OB365-Question Bank Software CBSE Class 10 Maths (Standard) Question Paper 2020 Set 2

CLASS: X

MATHEMATICS STANDARD

SET 2 SOLVED (CODE 30/5/2)

General Instructions:

Read the following instructions very carefully and strictly follow them:

- i. This question paper comprises four sections A, B, C and D. This question paper carries 40 questions. All questions are compulsory.
- ii. Section A: Question numbers 1 to 20 comprises of 20 questions of one mark each.
- iii. Section B: Question numbers 21 to 26 comprises of 6 questions of two marks each.
- iv. Section C: Question numbers 27 to 34 comprises of 8 questions of three marks each.
- v. Section D: Question numbers 35 to 40 comprises of 6 questions of four marks each.
- vi. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
- vii. In addition to this, separate instructions are given with each section and question, wherever necessary.
- viii. Use of calculators is not permitted.

SECTION - A

Question numbers 1 to 20 carry 1 mark each.

Question numbers 1 to 10 are multiple choice questions.

Choose the correct option.

- 1. The value (s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is
 - (a) 4 (b) ± 4 (c) -4
- 2. Which of the following is not an A.P?

(a) -1.2, 0.8, 2.8, ... (b) $3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2}$

(c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$ (d) $\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \dots$

In figure – 3, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre
 O. If ∠QPR = 90°, then length of PQ is

(d) 0

(OR)

Show that the points (7, 10), (-2, 5) and (3, -4) are vertices of an isosceles right triangle.

- 33. In an A.P. given that the first term (a) = 54, the common difference (d) = -3 and the nth term (a_n) = 0, find n and the sum of first n terms (S_n) of the A.P.
- 34. Read the following passage and answer the questions given at the end :

QB365-Question Bank Software MATHEMATICS STANDARD

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

Diwali Fair

A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bage are respresented in Figure - 8. Prizes are given, when a black marbles is picked. Shweta plays the same once.

(i) What is the probability that she will be allowed to pick a marble from the bag?

(ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize,

When it is given that the bag contains 20 balls out of which 6 are black?

SECTION – D

Question numbers 35 to 40 carry 4 marks each.

35. Sum of the areas of two squares is 544 m^2 . If the diffeence of their perimeter is 32 m, find the sides of the two squares.

(**OR**)

A motor boat whose speed is 18km/h in still water takes 1 hour more to go 24km upstream than to return downstream to the same spot. Find the speed of the stream.

36. A solid toy is in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of the base is 7 cm. Determine the volume of the toy. Also find the area of the

coloured sheet required to cover the toy.

$$\left(Use\,\pi=\frac{22}{7}\,and\,\sqrt{149}=12.2\right)$$

37. For the following data, draw a 'less than' ogive and hence find the median of the distribution. Less than frequency distribution

QB365-Question Bank Software MATHEMATICS STANDARD

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

Age (in years)	0-10	10 - 20	20 - 30	30-40	40 - 50	50 - 60	60 - 70
Number of persons	5	15	20	25	15	11	9

(**OR**)

The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets taken.

38. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

 $\left(Use\sqrt{3}=1.73\right)$

- 39. Prove that in a right angled triangle the square of hypotenuse is equal to the sum of square of other two sides.
- 40. Obtain other zeroes of the polynomial $p(x) = 2x^4 x^3 11x^2 + 5x + 5$ if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.

What minimum must be added to $2x^3 - 3x^2 + 6x + 7$ so that the resulting polynomial will be divisible by $x^2 - 4x + 8$?

(OR)

OB365-Ouestion Bank Software CBSE Class 10 Maths (Standard) Question Paper Solution 2020 Set 2

CLASS: X

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

Q. NO	SOLUTION	MARKS		
SECTION – A				
1.	(B) ±4	1		
2.	(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1		
3.	(B) 4 cm	1		
4.	(C) $2\sqrt{m^2 + n^2}$	1		
5.	(A) 2	1		
б.	(A) $AB^2 = 2AC^2$	1		
7.	(D) (3, 0) OR	1		
	$(\mathbf{C})\left(0,\frac{7}{2}\right)$	1		
8.	(B) inconsistent	1		
9.	(A) 50°	1		
10.	(C) $3^{\frac{2}{3}}$	1		
11.	5 units	1		

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

	= AP + AQ	
	= 2AP [AP = AQ, Tangents drawn from	1/2
	external point]	
	$= 2 \times 12$	
	= 24 cm.	1⁄2
23.	Number of small cubes made $=\frac{\text{Volume of cube of side 10 cm}}{\text{Volume of cube of side 2 cm}}$	1
	$=\frac{10\times10\times10}{2\times2\times2}=125$	
	125 cubes can be made.	1
24.	Given DE AC $BPT \Rightarrow \frac{BE}{EC} = \frac{BD}{AD} \qquad \dots 1$ and, DF AC	1/2
	$By BPT \Rightarrow \frac{BF}{FE} = \frac{BD}{AD} \qquad \dots 2$ From 1 and 2	1/2
	$\frac{BE}{EC} = \frac{BF}{FE}$ Hence proved.	1
25	Let $5+2\sqrt{7}$ be rational	
23.	So $5 + 2\sqrt{7} = \frac{a}{b}$, where 'a' and 'b' are integers $b \neq 0$	1⁄2

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

	$2\sqrt{7} = \frac{a}{b} - 5$	
	$2\sqrt{7} = \frac{a-5b}{5}$	
	$\sqrt{7} = \frac{a - 5b}{2b}$	1/2
	Since 'a' and 'b' are integers $a - 5b$ is also an integer.	
	$\frac{a-5b}{2b}$ is rational. So RHS is rational. LHS should be	
	rational. but it is given that $\sqrt{7}$ is irrational .Our assumption	
	is wrong. So $5+2\sqrt{7}$ is an irrational number.	1
	(OR)	
	$12^{n} = (2 \times 2 \times 3)^{n}$	
	If a number has to and with digit 0. It should have	
	prime factors 2 and 5.	1
	By fundamental theorem of arithmetic,	
	$12^{\rm n} = (2 \times 2 \times 3)^{\rm n}$	
	It doesn't have 5 as prime factor. So 12 ⁿ cannot end with	1
	digit 0.	
26.	Given A, B and C are interior angles of $\triangle ABC$	
	So $A + B + C = 180$	
	B + C = 180 - A	1
	$\frac{B+C}{2} = \frac{180-A}{2} = 90 - \frac{A}{2}$	
	$\frac{B+C}{2} = 90 - \frac{A}{2}$	

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

	$r^2 + 48r - 324 = 0$	
	(x+54)(x-6) = 0	
	x = 6, -54	
	\therefore $x = 6 km / hr$	
	Speed of stream = $6 \ km / hr$	2
36.	Volume of the toy = Volume of cone + Volume of	
	hemisphere	
	10 7 OUESTION BANK 365 OUESTION BANK 365	
	Cone: $r = 7 \text{ cm}$	
	h = 10 cm	
	Hemisphere: $r = 7 \text{ cm}$	
	Volume of toy $=\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$	1

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

S

SET 2 (CODE: 30/5/2) SERIES: JBB/5

QB365-Question Bank Software

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

		(OR)			
To find	mean				
	Number of	Number of	xi $x_i - a$	u _i f _i	
	wickets	bowlers (f)	$u_i = \frac{u_i}{h}$		
-	20 - 60	7	40 -3	-21	
	60 - 100	5	80 -2	-10	
	100 - 140	16	120 -1	-16	
	140 - 180	12	160 0	0	
	180 - 220	2	200 1	2	
	220 - 260	3	240 2	56	
		45		-39	1
	Assumed ma Class size h $Mean \bar{x} = a + \left(\sum_{x=1}^{2} \frac{1}{x} + \frac{1}{x} \right)$ $= 160 + \frac{1}{x} = 160 - \frac{1}{x} = 125.33$	ean a = 160 = 40 $\sum_{i=1}^{n} f_{i} u_{i} \times h$ $\left(\frac{-39 - 13}{45 \ \cancel{9}3} \times 40\right)$ $\left(\frac{-104}{3}\right)$ 34.66 34.67 3	STIONS		1

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

	$\sqrt{3} = \frac{20+h}{20}$	
	$\Rightarrow 20\sqrt{3} = 20 + h$	
	$\Rightarrow \qquad h = 20\sqrt{3} - 20$	
	$\Rightarrow h = 20(\sqrt{3}-1)$	
	Hence, the height of the tower $20(\sqrt{3}-1)m = 20(1.73-1)=20$ x	
	0.73= 14.6 m	2
39.	For correct Given, to prove, Construction and figure	$\frac{1}{2} \times 4 = 2$
	For Correct proof	2
	Pythagoras theorem proof: Refer NCERT text book Pg: No. 145	
40.	$p(x) = 2x^4 - x^3 - 11 x^2 + 5x + 5$	
	Two zeros are $\sqrt{5}$ and $-\sqrt{5}$	
	$\therefore x = \sqrt{5}$ $x = -\sqrt{5}$	
	$(x-\sqrt{5})(x+\sqrt{5}) = x^2 - 5$ is a factor of $p(x)$	
	To find other zeroes	1
	$2x^2 - x - 1$ $x^2 - 5$ $2x^4 - x^3 - 11x^2 + 5x + 5$	
	$- + 2x^4 - 10x^2$	
	$ \frac{-x^3 - x^2 + 5x}{-x^3 + 5x} $	
	$-x^2 + 5$ $-x^2 + 5$ 0	

MATHEMATICS STANDARD SOLVED

SET 2 (CODE: 30/5/2) SERIES: JBB/5

