## Maths (Standard) Delhi (Set 2)

## General Instructions :

(i) This question paper comprises four sections - A, B, C and $D$. This question paper carries 40 questions. All questions are compulsory:
(ii) Section A : Q. No. 1 to 20 comprises of 20 questions of one mark each.
(iii) Section B : Q. No. 21 to 26 comprises of 6 questions of two marks each.
(iv) Section C: Q. No. 27 to 34 comprises of 8 questions of three marks each.
(v) Section D: Q. No. 35 to 40 comprises of 6 questions of four marks each.
(vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark each, 2 questions of two marks each, 3 questions of three marks each and 3 questions of four marks each. You have to attempt only one of the choices in such questions.
(vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
(viii) Use of calculators is not permitted.

## Question: 1

The HCF and the LCM of $12,21,15$ respectively are
(a) 3,140
(b) 12,420
(c) 3,420
(d) 420,3

## Solution:

## Here,

$12=2^{2} \times 3$
$21=3 \times 7$
$15=3 \times 5$
Therefore, $\operatorname{HCF}(12,21,15)=3$ and
$\operatorname{LCM}(12,21,15)=2^{2} \times 3 \times 5 \times 7=420$

## Hence, the correct answer is option C.

## Question: 2

The value of $x$ for which $2 x,(x+10)$ and $(3 x+2)$ are the three consecutive terms of an $A P$, is
(a) 6
(b) -6
(c) 18
(d) -18

## Solution:

Given $2 x, x+10,3 x+2$ are the consecutive terms of an AP.
Therefore, the common difference will be same.
$\Rightarrow(x+10)-2 x=(3 x+2)-(x+10)$
$\Rightarrow x+10-2 x=3 x+2-x-10$
$\Rightarrow 10-x=2 x-8$
$\Rightarrow 3 x=18$
$\Rightarrow x=6$
Hence, the correct answer is option (a).

## Question: 3

The value of $k$ for which the system of equations $x+y-4=0$ and $2 x+k y=3$, has no solution, is
(a) -2
(b) $\neq 2$
(c) 3
(d) 2

## Solution:

For a system of a quadratic equation to have no solution, the condition is $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$.
Given equations are $x+y-4=0$ and $2 x+k y-3=0$, where
$a_{1}=1, b_{1}=1, c_{1}=-4, a_{2}=2, b_{2}=k, c_{2}=-3$.
We have,
$\frac{1}{2}=\frac{1}{k} \neq \frac{-4}{-3}$
Now,
$\frac{1}{2}=\frac{1}{k}$
$\Rightarrow k=2$
Hence, the correct answer is option (d).

## Question: 4

The first term of an AP is $p$ and the common difference is $q$, then its $10^{\text {th }}$ term is
(a) $q+9 p$
(b) $p-9 p$
(c) $p+9 q$
(d) $2 p+9 q$

## Solution:

The nth term of an AP $=a+(n-1) d$, where $a$ and $d$ are the first term and common difference respectively.

Therefore, $10^{\text {th }}$ term $=p+(10-1) q=p+9 q$.
Hence, the correct answer is option (c).
Question: 5
The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6 , is
(a) $x^{2}+5 x+6$
(b) $x^{2}-5 x+6$
(c) $x^{2}-5 x-6$
(d) $-x^{2}+5 x+6$

## Solution:

Let the zeroes be $\alpha$ and $\beta$ respectively.
Therefore, $\alpha+\beta=-5$ and $\alpha \beta=6$.
Hence, the required polynomial is

$$
\begin{aligned}
& x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(-5) x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Hence, the correct answer is option A.
Question: 6
(a) $a^{2}+b^{2}$
(b) $a^{2}-b^{2}$
(c) $\sqrt{a^{2}+b^{2}}$
(d) $\sqrt{a^{2}-b^{2}}$

## Solution:

The distance between two points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ Thus, the distance between the two given points is given by

$$
\begin{aligned}
& =\sqrt{[0-(a \cos \theta+b \sin \theta)]^{2}+[(a \sin \theta-b \cos \theta)-0]^{2}} \\
& =\sqrt{(a \cos \theta+b \sin \theta)^{2}+(a \sin \theta-b \cos \theta)^{2}} \\
& =\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta} \\
& =\sqrt{a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)} \\
& =\sqrt{a^{2} \times 1+b^{2} \times 1} \\
& =\sqrt{a^{2}+b^{2}} \\
& \text { Hence, the correct answer is option (c). }
\end{aligned}
$$

## Question: 7

The total number of factors of a prime number is
(a) 1
(b) 0
(c) 2
(d) 3

## Solution:

The factors of a prime number are 1 and the number itself.
Therefore, the total number of factors of a prime number is 2 .
Hence, the correct answer is option (c).

## Question: 8

If the point $P(k, 0)$ divides the line segment joining the points $A(2,-2)$ and $B(-7,4)$ in the ratio $1: 2$, then the value of $k$ is
(a) 1
(b) 2
(c) -2
(d) -1

## Solution:

## Using the Section Formula, we have

$$
\begin{aligned}
& k=\frac{1 \times(-7)+2 \times 2}{1+2} \\
& \Rightarrow k=\frac{-7+4}{3} \\
& \Rightarrow k=\frac{-3}{3} \\
& \Rightarrow k=-1
\end{aligned}
$$

Hence, the correct answer is option D.

## Question: 9

The value of $p$, for which the points $\mathrm{A}(3,1), \mathrm{B}(5, p)$ and $\mathrm{C}(7,-5)$ are collinear, is
(a) -2
(b) 2
(c) -1
(d) 1

## Solution:

$$
\begin{aligned}
& \text { Given } A(3,1), B(5, p) \text { and } C(7,-5) \text { are collinear. } \\
& \Rightarrow \text { Area of } \Delta \mathrm{ABC}, A=0 \\
& \Rightarrow \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \Rightarrow 0 \\
& \Rightarrow\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
& \Rightarrow[3(p+5)+5(-5-1)+7(1-p)]=0 \\
& \Rightarrow[3 p+15-30+7-7 p]=0 \\
& \Rightarrow-4 p-8=0 \\
& \Rightarrow 4 p=-8 \\
& \Rightarrow p=-2 \\
& \text { Hence, the correct answer is option A. }
\end{aligned}
$$

## Question: 10

If one of the zeroes of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of $k$ is
(a) 10
(b) -10
(c) -7
(d) -2

Solution:

Let the given polynomial be $p(x)=x^{2}+3 x+k$
Since, one of the zeroes is 2 .
Therefore, the value of $p(x)$ at $x=2$ will be zero.
Therefore,

$$
\begin{aligned}
& 2^{2}+3 \times 2+k=0 \\
& \Rightarrow 4+6+k=0 \\
& \Rightarrow 10+k=0 \\
& \Rightarrow k=-10
\end{aligned}
$$

Hence, the correct answer is option (b).

## Question: 11

Fill in the blanks.
$A B C$ is an equilateral triangle of side $2 a$, then length of one of its altitude is $\qquad$ ـ.

## Solution:



We have the above equilateral triangle in which the length of each side is $2 a$ units. Drop a perpendicular from $A$ on $B C$, intersecting it at $D$.

In $\triangle A B D$ and $\triangle A C D$, we have

$$
\begin{array}{lc}
A B=A C & \text { (Sides of an equilateral triangle) } \\
\angle A B D=\angle A C D & \text { (Angles of an equilateral triangle) } \\
\angle A D B=\angle A D C=90^{\circ} \text { (By construction) } \\
\text { Therefore, } \triangle A B D \cong \triangle A C D & \text { (By AAS rule) } \\
\Rightarrow B D=C D=a & \text { (By CPCT) }
\end{array}
$$

Now, using Pythagoras Theorem in $\triangle A B D$, we have
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow(2 a)^{2}=\mathrm{AD}^{2}+a^{2}$
$\Rightarrow \mathrm{AD}^{2}=4 a^{2}-a^{2}=3 a^{2}$
$\Rightarrow \mathrm{AD}=\sqrt{3} a$
This is the required length of the altitude.

## Question: 12

## Fill in the blank.

In the given figure $\triangle A B C$ is circumscribing a circle, the length of $B C$ is $\qquad$ cm.


## Solution:



## QB365-Question Bank Software

Since we know that the lengths of tangents drawn from an exterior point to a circle are equal.

Therefore, $A P=A R=4 \mathrm{~cm}, \mathrm{BP}=\mathrm{BQ}=3 \mathrm{~cm}$.
Therefore, $\mathrm{CR}=\mathrm{AC}-\mathrm{AR}=11-4=7 \mathrm{~cm}$.
Hence, $\mathrm{BC}=\mathrm{BQ}+\mathrm{CQ}=\mathrm{BQ}+\mathrm{CR}=3+7 \mathrm{~cm}=10 \mathrm{~cm}$.
Question: 13
Fill in the blank.
The value of $\left(\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}\right)=$ $\qquad$ .

Fill in the blank.
The value of $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=$ $\qquad$

## Solution:

$$
\begin{aligned}
& \sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta} \\
& =\sin ^{2} \theta+\frac{1}{\sec ^{2} \theta}=\sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

The given expression is

$$
\begin{aligned}
& \left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta) \\
& =\left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right) \\
& =\sec ^{2} \theta \cdot \cos ^{2} \theta \\
& =\frac{1}{\cos ^{2} \theta} \cdot \cos ^{2} \theta \\
& =1
\end{aligned}
$$

Thus, the value of $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)$ is 1 .

## Question: 14

$$
\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 43^{\circ}}{\sin 47^{\circ}}\right)^{2}-2 \cos 60^{\circ}=
$$

$\qquad$
Solution:

Consider the given expression,

$$
\begin{aligned}
& \left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 43^{\circ}}{\sin 47^{\circ}}\right)^{2}-2 \cos 60^{\circ} \\
& =\left[\frac{\sin \left(90^{\circ}-55^{\circ}\right)}{\cos 55^{\circ}}\right]^{2}+\left[\frac{\cos \left(90^{\circ}-47^{\circ}\right)}{\sin 47^{\circ}}\right]^{2}-2 \cos 60^{\circ} \\
& =\left(\frac{\cos 55^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\sin 47^{\circ}}{\sin 47^{\circ}}\right)^{2}-2 \cos 60^{\circ} \\
& =1^{2}+1^{2}-2 \times \frac{1}{2} \\
& =2-1=1
\end{aligned}
$$

Hence, the answer is 1 .
Question: 15
$A B C$ and $B D E$ are two equilateral triangles such that $D$ is the mid-point of BC. Ratio of the areas of triangles $A B C$ and $B D E$ is

## Solution:

Given: Two equilateral triangles ABC and BDE
Since two equilateral triangles are always similar, thus ratio of sides will be equal.

Since, it is given that $D$ is the mid-point of the side $B C$ of triangle $A B C$
Therefore, $\mathrm{BD}=\mathrm{CD}$ or we can say $\mathrm{BD}=\frac{1}{2} \mathrm{BC}$.
Let $\mathrm{BC}=x$, then we can say $\mathrm{BD}=\frac{1}{2} x$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\left(\frac{\mathrm{BC}}{\mathrm{BD}}\right)^{2}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\left(\frac{x}{\frac{x}{2}}\right)^{2}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{BDE})}=4$
Hence, the answer is 4.

## Question: 16

A die is thrown once. What is the probability of getting a number less than 3 ? OR
If the probability of winning a game is 0.07 , what is the probability of losing it?

## Solution:

When a die is thrown, all the outcomes are $=\{1,2,3,4,5,6\}$
Total number of outcomes $=6$
Favourable outcomes $=\{1,2\}$
Favourable number of outcomes $=2$
$P($ a number less than 3$)=\frac{2}{6}=\frac{1}{3}$
OR
$\mathrm{P}($ winning $)=0.07$
P (losing) $=1-\mathrm{P}$ (winning)
$\mathrm{P}($ losing $)=1-0.07=0.93$

## Question: 17

If the mean of the first $n$ natural number is 15 , then find $n$.

## Solution:

Given: mean of the first $n$ natural numbers is 15 .

$$
\begin{aligned}
& \therefore \frac{1+2+3+\ldots+n}{n}=15 \\
& \Rightarrow 1+2+3+\ldots+n=15 n \\
& \Rightarrow \frac{n(n+1)}{2}=15 n \\
& \Rightarrow n^{2}+n=30 n \\
& \Rightarrow n^{2}-29 n=0 \\
& \Rightarrow n(n-29)=0 \\
& \Rightarrow n=0,29
\end{aligned}
$$

$$
\text { So, } n=29 \quad \text { (Since } n \text { cannot be zero) }
$$

Question: 18
Two cones have their heights in the ratio $1: 3$ and radii in the ratio $3: 1$. What is the ratio of their volumes?

## Solution:

Let the heights, radii and volumes of the two cones be $\left(h_{1}, r_{1}, V_{1}\right)$ and $\left(h_{2}, r_{2}, V_{2}\right)$. Given: $\frac{h_{1}}{h_{2}}=\frac{1}{3}$ and $\frac{r_{1}}{r_{2}}=\frac{3}{1}$

The required ratio of their volumes $=\frac{V_{1}}{V_{2}}$
$=\frac{\frac{1}{3} \pi r_{1}{ }^{2} h_{1}}{\frac{1}{3} \pi r_{2}{ }^{2} h_{2}}$
$=\frac{r_{1}{ }^{2}{ }^{2}{ }^{2}}{r_{2}} \times \frac{h_{1}}{h_{2}}$
$=\frac{3^{2}}{1} \times \frac{1}{3}$
$=\frac{3}{1}$
$=3: 1$
Hence, the required ratio of the volumes is $3: 1$.

## Question: 19

The ratio of the length of a vertical rod and the length of its shadow is $1: \sqrt{ } 3$. Find the angle of elevation of the sun at that moment?

## Solution:

Given that $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{\sqrt{3}}$


From the figure, it is clear that $\Delta \Delta A B C$ is a right-angled triangle in which $A B$ is the vertical rod and $B C$ is its shadow.

We have,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\Rightarrow \theta=30^{\circ}$
Hence, the required angle of elevation of the sun is $30^{\circ}$

## Question: 20

A die is thrown once. What is the probability of getting an even prime number?

## Solution:

Total number of possible outcomes $=1,2,3,4,5,6$
Even prime number on a die $=2$
Thus, we conclude following
Probability of getting a even prime number $=\frac{\text { Number of even prime numbers }}{\text { Total possible outcomes }}=\frac{1}{6}$ Hence, the answer is $1 / 6$.

## Question: 21

In the given Figure, $D E \| A C$ and $D C \| A P$. Prove that $\frac{\mathrm{BE}}{\mathrm{EC}} \rightleftharpoons \frac{\mathrm{BC}}{\mathrm{CP}}$


OR
In the given Figure, two tangents TP and TQ are drawn to a circle with centre 0 from an external point $T$. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.


## Solution:

In $\triangle A B P, D C \| A P$
By Basic Proportionality theorem,
$\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BC}}{\mathrm{CP}}$
In $\triangle B A C, D E \| A C$
By Basic Proportionality theorem,
$\frac{B D}{D A}=\frac{B E}{E C}$
Thus, from (i) and (ii) we have
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BC}}{\mathrm{CP}}$
Hence proved.

Hence proved.
OR
Given: PT and TQ are the tangents to the circle with centre O .
To prove: $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Proof:
In $\triangle \mathrm{PTQ}$,
$\mathrm{PT}=\mathrm{PQ} \quad$ (Tangents from an external point to the circle are equal)
$\Rightarrow \angle \mathrm{TPQ}=\angle \mathrm{TQP} \quad$ (Angles opposite to equal sides are equal)
Let $\angle \mathrm{PTQ}=\theta$
So, in $\triangle$ PTQ
$\angle \mathrm{TPQ}+\angle \mathrm{TQP}+\angle \mathrm{PTQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{TPQ}=\angle \mathrm{TQP}=\frac{1}{2}\left(180^{\circ}-\theta\right)=90^{\circ}-\frac{1}{2} \hat{\theta}$
We know, angle made by the tangent with the radiu's is $90^{\circ}$.
So, $\angle \mathrm{OPT}=90^{\circ}$
Now,
$\angle \mathrm{OPT}=\angle \mathrm{OPQ}+\angle \mathrm{TPQ}$
$\Rightarrow 90^{\circ}=\angle \mathrm{OPQ}+\left(90^{\circ}-\frac{1}{2} \theta\right)$
$\Rightarrow \angle \mathrm{OPQ}=\frac{1}{2} \theta=\frac{1}{2} \angle \mathrm{PTQ}$
$\Rightarrow \angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Hence Proved.

## Question: 22

The rod AC of a TV disc antenna is fixed at right angles to the wall $A B$ and a rod CD is supporting the disc as shown in the given figure. If $A C=1.5 \mathrm{~m}$ long and $C D=3 \mathrm{~m}$, find (i) $\tan \theta$ (ii) $\sec \theta+\operatorname{cosec} \theta$

## QB365-Question Bank Software



Solution:

In $\triangle A C D$, we have
$A C=1.5 \mathrm{~cm}, C D=3 \mathrm{~cm}$.
Since $\triangle A C D$ is a right-angled triangle, so using Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{CD}^{2}-\mathrm{AC}^{2} \\
& =3^{2}-1.5^{2} \\
& =6.75
\end{aligned}
$$

$\therefore \mathrm{AD}=\sqrt{6.75}=2.5 \mathrm{~cm}$
Consider
(i) $\tan \theta=\frac{\mathrm{AC}}{\mathrm{AD}}=\frac{1.5}{2.5}=\frac{3}{5}$
(ii) $\sec \theta+\operatorname{cosec} \theta=\frac{\mathrm{CD}}{\mathrm{AD}}+\frac{\mathrm{CD}}{\mathrm{AC}}=\frac{3}{2.5}+\frac{3}{1.5}=\frac{6}{5}+2=\frac{16}{5}$

Question: 23
If a number $x$ is chosen at random from the numbers $-3,-2,-1,0,1,2,3$. What is probability that $x^{2} \leq 4$ ?

## Solution:

The given numbers are $-3,-2,-1,0,1,2,3$.
Total number of possible outcomes $=7$
Now, the favorable outcomes are given by $x^{2} \leq 4$
i.e. $-2 \leq x \leq 2$
i.e. $-2,-1,0,1,2$

Total number of favorable outcomes $=5$
Hence, the required probability $=\frac{5}{7}$.

## QB365-Question Bank Software

## Question: 24

Find the mean of the following distribution:

| Class: | $3-5$ | $5-7$ | $7-9$ | $9-11$ | $11-13$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency: | 5 | 10 | 10 | 7 | 8 |

Find the mode of the following data :

| Class: | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ | $120-140$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency: | 6 | 8 | 10 | 12 | 6 | 5 | 3 |

## Solution:

| Class | Frequency $\left(f_{i}\right)$ | Class Mark $\left(x_{i}\right)$ | $f_{i} x_{i}$ |
| :---: | :---: | :---: | :---: |
| $3-5$ | 5 | 4 | 20 |
| $5-7$ | 10 | 6 | 60 |
| $7-9$ | 10 | 8 | -80 |
| $9-11$ | 7 | 10 | 70 |
| $11-13$ | 8 | 12 | 96 |
|  | $\sum f_{i}=40$ |  | $\sum f_{i} x_{i}=326$ |

Mean, $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{326}{40}=8.15$
Thus, mean $=8.15$

OR
In the given data, the maximum class frequency is 12 .
The class corresponding to the given class is 60-80, which is the modal class.

We have
Lower limit of modal class, $I=60$
Frequency of modal class, $f_{1}=12$
Frequency of a class preceding to modal class, $f_{0}=10$ Frequency of a class succeeding to modal class, $f_{2}=6$
Class size h = 20

$$
\begin{aligned}
& \text { Mode }=l+\frac{\left(f_{1}-f_{0}\right)}{\left(2 f_{1}-f_{o}-f_{2}\right)} \times h \\
& =60+\frac{(12-10)}{(24-10-6)} \times 20 \\
& =60+\frac{2}{8} \times 20 \\
& =60+5 \\
& =65
\end{aligned}
$$

Hence, the mode of the given data is 65 .

## Question: 25

Find the sum of first 20 terms of the following AP:
$1,4,7,10$, $\qquad$

## Solution:

Given: The arithmetic progression is $1,4,7,10$,
As we know, Sum of an AP is given by $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
From the given AP, we conclude that $a=1, d=3$ and $n=20$

$$
\begin{aligned}
& S_{20}=\frac{20}{2}[2 \times 1+(20-1) 3] \\
& \Rightarrow S_{20}=10(2+19 \times 3) \\
& \Rightarrow S_{20}=10 \times 59 \\
& \Rightarrow S_{20}=590
\end{aligned}
$$

Hence, the sum of the first 20 terms is 590 .

Question: 26
The perimeter of a sector a circle of radius 5.2 cm is 16.4 cm . Find the area of the sector.

## Solution:

Given:
Perimeter of a sector of a circle $=16.4 \mathrm{~cm}$.
Radius $=5.2 \mathrm{~cm}$
Perimeter of a sector of the circle $=2 \times$ Radius + length of an arc
$\Rightarrow 16.5=2 \times 5.2+$ Length of the arc
$\Rightarrow$ Length of the $\operatorname{arc}=6.1 \mathrm{~cm}$
Also, length of an arc $=\frac{\theta}{360} \times 2 \pi r$
$\Rightarrow \frac{\theta}{360} \times 2 \pi r=6.1$
$\Rightarrow \frac{\theta}{360} \times \pi r=\frac{6.1}{2}$
$\Rightarrow \frac{\theta}{360} \times \pi r^{2}=\frac{6.1}{2} \times r$
Thus, Area of the sector $=\frac{6.1}{2} \times 5.2=15.86$

## Question: 27

A cone of base radius 4 cm is divided into two parts by drawing a plane through the mid-points of its height and parallel to its base. Compare the volume of the two parts.

## Solution:



## QB365-Question Bank Software

> Given: $\mathrm{OC}=4 \mathrm{~cm}, \quad \mathrm{AO}^{\prime}=\mathrm{OO}^{\prime}$
> Let $\mathrm{AO}=h$
> $\Rightarrow \mathrm{AO}^{\prime}=\mathrm{OO}^{\prime}=\frac{h}{2}$

In $\triangle \mathrm{AO}{ }^{\prime} \mathrm{C}$ and $\triangle \mathrm{AOC}$

| $\angle \mathrm{E}=\angle \mathrm{C}$ | [Corresponding angles] |
| :--- | :---: |
| $\angle \mathrm{A}=\angle \mathrm{A}$ | [Common angle] |
| $\Rightarrow \triangle \mathrm{AO}$ |  |

Therefore, $\frac{\mathrm{O}^{\prime} \mathrm{E}}{\mathrm{OC}}=\frac{\mathrm{AO}{ }^{\prime}}{\mathrm{AO}}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{O}^{\prime} \mathrm{E}}{\mathrm{OC}}=\frac{1}{2}$
Let $V_{1}, V_{2}$ are the volumes of the cone ADE and cone ABC respectively.
$\frac{V_{1}}{V_{2}}=\frac{\left[\frac{1}{3} \pi\left(\mathrm{O}^{\prime} \mathrm{E}\right)^{2} \mathrm{AO}\right]}{\left[\frac{1}{3} \pi(\mathrm{OC})^{2} \mathrm{AO}\right]}$
$=\left(\frac{\mathrm{O}^{\prime} \mathrm{E}}{\mathrm{OC}}\right)^{2}\left(\frac{\mathrm{AO}^{\prime}}{\mathrm{AO}}\right)$
$=\frac{1}{4} \times \frac{1}{2}$
$=\frac{1}{8}$
$\frac{\text { Volume of the upper part of the cone }}{\text { Volume of the lower part of the cone }}=\frac{V_{1}}{V_{2}-V_{1}}$
$=\frac{\left(\frac{v_{1}}{v_{2}}\right)}{1-\left(\frac{v_{1}}{v_{2}}\right)}$
$=\frac{1}{7}$

$$
\left(\because \frac{V_{1}}{V_{2}}=\frac{1}{8}\right)
$$

Question: 28

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle.

## Solution:

Given: In $\triangle A B C, A C^{2}=A B^{2}+B C^{2}$
To prove: $\angle B=90^{\circ}$
Construction: $\triangle P Q R$ right-angled at $Q$ such that $P Q=A B$ and $Q R=B C$


In $\triangle P Q R$,
$P R^{2}=P Q^{2}+Q R^{2}\left(\right.$ By Pythagoras Theorem, as $\left.\angle \mathrm{Q}=90^{\circ}\right)$
$\Rightarrow P R^{2}=A B^{2}+B C^{2}$
However, $A C^{2}=A B^{2}+B C^{2}$
From (1) and (2), we obtain $A C=P R$

Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we obtain

| $\mathrm{AB}=\mathrm{PQ}$ | (By construction) |
| :--- | :--- |
| $\mathrm{BC}=\mathrm{QR}$ | (By construction) |
| $A C=P R$ | [From (3)] |

Therefore, $\triangle A B C \cong \triangle P Q R$
(by SSS congruency criterion)
$\Rightarrow \angle B=\angle Q$
(By CPCT)
However, $\angle \mathrm{Q}=90^{\circ}$ (By construction)
$\therefore \angle B=90^{\circ}$
Hence proved.
Question: 29
Find the area of triangle $P Q R$ formed by the points $P(-5,7), Q(-4,-5)$ and $R(4,5)$.
OR
If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $B(x, y)$ in the ratio 3 : 4, find the coordinates of $B$.

## Solution:

## QB365-Question Bank Software

Given: Vertices of the triangle are $\mathrm{P}(-5,7), \mathrm{Q}(-4,-5)$ and $\mathrm{R}(4,5)$.
Let $A$ be the area of the triangle.
Using the formula to calculate the area of the triangle, we have

$$
\begin{aligned}
A & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[(-5)(-5-5)+(-4)(5-7)+(4)(7+5)] \\
& =\frac{1}{2}[50+8+48] \\
& =53
\end{aligned}
$$

Hence, the area of the triangle is 53 square units.
Since the point $\mathrm{C}(-1,2)$ divides the line segment joining $\mathrm{A}(2,5)$ and $\mathrm{B}(x, y)$ in the ratio $3: 4$. Therefore using the section-formula of internal division, we get
For $x$-coordinate,

$$
\begin{aligned}
& -1=\frac{3 \times x+4 \times 2}{3+4} \\
& \Rightarrow 3 x+8=-7 \\
& \Rightarrow x=-5
\end{aligned}
$$

For $y$-coordinate,
$2=\frac{3 \times y+4 \times 5}{3+4}$
$\Rightarrow 3 y+20=14$
$\Rightarrow y=-2$
Hence, the coordinates of B are $(-5,-2)$.
Question: 30

Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $f(x)=a x^{2}+b x+c, a \neq 0, c \neq 0$.

Divide the polynomial $f(x)=3 x^{2}-x^{3}-3 x+5$ by the polynomial $g(x)=x-1-x^{2}$ and verify the division algorithm.

## Solution:

## QB365-Question Bank Software

The given quadratic polynomial is
$f(x)=a x^{2}+b x+c, a \neq 0, c \neq 0$
Let $\alpha$ and $\beta$ be the two zeroes of the given quadratic polynomial.
Then,
Sum of zeroes $=\alpha+\beta=\frac{-b}{a}$
Product of zeroes $=\alpha \beta=\frac{c}{a}$
$\Rightarrow \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{\frac{-b}{a}}{\frac{c}{a}}=\frac{-b}{c}$ and $\frac{1}{\alpha} \cdot \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{\frac{c}{a}}=\frac{a}{c}$
So, the required new quadratic polynomial is
$k\left[x^{2}-\right.$ (sum of zeroes) $x+$ product of zeroes $]$
$=k\left[x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\frac{1}{\alpha} \cdot \frac{1}{\beta}\right]$
$=k\left[x^{2}-\left(\frac{-b}{c}\right) x+\frac{a}{c}\right]$
where $k$ is a real number.
Given,
$f(x)=3 x^{2}-x^{3}-3 x+5$
$g(x)=x-1-x^{2}$

$$
\begin{array}{r}
x-2 \\
-x^{2}+x-1 \begin{array}{l}
-x^{3}+3 x^{2}-3 x+5 \\
-x^{3}+x^{2}-x \\
+\quad+ \\
\frac{2 x^{2}-2 x+5}{} \\
\hline-2 x^{2}+2 x+2 \\
\hline
\end{array}
\end{array}
$$

So,
$q(x)=(x-2)$ and $r(x)=3$
To verify: $f(x)=g(x) \cdot q(x)+r(x)$
Verification:

$$
\begin{aligned}
g(x) \cdot q(x)+r(x) & =\left(-x^{2}+x-1\right)(x-2)+3 \\
= & -x^{2}(x-2)+x(x-2)-1(x-2)+3 \\
= & -x^{3}+2 x^{2}+x^{2}-2 x-x+2+3 \\
= & -x^{3}+3 x^{2}-3 x+5 \\
= & f(x)
\end{aligned}
$$

Hence verified.

## QB365-Question Bank Software

## Question: 31

Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are given by $2 y-x=8,5 y-x=14$ and $y-2 x=1$.

## OR

If 4 is a zero of the cubic polynomial $x^{3}-3 x^{2}-10 x+24$, find its other two zeroes.

## Solution:

The first given equation is $2 y-x=8$

| $x$ | 0 | -8 |
| :---: | :---: | :---: |
| $y$ | 4 | 0 |

The second given equation is $5 y-x=14$

| $x$ | 0 | -14 |
| :---: | :---: | :---: |
| $y$ | 2.8 | 0 |

The third given equation is $y-2 x=1$

| $x$ | 0 | -0.5 |
| :---: | :---: | :---: |
| $y$ | 1 | 0 |

Plotting the three given lines on the graph paper we get


The coordinates of the vertices of the triangle $A B C$ are $A(--4,2), B(2,5)$ and $C(1,3)$. OR

## QB365-Question Bank Software

Given 4 is a zero of a cubic polynomial $x^{3}-3 x^{2}-10 x+24$
$\Rightarrow(x-4)$ is the factor of polynomial $x^{3}-3 x^{2}-10 x+24$
Therefore, we have

$$
\begin{array}{r}
x - 4 \longdiv { x ^ { 2 } + x - 6 } \begin{array} { r } 
{ x ^ { 3 } - 3 x ^ { 2 } - 1 0 x + 2 4 } \\
{ \frac { x ^ { 3 } - 4 x ^ { 2 } } { - + } } \\
{ \frac { x ^ { 2 } - 1 0 x + 2 4 } { x ^ { 2 } - 4 x } } \\
{ \frac { - 6 x + 2 4 } { + } } \\
{ \frac { - 6 x + 2 4 } { + } } \\
{ \hline }
\end{array}
\end{array}
$$

To find the other two zeroes of the given polynomial, we need to find the zeroes of the quotient $x^{2}+x-6$.
i. e. $x^{2}+x-6=0$
$\Rightarrow x^{2}+3 x-2 x-6=0$
$\Rightarrow x(x+3)-2(x+3)=0$
$\Rightarrow(x+3)(x-2)=0$
$\Rightarrow x+3=0$ or $x-2=0$
$\Rightarrow x=-3$ or $x=2$
Hence, the other two zeroes of the given polynomial are 2 and -3 .

## Question: 32

A train covers a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less, then it would have taken 3 hours more to cover the same distance. Find the original speed of the train.

## Solution:

Given: Distance $=480 \mathrm{~km}$.
Let the original speed be $x \mathrm{~km} / \mathrm{h}$.
Time taken $\left(t_{1}\right)=\frac{480}{x} \mathrm{~h}$
Now, reduced speed $=(x-8) \mathrm{km} / \mathrm{h}$.
Time taken $\left(t_{2}\right)=\frac{480}{x-8} \mathrm{~h}$
$\triangle \mathrm{ACD}, \angle \mathrm{A}=45^{\circ}$ According to the given condition,

$$
\begin{aligned}
& \frac{480}{x-8}-\frac{480}{x}=3 \\
& \Rightarrow 480\left[\frac{1}{x-8}-\frac{1}{x}\right]=3 \\
& \Rightarrow \frac{x-(x-8)}{x(x-8)}=\frac{1}{160} \\
& \Rightarrow \frac{8}{x(x-8)}=\frac{1}{160} \\
& \Rightarrow 8(160)=x(x-8) \\
& \Rightarrow x^{2}-8 x-1280=0 \\
& \Rightarrow x^{2}-40 x+32 x-1280=0 \\
& \Rightarrow x(x-40)+32(x-40)=0 \\
& \Rightarrow(x-40)(x+32)=0 \\
& \Rightarrow x=40,-32
\end{aligned}
$$

But speed can never be negative.
Thus, we conclude speed of train is $40 \mathrm{~km} / \mathrm{h}$.

## Question: 33

Prove that the parallelogram circumscribing a circle is a rhombus.

## Solution:

Since ABCD is a parallelogram,
$A B=C D$
$B C=A D$


It can be observed that
DR = DS (Tangents to the circle from point D )
$C R=C Q$ (Tangents to the circle from point C)
$B P=B Q$ (Tangents to the circle from point $B$ )
$A P=A S$ (Tangents to the circle from point $A$ )
Adding all these equations, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
$C D+A B=A D+B C$
$2 A B=2 B C$
[From (1) and (2)]
$A B=B C$
From (1), (2), and (3), we obtain
$A B=B C=C D=D A$
Hence, $A B C D$ is a rhombus.
Question: 34
Prove that: $2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0$.

## Solution:

$$
\begin{aligned}
& \text { LHS }=2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
& =2\left[\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
& =2\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{4} \theta-\sin ^{2} \theta \times \cos ^{2} \theta+\cos ^{4} \theta\right)\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
& =2(1)\left(\sin ^{4} \theta-\sin ^{2} \theta \times \cos ^{2} \theta+\cos ^{4} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
& =2 \sin ^{4} \theta-2 \sin ^{2} \theta \times \cos ^{2} \theta+2 \cos ^{4} \theta-3 \sin ^{4} \theta-3 \cos ^{4} \theta+1 \\
& =-\sin ^{4} \theta-\cos ^{4} \theta-2 \sin ^{2} \theta \times \cos ^{2} \theta+1 \\
& =-\left(\sin ^{4} \theta+2 \sin ^{2} \theta \times \cos ^{2} \theta+\cos ^{4} \theta\right)+1 \\
& =-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}+1 \\
& =-(1)^{2}+1 \\
& =0 \\
& =\text { RHS }
\end{aligned}
$$

## QB365-Question Bank Software

## Question: 35

The following table gives production yield per hectare (in quintals) of wheat of 100 farms of a village:

| Production yield/hect. | $40-45$ | $45-50$ | $50-55$ | $55-60$ | $60-65$ | $65-70$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of farms | 4 | 6 | 16 | 20 | 30 | 24 |

Change the distribution to 'a more than' type distribution and draw its ogive.
OR
The median of the following data is 525 . Find the values of $x$ and $y$, if total frequency is 100:

| Class : | Frequency: |
| :---: | :---: |
| $0-100$ | 2 |
| $100-200$ | 5 |
| $200-300$ | $x$ |
| $300-400$ | 12 |
| $400-500$ | 17 |
| $500-600$ | 20 |
| $600-700$ | $y$ |
| $700-800$ | 9 |
| $800-900$ | 7 |
| $900-1000$ | 4 |

## Solution:

Given:

| Production yield/hect. | $40-45$ | $45-50$ | $50-55$ | $55-60$ | $60-65$ | $65-70$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of farms | 4 | 6 | 16 | 20 | 30 | 24 |

"more than type" distribution table is as follows-

| Production (yield/hec) | No. of farms |
| :---: | :---: |
| More than 40 | 100 |
| More than 45 | 96 |
| More than 50 | 90 |
| More than 55 | 74 |
| More than 60 | 54 |
| More than 65 | 24 |

To draw the ogive, we have the following points-

## QB365-Question Bank Software

$(40,100),(45,96),(50,90),(55,74),(60,54),(65,24)$
Plotting these points, we get the following ogive-


Given, median $=525$
We prepare the cumulative frequency table, as given below.

| Class interval: | Frequency: <br> $\left(f_{i}\right)$ | Cumulative frequency <br> $(c) f)$. |
| :---: | :---: | :---: |
| $0-100$ | 2 | 2 |
| $100-200$ | 5 | 7 |
| $200-300$ | $f_{1}$ | $7+f_{1}$ |
| $300-400$ | 12 | $19+f_{1}$ |
| $400-500$ | 17 | $36+f_{1}$ |
| $500-600$ | 20 | $56+f_{1}$ |
| $600-700$ | $f_{2}$ | $56+f_{1}+f_{2}$ |
| $700-800$ | 9 | $65+f_{1}+f_{2}$ |
| $800-900$ | 7 | $72+f_{1}+f_{2}$ |
| $900-1000$ | 4 | $76+f_{1}+f_{2}$ |
|  | $N=100=76+f_{1}+f_{2}$ |  |

$$
\begin{align*}
& N=100 \\
& 76+f_{1}+f_{2}=100 \\
& f_{2}=24-f_{1}  \tag{1}\\
& \frac{N}{2}=50
\end{align*}
$$

Since median = 525,
So, the median class is $500-600$.
Here, $l=500, f=20, F=36+f_{1}$ and $h=100$

We know that

$$
\begin{aligned}
& \text { Median }=l+\left\{\frac{\frac{N}{2}-F}{f}\right\} \times h \\
& 525=500+\left\{\frac{50-\left(36+f_{1}\right)}{20}\right\} \times 100 \\
& 25=\frac{\left(14-f_{1}\right) \times 100}{20} \\
& \begin{aligned}
25 \times 20 & =1400-100 f_{1} \\
100 f_{1} & =1400-500 \\
f_{1} & =\frac{900}{100} \\
& =9
\end{aligned}
\end{aligned}
$$

Putting the value of $f_{1}$ in (1), we get

$$
\begin{aligned}
f_{2} & =24-9 \\
& =15
\end{aligned}
$$

Hence, the missing frequencies are 9 and 15.

## Question: 36

A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 6 m . At a point on the plane, the angle of elevation of the bottom and top of the flag-staff are $30^{\circ}$ and $45^{\circ}$ respectively. Find the height of the tower.
(Take $\sqrt{ } 3=1.73$ )

## QB365-Question Bank Software

## Solution:

Let $B C$ be the tower of height $h \mathrm{~m}, \mathrm{AB}$ be the flag staff of height 7 m on tower and D be the point on the plane making an angle of elevation of the top of the flag staff as $45^{\circ}$ and angle of elevation of the bottom of the flag staff as $30^{\circ}$.

Let $\mathrm{CD}=\mathrm{x}, \mathrm{AB}=6 \mathrm{~m}$ and $\angle B D C=30^{\circ}$ and $\angle A D C=45^{\circ}$.

We need to find the height of the tower i.e. $h$. We have the corresponding figure as follows:


So we use trigonometric ratios.
In a triangle $B C D$ :

$$
\begin{aligned}
\Rightarrow & & \tan D & =\frac{B C}{C D} \\
\Rightarrow & & \tan 30^{\circ} & =\frac{h}{x} \\
\Rightarrow & & \frac{1}{\sqrt{3}} & =\frac{h}{x} \\
\Rightarrow & & x & =\sqrt{3} h
\end{aligned}
$$

$$
\text { Again in a triangle } A D C \text { : }
$$

$\tan D=\frac{A B+B C}{C D}$
$\Rightarrow \tan 45^{\circ}=\frac{h+6}{x}$
$\Rightarrow 1=\frac{h+6}{x}$
$\Rightarrow x=h+6$
$\Rightarrow \sqrt{3} h=h+6$
$\Rightarrow h(\sqrt{3}-1)=6$
$\Rightarrow h=\frac{6}{\sqrt{3}-1}=\frac{6(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{6(\sqrt{3}+1)}{(\sqrt{3})^{2}-1^{2}}=\frac{6(\sqrt{3}+1)}{3-1}=3(\sqrt{3}+1)$
$\Rightarrow h=3(\sqrt{3}+1)=3(1.732+1)=3 \times 2.732=8.196 \mathrm{~m}$
Hence the height of the tower is 8.196 m .

## Question: 37

Show that the square of any positive integer cannot be of the form $(5 q+2)$ or $(5 q+3)$ for any integer $q$.

## OR

Prove that one of every three consecutive positive integers is divisible by 3.

## Solution:

Let $b$ be an arbitrary positive integer.
By Euclid's division lemma,
$b=a q+r$, where $0 \leq r<a$
Now, if we divide $b$ by 5 , then $b$ can be written in the form of $5 m, 5 m+1,5 m+2,5 m+3$ or $5 m+4$.
This implies that we have five possible cases.

Case I:
If $b=5 \mathrm{~m}$
Squaring both sides, we get
$b^{2}=(5 m)^{2}=25 m^{2}=5\left(5 m^{2}\right)$
$\Rightarrow b^{2}=5 q$
where $q=5 m^{2}$ is an integer.
Case II:
If $b=5 m+1$,
Squaring both sides, we get
$b^{2}=(5 m+1)^{2}=25 m^{2}+1+10 m$
$\Rightarrow b^{2}=5\left(5 m^{2}+2 m\right)+1$
$\Rightarrow b^{2}=5 q+1$
where $q=5 m^{2}+2 m$ is an integer.
Case III:
If $b=5 m+2$
Squaring both sides, we get
$b^{2}=(5 m+2)^{2}=25 m^{2}+4+20 m$
$\Rightarrow b^{2}=5\left(5 m^{2}+4 m\right)+4$
$\Rightarrow b^{2}=5 q+4$
where $q=5 m^{2}+4 m$ is an integer.
Case IV:
If $b=5 m+3$
Squaring both sides, we get
$b^{2}=(5 m+3)^{2}=25 m^{2}+9+30 m$
$\Rightarrow b^{2}=25 m^{2}+5+4+30 m$
$\Rightarrow b^{2}=5\left(5 m^{2}+1+6 m\right)+4$
$\Rightarrow b^{2}=5 q+4$
where $q=5 m^{2}+1+6 m$ is an integer.
Case V:
If $b=5 m+4$
Squaring both sides, we get

$$
\begin{aligned}
& b^{2}=(5 m+4)^{2}=25 m^{2}+16+40 m \\
& \Rightarrow b^{2}=25 m^{2}+15+1+40 m \\
& \Rightarrow b^{2}=5\left(5 m^{2}+3+8 m\right)+1 \\
& \Rightarrow b^{2}=5 q+1
\end{aligned}
$$

where $q=5 m^{2}+3+8 m$ is an integer.

## QB365-Question Bank Software

Hence, we can conclude that the square of any positive integer cannot be of the form $5 q+2$ or $5 q+3$ for any integer.

> OR

Let $n, n+1, n+2$ be three consecutive positive integers, where $n$ is any natural number.
By Euclid's division lemma,
$n=a q+r$, where $0 \leq r<a$.
Now, if we divide $n$ by 3 , then $n$ can be written in the form of $3 q, 3 q+1$ or $3 q+2$.
This implies that we have three possible cases.
Case I:
If $n=3 q$, then $n$ is divisible by 3 .
However, $n+1$ and $n+2$ are not divisible by 3 .
Case II:
If $n=3 q+1$, then $n+2=3 q+3=3(q+1)$, which is divisible by 3 .
However, $n$ and $n+1$ are not divisible by 3 .
Case III:
If $n=3 q+2$, then $n+1=3 q+3=3(q+1)$, which is divisible by 3 .
However, $n$ and $n+2$ are not divisible by 3 .
Hence, we conclude that one of any three consecutive positive integers must be divisible by 3.

## Question: 38

The sum of four consecutive numbers in AP is 32 and the ratio of the product of the first and last terms to the product of two middle terms is $7: 15$. Find the numbers.

## OR

Solve : $1+4+7+10+\ldots+x=287$

## Solution:

Let the four terms of the AP be $a-3 d, a-d, a+d$ and $a+3 d$.
Given:
$(a-3 d)+(a-d)+(a+d)+(a+3 d)=32$
$\Rightarrow 4 a=32$
$\Rightarrow a=8$

Also,
$\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15}$
$\Rightarrow \frac{a^{2}-9 d^{2}}{a^{2}-d^{2}}=\frac{7}{15}$
$\Rightarrow \frac{(8)^{2}-9 d^{2}}{(8)^{2}-d^{2}}=\frac{7}{15}$
$\Rightarrow \frac{64-9 d^{2}}{64-d^{2}}=\frac{7}{15}$
$\Rightarrow 960-135 d^{2}=448-7 d^{2}$
$\Rightarrow 512=128 d^{2}$
$\Rightarrow d^{2}=4$
$\Rightarrow d= \pm 2$
When $a=8$ and $d=2$, then the terms are $2,6,10,14$.
When $a=8$ and $d=-2$, then the terms are $14,10,6,2$.

In the given AP, we have
$a=1, d=3, S_{n}=287$
The formula for sum of $n$ terms of an AP is given by $S_{n}=\frac{n}{2}[2 a+(n ; 1) d]$.
This implies
$\frac{n}{2}[2(1)+(n-1)(3)]=287$
$\Rightarrow n(2+3 n-3)=574$
$\Rightarrow 3 n^{2}-n-574=0$
$\Rightarrow 3 n^{2}-42 n+41 n-574=0$
$\Rightarrow 3 n(n-14)+41(n-14)=0$
$\Rightarrow(n-14)=0$ or $3 n+41=0$
$\Rightarrow n=14$ or $n=-\frac{41}{3}$
$\therefore n=14$
$x=a_{14}=a+(14-1) d=1+13(3)=1+39=40$
Thus, the value of $x$ is 40 .

## Question: 39

A bucket is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper circular ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the bucket, at the rate of $₹ 40$ per litre. (Use $\pi=3.14$ )

## Solution:

The bucket is in the shape of a frustum of a cone.

## QB365-Question Bank Software

It is given that radius of upper end of the bucket, $r_{1}=20 \mathrm{~cm}$

Radius of lower end of the bucket, $r_{2}=8 \mathrm{~cm}$
Height of the bucket, $h=16 \mathrm{~cm}$
Therefore, the volume of the bucket

$$
\begin{aligned}
& =\frac{\pi}{3} h\left(r^{2}{ }_{1}+r^{2}{ }_{2}+r_{1} r_{2}\right) \\
& =3.14 \times \frac{16}{3}\left(20^{2}+8^{2}+20 \times 8\right) \\
& =10450 \mathrm{~cm}^{3}
\end{aligned}
$$

Amount of milk the bucket can hold $=\frac{10450}{1000}=10.45 \mathrm{~L}$
Total cost of milk $=10.45 \times 40=$ Rs 418

## Question: 40

Construct a triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm . Then construct another triangle whose sides are $2 / 3$ times the corresponding sides of the first triangle.

## Solution:

## Step 1

Draw a line segment $A B=4 \mathrm{~cm}$. Taking point $A$ as the centre, draw an arc of 5 cm radius. Similarly, taking point $B$ as its center, draw an arc of 6 cm radius. These arcs will intersect each other at point $C$. Now, $A C=5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ and $\triangle A B C$ is the required triangle.

## Step 2

Draw a ray $A X$ making an acute angle with line $A B$ on the opposite side of vertex $C$.

## Step 3

Locate 3 points $A_{1}, A_{2}, A_{3}$ (as 3 is greater between 2 and 3 ) online $A X$ such that $A A_{1}=$ $\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$.

## Step 4

Join $B A_{3}$ and draw a line through $A 2$ parallel to $B A_{3}$ to intersect $A B$ at point $B^{\prime}$.

## Step 5

Draw a line through $B^{\prime}$ parallel to the line $B C$ to intersect $A C$ at $C^{\prime}$.

$\Delta A B^{\prime} C^{\prime}$ is the required triangle.

