल कीजिए।

Solve the differential equation $x \frac{dy}{dx} + y = x \cos x + \sin x$, given $y \left(\frac{\pi}{2}\right) = 1$.

- **15.** 3न अंतरालों को ज्ञात कीजिए जिनमें फलन $f(x) = \frac{3}{10}x^4 \frac{4}{5}x^3 3x^2 + \frac{36}{5}x + 11$
 - (a) निरंतर वर्धमान है, (b) निरंतर हासमान है।

अथवा

एक समबाहु त्रिभुज की भुजाएँ 2 सेमी/सेकण्ड की दर से बढ़ रही हैं। इस त्रिभुज का क्षेत्रफल किस दर से बढ़ रहा है, जब त्रिभुज की भुजा 10 सेमी है।

Find the intervals in which the function given by

 $f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11 \text{ is (a) strictly increasing (b) strictly decreasing.}$

OR

The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. Find the rate at which the area increases, when the side is 10 cm.

16. मान लीजिए दो फलन $f,g:R\to R$ निम्न रूप से परिभाषित हैं : f(x)=|x|+x तथा g(x)=|x|-x, सभी $x\in R$ के लिए । तो fog तथा gof ज्ञात कीजिए ।

Let $f, g : R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| - x, for all $x \in R$. Then find fog and gof.

17. यदि $y = \sin^{-1}\left\{x\sqrt{1-x} - \sqrt{x}\,\sqrt{1-x^2}\right\}$ तथा 0 < x < 1, तो $\frac{dy}{dx}$ ज्ञात कीजिए ।

 $\label{eq:final_section} If \ y = sin^{-1} \, \left\{ x \sqrt{1-x} - \sqrt{x} \, \sqrt{1-x^{\, 2}} \, \right\} \ \ and \ 0 < x < 1, \ then \ find \ \frac{dy}{dx} \, .$

QB365.- Question Bank Software 18. बिन्दु, जिसका स्थिति सदिश i + 3j + 4k है, का समतल $r \cdot (2i - j + k) + 3 = 0$ में प्रतिबिम्ब ज्ञात कीजिए।

Find the image of the point having position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$.

19. एक कक्षा में 15 छात्र हैं जिनकी आयु 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 और 20 वर्ष है । एक छात्र को इस प्रकार चुना गया है कि प्रत्येक छात्र के चुने जाने की संभावना समान है और चुने गए छात्र की आयु X को लिखा गया है । यादृच्छिक चर X का प्रायिकता बंटन ज्ञात कीजिए । X का माध्य भी ज्ञात कीजिए ।

A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X? Find the mean of X.

20. सिंदश \overrightarrow{p} ज्ञात कीजिए जो सिंदश $\overrightarrow{\alpha}=4\hat{i}+5\hat{j}-\hat{k}$ तथा $\overrightarrow{\beta}=\hat{i}-4\hat{j}+5\hat{k}$ दोनों के लम्बवत् हो, तथा $\overrightarrow{p}\cdot\overrightarrow{q}=21$ हो, जहाँ $\overrightarrow{q}=3\hat{i}+\hat{j}-\hat{k}$ है।

अथवा

एक मात्रक सदिश, जो समतल ABC के लम्बवत् हो, ज्ञात कीजिए, जबिक A, B और C के स्थिति सदिश क्रमशः $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}+\hat{j}+2\hat{k}$ तथा $2\hat{i}+3\hat{k}$ हैं।

Find the vector $\stackrel{\rightarrow}{p}$ which is perpendicular to both $\stackrel{\rightarrow}{\alpha}=4\,\hat{i}+5\,\hat{j}-\hat{k}$ and $\stackrel{\rightarrow}{\beta}=\hat{i}-4\,\hat{j}+5\,\hat{k}$ and $\stackrel{\rightarrow}{p}\cdot q=21$, where $\stackrel{\rightarrow}{q}=3\,\hat{i}+\hat{j}-\hat{k}$.

OR

Find the unit vector perpendicular to the plane ABC where the position vectors of A, B and C are $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{k}$ respectively.

21. दिखाइए कि : *QB365 - Question Bank Software*

$$\int\limits_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} \, dx \; = \; \frac{1}{\sqrt{2}} \log \left(\sqrt{2} + 1 \right)$$

अथवा

ज्ञात कीजिए:

$$\int \frac{x^3}{x^4 + 3x^2 + 2} dx$$

Show that:

$$\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log \left(\sqrt{2} + 1\right)$$

OR

Find:

$$\int \frac{x^3}{x^4 + 3x^2 + 2} dx$$

22. अचर राशि k का मान ज्ञात कीजिए जिसके लिए निम्न द्वारा परिभाषित फलन f, बिन्दु x=0 पर सतत हो :

$$f(x) = \begin{cases} \left(\frac{1-\cos 4x}{8x^2}\right), & \text{यद} & x \neq 0 \\ k, & \text{यद} & x = 0 \end{cases}$$

Find the value of the constant k so that the function f, defined below, is continuous at x = 0, where

$$f(x) = \begin{cases} \left(\frac{1-\cos 4x}{8x^2}\right), & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$

SECTION C

प्रश्न संख्या 23 से 29 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 23 to 29 carry 6 marks each.

23. एक थैले में 4 गेंदें हैं। थैले में से यादृच्छिक रूप से (प्रतिस्थापना रहित) किन्हीं दो गेंदों को निकालने पर ज्ञात होता है कि ये दोनों गेंदें सफेद रंग की हैं। थैले की 4 गेंदों के सफेद रंग के होने की प्रायिकता ज्ञात कीजिए।

अथवा

एक खेल में किसी व्यक्ति को एक न्याय्य पासे को उछालने के बाद छः आने पर पाँच रुपए मिलते हैं और अन्य कोई संख्या आने पर वह एक रुपया हार जाता है। यह व्यक्ति यह निर्णय लेता है, कि वह पासे को तीन बार फेंकेगा लेकिन जब भी छः प्राप्त होगा, वह खेलना छोड़ देगा। उसके द्वारा जीती/हारी गई राशि की प्रत्याशा ज्ञात कीजिए।

An urn contains 4 balls. Two balls are drawn at random from the urn (without replacement) and are found to be white. What is the probability that all the four balls in the urn are white?

OR

In a game, a man wins rupees five for a six and loses rupee one for any other number, when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.

24. दो विद्यालय, P तथा Q, अपने चुने गए कुछ विद्यार्थियों को निष्कपटता, सत्यवादिता तथा पिरश्रमी होने के मूल्यों के लिए प्रित विद्यार्थी क्रमशः \mathbb{Z} \mathbb{X} , \mathbb{Z} \mathbb{Z} तथा \mathbb{Z} देना चाहते हैं । विद्यालय P अपने क्रमशः \mathbb{Z} , \mathbb{Z} तथा \mathbb{Z} विद्यार्थियों को उपरोक्त मूल्यों के लिए कुल \mathbb{Z} 4,600 पुरस्कार स्वरूप देना चाहता है जबिक विद्यालय \mathbb{Z} अपने क्रमशः \mathbb{Z} , \mathbb{Z} विद्यार्थियों को उपरोक्त मूल्यों के लिए कुल \mathbb{Z} 4,100 पुरस्कार स्वरूप देना चाहता है । यदि इन मूल्यों के एक-एक पुरस्कार की कुल राशि \mathbb{Z} 1,500 है, तो आव्यूहों के प्रयोग से प्रत्येक मूल्य की पुरस्कार राशि ज्ञात कीजिए । विद्यालयों को पुरस्कार देने के लिए आप एक अन्य मूल्य सुझाइए ।

Two schools, P and Q, want to award their selected students for the values of sincerity, truthfulness and hard work at the rate of $\forall x, \forall y$ and $\forall z$ for each respective value per student. School P awards its 2, 3 and 4 students on the above respective values with a total prize money of $\forall 4,600$. School Q wants to award its 3, 2 and 3 students on the respective values with a total award money of $\forall 4,100$. If the total amount of award money for one prize on each value is $\forall 1,500$, using matrices find the award money for each value. Suggest one other value which the school can consider for awarding the students.

OB365 - Question Bank Software एक प्रकार के केक के लिए 200 ग्राम आटा तथा 25 ग्राम वसा (fat) की आवश्यकता होती 25. है तथा दूसरी प्रकार के केक के लिए 100 ग्राम आटा तथा 50 ग्राम वसा की आवश्यकता होती है। केकों की अधिकतम संख्या ज्ञात कीजिए जो 5 किलोग्राम आटा व 1 किलोग्राम वसा से बन सकते हैं। यह मान लिया गया है कि केकों को बनाने के लिए अन्य पदार्थों की कोई कमी नहीं रहेगी । उपरोक्त को एक रैखिक प्रोग्रामन समस्या बना कर ग्राफ द्वारा हल कीजिए।

One kind of cake requires 200 g of flour and 25 g of fat, another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat, assuming that there is no shortage of the other ingredients used in making the cakes.

Make it an LPP and solve it graphically.

ज्ञात कीजिए: 26.

$$\int \frac{\sqrt{x^2 + 1} (\log (x^2 + 1) - 2 \log x)}{x^4} dx$$

अथवा

ज्ञात कीजिए:

$$\int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} dx, \ x \in [0, 1]$$

Find:

$$\int \frac{\sqrt{x^2 + 1} (\log (x^2 + 1) - 2 \log x)}{x^4} dx$$

OR

Find:

$$\int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} dx, \ x \in [0, 1]$$

QB365 - Question Bank Software, उस समतल का समीकरण ज्ञात कीजिए जो समतलों $\hat{r}\cdot(\hat{i}+\hat{j}+\hat{k})=1$ तथा **27.** \vec{r} . $(2\vec{i} + 3\vec{j} - \vec{k}) + 4 = 0$ की प्रतिच्छेदन रेखा से होकर गुज़रता हो तथा x-अक्ष के समान्तर हो ।

Find the equation of the plane passing through the line of intersection of the planes $\overrightarrow{r} \cdot (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}) = 1$ and $\overrightarrow{r} \cdot (2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}) + 4 = 0$ and parallel to x-axis.

वक्र $y^2 = 4ax$ पर एक ऐसा बिन्द P ज्ञात कीजिए जिसकी बिन्द (11a, 0) से द्री न्यूनतम 28. हो ।

Find the point P on the curve $y^2 = 4ax$ which is nearest to the point (11a, 0).

समाकलन के प्रयोग से, प्रथम चतुर्थांश में वृत्त $x^2 + y^2 = 18$, रेखा y = x एवं x-अक्ष से घिरे **29.** क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

Using integration, find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 18$.

1		
	65/2.	
	SECTION-A	
	1. $\sqrt{3}$ 2. $\frac{11}{2}$ 3. 11 4. $\frac{1}{2-\alpha} = \frac{y-\beta}{0} = \frac{z-y}{1}$ or $\frac{1}{2} = (\frac{x_1^2 + \beta_2^2 + \beta_2^2}{2} = \frac{z-y}{1})$	211 1/11
	5. $\frac{7}{2}$ 6. $\cos(\frac{1}{\sqrt{3}})$ 7. $x=4$. 8. $\frac{11}{6}$ 9. 0 (zero) 10. $\tan x$	$(k)+\lambda(k)$
	SECTION-B	+ c. 1x10=
11	Given differential equation can be written as	
	$\frac{dy}{dx} = \frac{y}{x} - \sin(\frac{y}{x})$	1
		2
	$\frac{1}{2} = V \Rightarrow V + \propto \frac{dV}{dx} = V - SIDV$	2
	$\Rightarrow - \operatorname{cosec}^2 v dv = \frac{dx}{2c}$ $\Rightarrow \operatorname{Cot} v = \operatorname{log} x + C : \operatorname{Cot} \sqrt{x} = \operatorname{log} x + C$	1+1
	$x = 1, y = \frac{1}{4} \Rightarrow c = 1.$	
	=> solution is Cot y = 1+ log x	12 12
		2
12.	Getting Sin (8) = tan 8 , and	1
	$sim\left(\frac{3}{5}\right) = tan\frac{3}{4}$	-
	$\sin \left(\frac{3}{5}\right) = tan \frac{3}{4}$ $\therefore LHs = tan \frac{8}{15} + tan \frac{3}{4} = tan \left(\frac{8}{15} + \frac{3}{4}\right)$ $= tan \left(\frac{77}{15}\right)$	1
	$= tan \left(\frac{77}{15}\right)$	1
	$= tail \left(\frac{77}{36} \right)$ $= cos \left(\frac{36}{85} \right)$	1
	(85)	7
	$tan \left(\frac{1-x}{1+x}\right) = \frac{1}{2}tan x \Rightarrow \frac{11}{4} - tan x = \frac{1}{2}tan x$	2
	5이는 이용 (MEDIS) 전에 다른 15일 1일	A
	$\frac{3}{2} \tan x = \frac{11}{4}$ or $\tan x = \frac{11}{6}$	7+7
12	\Rightarrow	1
13.	Same as 013 in 6511 Same as 019 in 6511	
15.	Same as 016 in 651	
16.	Same as 911 in 65/1	
17.	Put x = sinx and Jx = sing	1
	y = Sin' (Sina CusB - Cosa SinB)	1
	$= \sin(\sin(\alpha-\beta)) = \alpha-\beta$	1
	$ \begin{array}{ccc} $	2,
	$\frac{dy}{dx} = \frac{QB365 - Question Bank Software}{\sqrt{1-x^2} - \sqrt{1-x} - 2\sqrt{x}}$	12

1		
18.	Px(i+3j+4k) Equation of line PO is	
	$2 = (\hat{1} + 3\hat{1} + 4\hat{k}) + \lambda(2\hat{1} - \hat{1} + \hat{k})$	
4		1
	of these are coordinates of points, then	
	$2(1+2\lambda)-1(3-\lambda)+1(4+\lambda)+3=0$	1
	$6\lambda = -3-3 \Rightarrow \lambda = -1$	1
	: coords. of Q are (-1, 4, 3)	1
	let coords of P' be (x, y, z) then $(x, yz) = (-3, 5, 2)$	1
10	$\frac{x+1}{2} = -1$, $\frac{y+3}{2} = 4$, $\frac{z+4}{2} = 3$ $(x, y, z) = (-3, 5, 2)$	
19,	Same as 022 in 651	
21,	same as Q17 in 651	
22.	Same as 814 in 651.	
	Same as Q27 in 651 Same as Q28 in 651 Same as Q29 in 651 Same as Q29 in 651 Same as Q29 in 651	
23	Same as Q27 in 6\$1	
24.	same as 828 in 65/12	
25	same as 029 in 65%	
26	same as 825 vis 651	
27.	pay same as Q26 in 651	4
28.	(119,0) let PCX,y) be the nearest point	11/2
-0	$D = \sqrt{(x - 11a)^2 + y^2}$	12
	$68 = (x-11a)^2 + y^2 = (x-11a)^2 + 4ax$	立
		1
	$\frac{ds}{dx} = 2(x-11a) + 4a$	-1
	$\frac{ds}{dx} = 0 \Rightarrow x = 9a$ $y = \pm 6a$	1
	17 ds = 2 >0 > for Minimum distance coords are P(9a;6a)	1 + 1 2
	dx2 coords are P(9a;6a)	
29.	Point of intersection of circle and line is (3,3)	- 1
1	Area = $\int x dx + \int \sqrt{18-x^2} dx$	- 1+1
	$= \left[\frac{x^2}{3} \right]_0^3 + \left[\frac{3}{3} \sqrt{18 - x^2} + 9 \sin \frac{x}{3\sqrt{2}} \right]_3^{3\sqrt{2}}$	立+1
	QB365 - Question Bank Software	
	- 25 Procession Bank software	-1