
In this Chapter

 » Introduction

 » Structured Query Language 

(SQL) 

 » Data Types and 

Constraints in MySQL

 » SQL for Data Definition
 » SQL for Data 

Manipulation

 » SQL for Data Query

 » Data Updation and 

Deletion

 » Functions in SQL

 » GROUP BY Clause in SQL

 » Operations on Relations

 » Using Two Relations in a 

Query

Chapter

“Any unique image that you desire 
probably already exists on the internet or 
in some database... The problem today is no 

longer how to create the right image, but how to 
find an already existing one. ”

— Lev Manovich

9.1 IntroductIon

We have learnt about Relational Database 

Management Systems (RDBMS) and its purpose 

in the previous chapter. There are many 

RDBMS such as MySQL, Microsoft SQL Server, 

PostgreSQL, Oracle, etc. that allow us to create 

a database consisting of relations. These RDBMS 

also allow us to store, retrieve and manipulate 

data on that database through queries. In this 

chapter, we will learn how to create, populate and 

query databases using MySQL.

9.2  Structured Query Language (SQL) 

One has to write application programs to access 

data in case of a file system. However, for database 
management systems there are special kinds of 

languages called query language that can be used 

to access and manipulate data from the database. 

The Structured Query Language (SQL) is the most 

popular query language used by major relational 

9 
Structured Query 
Language (SQL)

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii132

database management systems such as MySQL, 

ORACLE, SQL Server, etc.

SQL is easy to learn as the statements comprise of 

descriptive English words and are not case sensitive. 

We can create and interact with a database using SQL 

easily. Benefit of using SQL is that we do not have to 
specify how to get the data from the database. Rather, 

we simply specify what is to be retrieved, and SQL does 

the rest. Although called a query language, SQL can do 

much more, besides querying. SQL provides statements 

for defining the structure of the data, manipulating data 
in the database, declaring constraints and retrieving 

data from the database in various ways, depending on 

our requirements.

In this chapter, we will use the StudentAttendance 

discussed in chapter 8 and create a database. We 

will also learn how to populate databases with data, 

manipulate data and retrieve data from a database 

through SQL queries.

9.2.1 Installing MySQL

MySQL is an open source RDBMS software which can 

be easily downloaded from the official website https://
dev.mysql.com/downloads. After installing MySQL, 
start MySQL service. The appearance of mysql> prompt 

(Figure 9.1) means that MySQL is ready to accept SQL 

statements.

Activity 9.1

Find and list other 

types of databases 

other than 

RDBMS.

Figure 9.1: MySQL Shell

Following are some important points to be kept in 

mind while using SQL:

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 133

• SQL is case insensitive. For example, the column 

names ‘salary’ and ‘SALARY’ are the same for SQL.

• Always end SQL statements with a semicolon (;). 

• To enter multiline SQL statements, we don’t write “;” 

after the first line. We press the Enter key to continue 
on the next line. The prompt mysql> then changes to 

“->”, indicating that statement is continued to the 

next line. After the last line, put “;” and press enter.

9.3 data typeS and conStraIntS In MySQL

We know that a database consists of one or more 

relations and each relation (table) is made up of attributes 

(column). Each attribute has a data type. We can also 

specify constraints for each attribute of a relation.

9.3.1 Data type of Attribute

Data type of an attribute indicates the type of data value 

that an attribute can have. It also decides the operations 

that can be performed on the data of that attribute. 

For example, arithmetic operations can be performed 

on numeric data but not on character data. Commonly 

used data types in MySQL are numeric types, date and 

time types, and string types as shown in Table 9.1.

Activity 9.2

What are the other 

data types supported 

in MySQL? Are there 

other variants of 

integer and float 
data type?

Table 9.1 Commonly used data types in MySQL

Data type Description

CHAR(n) Specifies character type data of length n where n could be any value from 0 to 
255. CHAR is of fixed length, means, declaring CHAR (10) implies to reserve 
spaces for 10 characters. If data does not have 10 characters (e.g., ‘city’ has 
four characters), MySQL fills the remaining 6 characters with spaces padded 
on the right.

VARCHAR(n) Specifies character type data of length where n could be any value from 0 to 
65535. But unlike CHAR, VARCHAR(n) is a variable-length data type. That is, 
declaring VARCHAR (30) means a maximum of 30 characters can be stored but 
the actual allocated bytes will depend on the length of entered string. So ‘city’ 

in VARCHAR (30) will occupy space needed to store 4 characters only.
INT INT specifies an integer value. Each INT value occupies 4 bytes of storage. The 

range of unsigned values allowed in a 4 byte integer type are  0 to 4,294,967,295. 
For values larger than that, we have to use BIGINT, which occupies 8 bytes.

FLOAT Holds numbers with decimal points. Each FLOAT value occupies 4 bytes.
DATE The DATE type is used for dates in 'YYYY-MM-DD' format. YYYY is the 4 digit 

year, MM is the 2 digit month and DD is the 2 digit date. The supported range 

is '1000-01-01' to '9999-12-31'.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii134

9.3.2 Constraints

Constraints are the certain types of restrictions on the 

data values that an attribute can have. Table 9.2 lists 

some of the commonly used constraints in SQL. They 

are used to ensure correctness of data. However, it is 
not mandatory to define constraints for each attribute 
of a table.

Table 9.2 Commonly used SQL Constraints

Constraint Description

NOT NULL Ensures that a column cannot have NULL values where NULL means missing/
unknown/not applicable value.

UNIQUE Ensures that all the values in a column are distinct/unique

DEFAULT A default value specified for the column if no value is provided

PRIMARY KEY The column which can uniquely identify each row/record in a table.

FOREIGN KEY The column which refers to value of an attribute defined as primary key in another 
table

9.4 SQL for data defInItIon

In order to be able to store data we need to first define 
the relation schema. Defining a schema includes creating 
a relation and giving name to a relation, identifying the 

attributes in a relation, deciding upon the datatype for 

each attribute and also specify the constraints as per 

the requirements. Sometimes, we may require to make 

changes to the relation schema also. SQL allows us to 

write statements for defining, modifying and deleting 
relation schemas. These are part of Data Definition 
Language (DDL). 

We have already learned that the data are stored in 

relations or tables in a database. Hence, we can say 
that a database is a collection of tables. The Create 

statement is used to create a database and its tables 

(relations). Before creating a database, we should be 

clear about the number of tables the database will have, 

the columns (attributes) in each table along with the 

data type of each column, and its constraint, if any. 

9.4.1 CREATE Database

To create a database, we use the CREATE DATABASE 

statement as shown in the following syntax:
CREATE DATABASE databasename;

To create a database called StudentAttendance, we 

will type following command at mysql prompt.

Which two 
constraints when 
applied together will 
produce a Primary 
Key constraint?

 

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 135

Activity 9.3

Type the statement 

show database;  Does 

it show the name of 

StudentAttendance 

database?

mysql> CREATE DATABASE StudentAttendance;
Query OK, 1 row affected (0.02 sec)

Note: In LINUX environment, names for database and tables 

are case-sensitive whereas in WINDOWS, there is no such 

differentiation. However, as a good practice, it is suggested to write 
database/table name in the same letter cases that were used at the 
time of their creation.

A DBMS can manage multiple databases on one 

computer. Therefore, we need to select the database 

that we want to use. To know the names of existing 

databases, we use the statement SHOW DATABASES. 
From the listed databases, we can select the database to 

be used. Once the database is selected, we can proceed 

with creating tables or querying data. 

In order to use the StudentAttendance database, the 

following SQL statement is required. 

mysql> USE StudentAttendance;
Database changed

Initially, the created database is empty. It can be 

checked by using the show tables statement that lists 

names of all the tables within a database. 
mysql> SHOW TABLES;
Empty set (0.06 sec)

9.4.2 CREATE Table

After creating a database StudentAttendance, we need to 

define relations in this database and specify attributes 
for each relation along with data type and constraint (if 

any) for each attribute. This is done using the CREATE 

TABLE statement.

 Syntax:
CREATE TABLE tablename(
attributename1 datatype constraint,
attributename2 datatype constraint,
:
attributenameN datatype constraint);

It is important to observe the following points with 

respect to the CREATE TABLE statement:
• The number of columns in a table defines the degree 

of that relation, which is denoted by N.

• Attribute name specifies the name of the column in 
the table.

• Datatype specifies the type of data that an attribute 
can hold.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii136

• Constraint indicates the restrictions imposed on the 

values of an attribute. By default, each attribute can 

take NULL values except for the primary key.

Let us identify data types of the attributes of table 
STUDENT along with their constraints (if any). Assuming 
maximum students in a class to be 100 and values of 
roll number in a sequence from 1 to 100, we know that 
3 digits are sufficient to store values for the attribute 
RollNumber. Hence, data type INT is appropriate for this 
attribute. Total number of characters in a student name 
(SName) can differ. Assuming maximum characters in 
a name as 20, we use VARCHAR(20) for the SName 
column. Data type for the attribute SDateofBirth is 
DATE and supposing the school uses guardian’s 12 
digit Aadhaar number as GUID, we can declare GUID as 
CHAR (12) since Aadhaar number is of fixed length and 
we are not going to perform any mathematical operation 
on GUID. 

Table 9.3, 9.4 and 9.5 shows the chosen data type and 
constraint for each attribute of the relations STUDENT, 
GUARDIAN and ATTENDANCE, respectively.

Table 9.3 Data types and constraints for the attributes of relation STUDENT

Attribute Name Data expected to be stored Data type Constraint

RollNumber Numeric value consisting of maximum 3 digits INT PRIMARY KEY

SName Variant length string of maximum 20 characters VARCHAR(20) NOT NULL

SDateofBirth Date value DATE NOT NULL

GUID Numeric value consisting of 12 digits CHAR (12) FOREIGN KEY

Table 9.4 Data types and constraints for the attributes of relation GUARDIAN

Attribute Name Data expected to be stored Data type Constraint

GUID Numeric value consisting of 12 digit Aadhaar 

number
CHAR (12) PRIMARY KEY

GName Variant length string of maximum 20 
characters

VARCHAR(20) NOT NULL

GPhone Numeric value consisting of 10 digits CHAR(10) NULL UNIQUE

GAddress Variant length String of size 30 characters VARCHAR(30) NOT NULL

Table 9.5 Data types and constraints for the attributes of relation ATTENDANCE.

Attribute Name Data expected to be stored Data type Constraint

AttendanceDate Date value DATE PRIMARY KEY*

RollNumber Numeric value consisting of maximum 3 

digits 
INT PRIMARY KEY*

FOREIGN KEY

AttendanceStatus ‘P’ for present and ‘A’ for absent CHAR(1) NOT NULL

*means part of composite primary key.

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 137

Once data types and constraints are identified, let us 
create tables without specifying constraints along with 

the attribute name for simplification. We will learn to 
incorporate constraints on attributes in Section 9.4.4.

Example 9.1 Create table STUDENT.

mysql> CREATE TABLE STUDENT(

    -> RollNumber  INT,

    -> SName VARCHAR(20),

    -> SDateofBirth DATE,

    -> GUID CHAR (12),

    -> PRIMARY KEY (RollNumber));

Query OK, 0 rows affected (0.91 sec)

Note: “,” is used to separate two attributes and each statement 
terminates with a semi-colon (;). The arrow (->) is an interactive 
continuation prompt. If we enter an unfinished statement, the SQL 
shell will wait for us to enter the rest of the statement.

9.4.3 Describe Table

We can view the structure of an already created table 

using the DESCRIBE statement or DESC statement. 

 

Which datatype out 

of Char and Varchar 
will you prefer for 

storing contact 

number(mobile 

number)? Discuss.

Syntax:

DESCRIBE tablename; 

mysql> DESCRIBE STUDENT;
+--------------+-------------+------+-----+---------+-------+
| Field        | Type        | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+  
| RollNumber   | int         | NO   | PRI | NULL    |       |
| SName        | varchar(20) | YES  |     | NULL    |       |
| SDateofBirth | date        | YES  |     | NULL    |       |
| GUID         | char(12)    | YES  |     | NULL    |       |
+--------------+-------------+------+-----+---------+-------+

4 rows in set (0.06 sec)

We can use the SHOW TABLES statement to see the 
tables in the StudentAttendance database. So far, we 

have only the STUDENT table.

mysql> SHOW TABLES;
+------------------------------+
| Tables_in_studentattendance  |
+------------------------------+
| student                      |

+------------------------------+
1 row in set (0.00 sec)

9.4.4 ALTER Table 

After creating a table, we may realise that we need to 

add/remove an attribute or to modify the datatype of 
an existing attribute or to add constraint in attribute. In 

Activity 9.4

Create the other two 

relations GUARDIAN 

and ATTENDANCE as 

per data types given 

in Table 9.4 and 9.5 
respectively, and 

view their structures. 

Do not add any 

constraint in 

these two 

tables.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii138

all such cases, we need to change or alter the structure 

(schema) of the table by using the alter statement.

(A) Add primary key to a relation
Let us now alter the tables created in Activity 9.4. The 
following MySQL statement adds a primary key to the 
GUARDIAN relation:
mysql> ALTER TABLE GUARDIAN ADD PRIMARY KEY (GUID);

Query OK, 0 rows affected (1.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

Now let us add the primary key to the ATTENDANCE 
relation. The primary key of this relation is a composite 
key made up of two attributes - AttendanceDate and 
RollNumber.  

mysql> ALTER TABLE ATTENDANCE 
    -> ADD PRIMARY KEY(AttendanceDate, 
RollNumber);
Query OK, 0 rows affected (0.52 sec)
Records: 0 Duplicates: 0 Warnings: 0

(B) Add foreign key to a relation
Once primary keys are added, the next step is to add 
foreign keys to the relation (if any). Following points need 
to be observed while adding foreign key to a relation:
• The referenced relation must be already created.

• The referenced attribute(s) must be part of the 
primary key of the referenced relation.

• Data types and size of referenced and referencing 
attributes must be the same.

Syntax:
ALTER TABLE table_name ADD FOREIGN KEY(attribute 
name) REFERENCES referenced_table_name                                                                        
(attribute name);

Let us now add foreign key to the table STUDENT. 
Table 9.3 shows that attribute GUID (the referencing 
attribute) is a foreign key and it refers to attribute GUID 
(the referenced attribute) of table GUARDIAN. Hence, 
STUDENT is the referencing table and GUARDIAN is the 
referenced table as shown in Figure 8.4 in the previous 
chapter. 

mysql> ALTER TABLE STUDENT 
    -> ADD FOREIGN KEY(GUID) REFERENCES 
    -> GUARDIAN(GUID);
Query OK, 0 rows affected (0.75 sec)
Records: 0 Duplicates: 0 Warnings: 0

(C) Add constraint UNIQUE to an existing attribute
In GUARDIAN table, the attribute GPhone has a 
constraint UNIQUE which means no two values in that 
column should be the same. 

Activity 9.5

Add foreign key in the 

ATTENDANCE table 

(use Figure 9.1) to 

identify referencing 

and referenced 

tables).

 

Name foreign keys in 

table ATTENDANCE 

and STUDENT. Is 

there any foreign key 

in table GUARDIAN.

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 139

Syntax:
ALTER TABLE table_name ADD UNIQUE (attribute 
name);

Let us now add the constraint UNIQUE with the 

attribute GPhone of the table GUARDIAN as shown at 

table 9.4.
mysql> ALTER TABLE GUARDIAN 

    -> ADD UNIQUE(GPhone);
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

(D) Add an attribute to an existing table

Sometimes, we may need to add an additional attribute 

in a table. It can be done using the ADD attribute 

statement as shown in the following Syntax:
 ALTER TABLE table_name ADD attribute                    
 name DATATYPE;

Suppose, the principal of the school has decided to 

award scholarship to some needy students for which 

income of the guardian must be known. But, the school 

has not maintained the income attribute with table 

GUARDIAN so far. Therefore, the database designer 

now needs to add a new attribute Income of data type 

INT in the table GUARDIAN.

mysql> ALTER TABLE GUARDIAN 
    -> ADD income INT;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

(E) Modify datatype of an attribute

We can change data types of the existing attributes of a 

table using the following ALTER statement. 

Syntax:

ALTER TABLE table_name MODIFY attribute DATATYPE;

Suppose we need to change the size of the attribute 
GAddress from VARCHAR(30) to VARCHAR(40) of the 
GUARDIAN table. The MySQL statement will be: 
mysql> ALTER TABLE GUARDIAN 

-> MODIFY GAddress VARCHAR(40); 
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

(F) Modify constraint of an attribute

When we create a table, by default each attribute takes 

NULL value except for the attribute defined as primary 
key. We can change an attribute’s constraint from NULL 

to NOT NULL using an alter statement.  

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii140

Syntax:
ALTER TABLE table_name MODIFY attribute DATATYPE 
NOT NULL;

Note: We have to specify the data type of the attribute along with 

constraint NOT NULL while using MODIFY.

To associate NOT NULL constraint with attribute 

SName of table STUDENT (table 9.3), we write the 

following MySQL statement:
 mysql> ALTER TABLE STUDENT 

 -> MODIFY SName VARCHAR(20) NOT NULL;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

(G) Add default value to an attribute

If we want to specify default value for an attribute, then 

use the following syntax:
ALTER TABLE table_name MODIFY attribute DATATYPE 
DEFAULT default_value;

To set default value of SDateofBirth of STUDENT to 
15th May 2000, write the following statement:
mysql> ALTER TABLE STUDENT 

  -> MODIFY SDateofBirth DATE DEFAULT ‘2000-05- 
     15’;
Query OK, 0 rows affected (0.08 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note: We have to specify the data type of the attribute along with 

DEFAULT while using MODIFY.

(H) Remove an attribute

Using ALTER, we can remove attributes from a table, as 

shown in the following syntax:
ALTER TABLE table_name DROP attribute;
To remove the attribute income from table 
GUARDIAN (Table 9.4), write the following MySQL 
statement:

mysql> ALTER TABLE GUARDIAN DROP income;
Query OK, 0 rows affected (0.42 sec)
Records: 0 Duplicates: 0 Warnings: 0

(I) Remove primary key from the table

Sometime there may be a requirement to remove primary 

key constraint from the table. In that case, Alter table 

command can be used in the following way: 
Syntax:

ALTER TABLE table_name DROP PRIMARY KEY;

To remove primary key of  table GUARDIAN (Figure 

9.4), write the following MySQL statement:
mysql> ALTER TABLE GUARDIAN DROP PRIMARY KEY;

Query OK, 0 rows affected (0.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

 

What are the 

minimum and 

maximum income 

values that can be 

entered in the income 

attribute given the 

data type is INT?

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 141

Note: We have dropped the primary key from the GUARDIAN table, 

but each table should have a primary key to maintain uniqueness. 

Hence, we have to use the ADD statement with the Alter Table 
command to specify the primary key for the GUARDIAN table as 

shown in earlier examples.

9.4.5 DROP Statement

Sometimes a table in a database or the database itself 

needs to be removed. We can use a DROP statement 

to remove a database or a table permanently from the 

system. However, one should be very cautious while 
using this statement as it cannot be undone.

Syntax to drop a table:
DROP TABLE table_name;

Syntax to drop a database:
DROP DATABASE database_name;

Note: Using the DROP statement to remove a database will 

ultimately remove all the tables within it.

9.5 SQL for data ManIpuLatIon

In the previous section, we created the database 

StudentAttendance having three relations STUDENT, 

GUARDIAN and ATTENDANCE. When we create a table, 

only its structure is created but the table has no data. 

To populate records in the table, INSERT statement is 

used. Also, table records can be deleted or updated using 

DELETE and UPDATE statements. These SQL statements 

are part of Data Manipulation Language (DML).

Data Manipulation using a database means either 

insertion of new data, removal of existing data or 

modification of existing data in the database

9.5.1 INSERTION of Records

INSERT INTO statement is used to insert new records in 

a table. Its syntax is:
INSERT INTO tablename
VALUES(value 1, value 2,....); 

Here, value 1 corresponds to attribute 1, value 2 
corresponds to attribute 2 and so on. Note that we need 

not to specify attribute names in the insert statement 

if there are exactly the same numbers of values in the 

INSERT statement as the total number of attributes in 

the table.

Caution: While populating records in a table with foreign 

key, ensure that records in referenced tables are already 

populated.

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii142

Table 9.6 GUARDIAN Table

GUID GName GPhone GAddress

444444444444 Amit Ahuja 5711492685 G-35, Ashok Vihar, Delhi
111111111111 Baichung Bhutia 7110047139 Flat no. 5, Darjeeling Appt., Shimla

101010101010 Himanshu Shah 9818184855 26/77, West Patel Nagar, Ahmedabad
333333333333 Danny Dsouza S -13, Ashok Village, Daman

466444444666 Sujata P. 7802983674 HNO-13, B- block, Preet Vihar, Madurai

The following insert statement adds the first record 
in the table:
mysql> INSERT INTO GUARDIAN 

-> VALUES (444444444444, 'Amit Ahuja', 
-> 5711492685, 'G-35,Ashok vihar, Delhi' ); 
Query OK, 1 row affected (0.01 sec)

We can use the SQL statement SELECT * from 

table_name to view the inserted records. The SELECT 

statement will be explained in the next section.

Activity 9.6

Write SQL statements 

to insert the remaining 

3 rows of table 

9.6 in table 
GUARDIAN.

Let us insert some records in the StudentAttendance 

database. We shall insert records in the GUARDIAN 

table first as it does not have any foreign key. A set 
of sample records for GUARDIAN table is shown in the 

given table (Table 9.6).

mysql> SELECT * from  GUARDIAN;
+--------------+---------------+------------+---------------------------+
| GUID         | GName         | Gphone     | GAddress                  |
+--------------+---------------+------------+---------------------------+
| 444444444444 | Amit Ahuja    | 5711492685 | G-35, Ashok vihar, Delhi  |
+--------------+---------------+------------+---------------------------+

1 row in set (0.00 sec)

If we want to insert values only for some of the 

attributes in a table (supposing other attributes having 

NULL or any other default value), then we shall specify 

the attribute names in which the values are to be inserted 

using the following syntax of INSERT INTO statement.

Syntax:
INSERT INTO tablename (column1, column2, ...) 
VALUES (value1, value2,  ...); 

To insert the fourth record of Table 9.6 where GPhone 
is not given, we need to insert values in the other three 

fields (GPhone was set to NULL by default at the time 
of table creation). In this case, we have to specify the 

names of attributes in which we want to insert values. 

The values must be given in the same order in which 

attributes are written in INSERT statement.

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 143

mysql> INSERT INTO GUARDIAN(GUID, GName, GAddress) 
-> VALUES (333333333333, 'Danny Dsouza', 
-> 'S -13, Ashok Village, Daman' ); 
Query OK, 1 row affected (0.03 sec)

Note: Text and date values must be enclosed in ‘ ’ (single quotes).

mysql> SELECT * from GUARDIAN;
+--------------+--------------+-----------+---------------------------+
| GUID         | GName        | Gphone    | GAddress                  |
+--------------+--------------+-----------+---------------------------+
| 333333333333 | Danny Dsouza | NULL      | S -13, Ashok Village,Daman|
| 444444444444 | Amit Ahuja   | 5711492685| G-35, Ashok vihar, Delhi  |
+--------------+--------------+-----------+---------------------------+
2 rows in set (0.00 sec)

Table 9.7 STUDENT Table

RollNumber SName SDateofBirth GUID

1 Atharv Ahuja 2003-05-15 444444444444
2 Daizy Bhutia 2002-02-28 111111111111

3 Taleem Shah 2002-02-28

4 John Dsouza 2003-08-18 333333333333

5 Ali Shah 2003-07-05 101010101010
6 Manika P. 2002-03-10 466444444666

To insert the first record of Table 9.7, we write the 
following MySQL statement 

mysql> INSERT INTO STUDENT 
-> VALUES(1,'Atharv Ahuja','2003-05-15', 
444444444444);
Query OK, 1 row affected (0.11 sec)
OR
mysql> INSERT INTO STUDENT (RollNumber, SName, 
SDateofBirth, GUID)
    -> VALUES (1,'Atharv Ahuja','2003-05-15', 
444444444444);
Query OK, 1 row affected (0.02 sec)

Recall that Date is stored in ‘YYYY-MM-DD’ format.

mysql> SELECT * from STUDENT;
+------------+--------------+--------------+--------------+
| RollNumber | SName        | SDateofBirth | GUID         |
+------------+--------------+--------------+--------------+
|          1 | Atharv Ahuja | 2003-05-15   | 444444444444 |
+------------+--------------+--------------+--------------+
1 row in set (0.00 sec)

Let us now insert the third record of Table 9.7 where 
GUID is NULL. Recall that GUID is foreign key of this 

table and thus can take NULL value. Hence, we can put 
NULL value for GUID and insert the record by using the 

following statement:

Activity 9.7

Write SQL statements 

to insert the 

remaining 4 rows 
of table 9.7 in 
table STUDENT.

Let us now insert the records given in Table 9.7 into 
the STUDENT table.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii144

mysql> SELECT * from STUDENT;
+------------+--------------+--------------+--------------+
| RollNumber | SName        | SDateofBirth | GUID         |
+------------+--------------+--------------+--------------+
|          1 | Atharv Ahuja | 2003-05-15   | 444444444444 |
|          3 | Taleem Shah  | 2002-02-28   |         NULL |
+------------+--------------+--------------+--------------+

2 rows in set (0.00 sec)

We had to write NULL in the above insert statement 

because we are not mentioning the column names. 

Otherwise, we should mention the names of attributes 

along with the values if we need to insert data only for 

certain attributes, as shown in the following query:
mysql> INSERT INTO STUDENT (RollNumber, SName, 

-> SDateofBirth) VALUES (3, 'Taleem Shah','2002-02-
28');

Query OK, 1 row affected (0.05 sec)

9.6 SQL for data Query 

So far we have learnt how to create a database and how 

to store and manipulate data in them. We are interested 

in storing data in a database as it is easier to retrieve 

data in future from databases in whatever way we want. 

SQL provides efficient mechanisms to retrieve data 
stored in multiple tables in MySQL database (or any 

other RDBMS). The SQL statement SELECT is used to 

retrieve data from the tables in a database and is also 

called a query statement.

9.6.1 SELECT Statement

The SQL statement SELECT is used to retrieve data 

from the tables in a database and the output is also 

displayed in tabular form.

Syntax:
SELECT attribute1, attribute2, ...
FROM table_name
WHERE condition;

Here, attribute1, attribute2, ... are the column names 
of the table table_name  from which we want to retrieve 

data. The FROM clause is always written with SELECT 

clause as it specifies the name of the table from which 
data is to be retrieved. The WHERE clause is optional and 
is used to retrieve data that meet specified condition(s). 

• Which of the two 

insert statement 

should be used 

when the order of 

data to be inserted 

are not known?

• Can we insert two 

records with the 

same roll number?

 

mysql> INSERT INTO STUDENT 
-> VALUES(3, 'Taleem Shah','2002-02-28', NULL); 
Query OK, 1 row affected (0.05 sec)

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 145

To select all the data available in a table, we use the 

following select statement:
SELECT * FROM table_name;

Example 9.2 The following query retrieves the name and 

date of birth of student with roll number 1:
mysql> SELECT SName, SDateofBirth

    -> FROM STUDENT 

    -> WHERE RollNumber = 1;
+--------------+--------------+
| SName        | SDateofBirth |
+--------------+--------------+
| Atharv Ahuja | 2003-05-15   |
+--------------+--------------+
1 row in set (0.03 sec)

9.6.2 QUERYING using Database OFFICE 

Organisations maintain databases to store data in the 

form of tables. Let us consider the database OFFICE 

of an organisation that has many related tables like 

EMPLOYEE, DEPARTMENT and so on. Every EMPLOYEE 

in the database is assigned to a DEPARTMENT and 

his/her Department number (DeptId) is stored as a 
foreign key in the table EMPLOYEE. Let us consider the 

relation ‘EMPLOYEE’ as shown in Table 9.8 and apply 

the SELECT statement to retrieve data:

Think and list few 

examples from your 

daily life where 

storing the data in 

the database and 

querying the same 

can be helpful.

 

Table 9.8 Records to be inserted into the EMPLOYEE table

EmpNo Ename Salary Bonus Deptld

101 Aaliya 10000 234 D02

102 Kritika 60000 123 D01

103 Shabbbir 45000 566 D01

104 Gurpreet 19000 565 D04

105 Joseph 34000 875 D03

106 Sanya 48000 695 D02

107 Vergese 15000 D01

108 Nachaobi 29000 D05

109 Daribha 42000 D04

110 Tanya 50000 467 D05

(A) Retrieve selected columns

The following query selects employee numbers of all the 

employees:
mysql> SELECT  EmpNo FROM  EMPLOYEE;

+-------+
| EmpNo |
+-------+
|   101 |
|   102 |

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii146

|   103 |
|   104 |
|   105 |
|   106 |
|   107 |
|   108 |
|   109 |
|   110 |
+-------+
10 rows in set (0.41 sec)

The following query selects the employee number 
and employee name of all the employees, we write:
mysql> SELECT EmpNo, Ename FROM  EMPLOYEE;

+-------+----------+
| EmpNo | Ename    |
+-------+----------+
|   101 | Aaliya   |
|   102 | Kritika  |
|   103 | Shabbir  |
|   104 | Gurpreet |
|   105 | Joseph   |
|   106 | Sanya    |
|   107 | Vergese  |
|   108 | Nachaobi |
|   109 | Daribha  |
|   110 | Tanya    |
+-------+----------+
10 rows in set (0.00 sec)

(B) Renaming of columns
In case we want to rename any column while displaying 
the output, it can be done by using the alias 'AS'. The 
following query selects Employee name as Name in the 
output for all the employees:
mysql> SELECT  EName  as Name FROM  EMPLOYEE;

+----------+
| Name     |
+----------+
| Aaliya   |
| Kritika  |
| Shabbir  |
| Gurpreet |
| Joseph   |
| Sanya    |
| Vergese  |
| Nachaobi |
| Daribha  |
| Tanya    |
+----------+
10 rows in set (0.00 sec)

Example 9.3 Select names of all employees along with their 

annual income (calculated as Salary*12). While displaying 

the query result, rename the column EName as Name

mysql> SELECT EName as Name, Salary*12 FROM EMPLOYEE;

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 147

+----------+-----------+
| Name     | Salary*12 |
+----------+-----------+
| Aaliya   |    120000 |
| Kritika  |    720000 |
| Shabbir  |    540000 |
| Gurpreet |    228000 |
| Joseph   |    408000 |
| Sanya    |    576000 |
| Vergese  |    180000 |
| Nachaobi |    348000 |
| Daribha  |    504000 |
| Tanya    |    600000 |
+----------+-----------+
10 rows in set (0.02 sec)

Observe that in the output, Salary*12 is displayed as 

the column name for the Annual Income column. In the 

output table, we can use alias to rename that column as 

Annual Income as shown below:
mysql> SELECT Ename AS Name, Salary*12 AS 'Annual 
Income’

    -> FROM EMPLOYEE;
+----------+---------------+
| Name     | Annual Income|
+----------+---------------+
| Aaliya   |        120000 |
| Kritika  |        720000 |
| Shabbir  |        540000 |
| Gurpreet |        228000 |
| Joseph   |        408000 |
| Sanya    |        576000 |
| Vergese  |        180000 |
| Nachaobi |        348000 |
| Daribha  |        504000 |
| Tanya    |        600000 |
+----------+---------------+
10 rows in set (0.00 sec)

Note: Annual Income will not be added as a new column in the 

database table. It is just for displaying the output of the query. 

If an aliased column name has space as in the case of Annual 

Income, it should be enclosed in quotes as 'Annual Income

(C) Distinct Clause

By default, SQL shows all the data retrieved through 

query as output. However, there can be duplicate values. 
The SELECT statement when combined with DISTINCT 

clause, returns records without repetition (distinct 

records). For example, while retrieving a department 

number from employee relation, there can be duplicate 

values as many employees are assigned to the same 

department. To select unique department number for 

all the employees, we use DISTINCT as shown below:
mysql> SELECT DISTINCT DeptId FROM EMPLOYEE;

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii148

+--------+
| DeptId |
+--------+
| D02    |
| D01    |
| D04    |
| D03    |
| D05    |
+--------+
5 rows in set (0.03 sec)

(D) WHERE Clause

The WHERE clause is used to retrieve data that meet 
some specified conditions. In the OFFICE database, 
more than one employee can have the same salary. 

Following query gives distinct salaries of the employees 

working in the department number D01:
mysql> SELECT DISTINCT Salary

    -> FROM EMPLOYEE

    -> WHERE Deptid='D01';

As the column DeptId is of string type, its values are 

enclosed in quotes ('D01').
+--------+
| Salary |
+--------+
|  60000 |
|  45000 |
|  15000 |
+--------+
3 rows in set (0.02 sec)

In the above example, = operator is used in the 

WHERE clause. Other relational operators (<, <=, >, >=, 
!=) can be used to specify such conditions. The logical 

operators AND, OR, and NOT are used to combine 

multiple conditions.

Example 9.4 Display all the details of those employees of 

D04 department who earn more than 5000.
mysql> SELECT  * FROM  EMPLOYEE

    -> WHERE Salary > 5000 AND DeptId = 'D04';
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   104 | Gurpreet |  19000 |   565 | D04    |
|   109 | Daribha  |  42000 |  NULL | D04    |
+-------+----------+--------+-------+--------+
2 rows in set (0.00 sec)

Example 9.5 The following query selects records of all the 

employees except Aaliya.

mysql> SELECT * FROM EMPLOYEE

    -> WHERE NOT Ename = 'Aaliya';
+-------+----------+--------+-------+--------+

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 149

| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   102 | Kritika  |  60000 |   123 | D01    |
|   103 | Shabbir  |  45000 |   566 | D01    |
|   104 | Gurpreet |  19000 |   565 | D04    |
|   105 | Joseph   |  34000 |   875 | D03    |
|   106 | Sanya    |  48000 |   695 | D02    |
|   107 | Vergese  |  15000 |  NULL | D01    |
|   108 | Nachaobi |  29000 |  NULL | D05    |
|   109 | Daribha  |  42000 |  NULL | D04    |
|   110 | Tanya    |  50000 |   467 | D05    |
+-------+----------+--------+-------+--------+
9 rows in set (0.00 sec)

Example 9.6 The following query selects the name and 

department number of all those employees who are earning 

salary between 20000 and 50000 (both values inclusive).
mysql> SELECT Ename, DeptId
    -> FROM EMPLOYEE
    -> WHERE Salary>=20000 AND Salary<=50000;

+----------+--------+
| Ename    | DeptId |
+----------+--------+
| Shabbir  | D01    |
| Joseph   | D03    |
| Sanya    | D02    |
| Nachaobi | D05    |
| Daribha  | D04    |
| Tanya    | D05    |
+----------+--------+
6 rows in set (0.00 sec)
SELECT  * FROM  EMPLOYEE 
WHERE Salary > 5000 OR DeptId= 20;

The query in example 9.6 defines a range that can also 
be checked using a comparison operator BETWEEN, as 

shown below: 
mysql> SELECT  Ename, DeptId
    -> FROM EMPLOYEE
    -> WHERE Salary BETWEEN 20000 AND 50000;
+----------+--------+
| Ename    | DeptId |
+----------+--------+
| Shabbir  | D01    |
| Joseph   | D03    |
| Sanya    | D02    |
| Nachaobi | D05    |
| Daribha  | D04    |
| Tanya    | D05    |
+----------+--------+
6 rows in set (0.03 sec)

Note:  The BETWEEN operator defines the range of values in which 
the column value must fall into, to make the condition true.

Example 9.7 The following query selects details of all the 

employees who work in the departments having deptid D01, 
D02 or D04.

Activity 9.8

Compare the output 

produced by the query 

in Example 9.6 and 
the output of the 

following query 

and differentiate 

between the 

OR and AND 

operators.

What will happen if 

in the above query 

we write “Aaliya” as 

“AALIYA” or “aaliya” 

or “AaLIYA”? Will the 

query generate the 

same output or an 

error?

 

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii150

mysql> SELECT  *

    -> FROM EMPLOYEE

    -> WHERE DeptId = 'D01' OR DeptId = 'D02' OR 
DeptId = 'D04';

+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   101 | Aaliya   |  10000 |   234 | D02    |
|   102 | Kritika  |  60000 |   123 | D01    |
|   103 | Shabbir  |  45000 |   566 | D01    |
|   104 | Gurpreet |  19000 |   565 | D04    |
|   106 | Sanya    |  48000 |   695 | D02    |
|   107 | Vergese  |  15000 |  NULL | D01    |
|   109 | Daribha  |  42000 |  NULL | D04    | 
+-------+----------+--------+-------+--------+
7 rows in set (0.00 sec)

(E) Membership operator IN 

The IN operator compares a value with a set of values 

and returns true if the value belongs to that set. The 

above query can be rewritten using IN operator as 

shown below:
mysql> SELECT  * FROM EMPLOYEE

    -> WHERE DeptId IN ('D01', 'D02' , 'D04');
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   101 | Aaliya   |  10000 |   234 | D02    |
|   102 | Kritika  |  60000 |   123 | D01    |
|   103 | Shabbir  |  45000 |   566 | D01    |
|   104 | Gurpreet |  19000 |   565 | D04    |
|   106 | Sanya    |  48000 |   695 | D02    |
|   107 | Vergese  |  15000 |  NULL | D01    |
|   109 | Daribha  |  42000 |  NULL | D04    |
+-------+----------+--------+-------+--------+
7 rows in set (0.00 sec)

Example 9.8 The following query selects details of all the 

employees except those working in department number D01 
or D02. 
mysql> SELECT * FROM EMPLOYEE

    -> WHERE DeptId NOT IN('D01', 'D02');
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   104 | Gurpreet |  19000 |   565 | D04    |
|   105 | Joseph   |  34000 |   875 | D03    |
|   108 | Nachaobi |  29000 |  NULL | D05    |
|   109 | Daribha  |  42000 |  NULL | D04    |
|   110 | Tanya    |  50000 |   467 | D05    |
+-------+----------+--------+-------+--------+
5 rows in set (0.00 sec)

Note: Here we need to combine NOT with IN as we want to retrieve 
all records except with DeptId D01 and D02.

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 151

(F) ORDER BY Clause

ORDER BY clause is used to display data in an ordered 

form with respect to a specified column. By default, 
ORDER BY displays records in ascending order of 

the specified column’s values. To display the records 
in descending order, the DESC (means descending) 

keyword needs to be written with that column.

Example 9.9 The following query selects details of all the 

employees in ascending order of their salaries.

mysql> SELECT  * FROM EMPLOYEE

    -> ORDER BY Salary;
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   101 | Aaliya   |  10000 |   234 | D02    |
|   107 | Vergese  |  15000 |  NULL | D01    |
|   104 | Gurpreet |  19000 |   565 | D04    |
|   108 | Nachaobi |  29000 |  NULL | D05    |
|   105 | Joseph   |  34000 |   875 | D03    |
|   109 | Daribha  |  42000 |  NULL | D04    |
|   103 | Shabbir  |  45000 |   566 | D01    |
|   106 | Sanya    |  48000 |   695 | D02    |
|   110 | Tanya    |  50000 |   467 | D05    |
|   102 | Kritika  |  60000 |   123 | D01    |
+-------+----------+--------+-------+--------+
10 rows in set (0.05 sec)

Example 9.10 Select details of all the employees in descending 

order of their salaries.
mysql> SELECT  * FROM EMPLOYEE
    -> ORDER BY Salary DESC;
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   102 | Kritika  |  60000 |   123 | D01    |
|   110 | Tanya    |  50000 |   467 | D05    |
|   106 | Sanya    |  48000 |   695 | D02    |
|   103 | Shabbir  |  45000 |   566 | D01    |
|   109 | Daribha  |  42000 |  NULL | D04    |
|   105 | Joseph   |  34000 |   875 | D03    |
|   108 | Nachaobi |  29000 |  NULL | D05    |
|   104 | Gurpreet |  19000 |   565 | D04    |
|   107 | Vergese  |  15000 |  NULL | D01    |
|   101 | Aaliya   |  10000 |   234 | D02    |
+-------+----------+--------+-------+--------+
10 rows in set (0.00 sec)

(G) Handling NULL Values

SQL supports a special value called NULL to represent 

a missing or unknown value. For example, the Gphone 

column in the GUARDIAN table can have missing value 

for certain records. Hence, NULL is used to represent 
such unknown values. It is important to note that NULL 

Activity 9.9

Execute the following 

2 queries and find out 
what will happen if we 

specify two columns in 

the ORDER BY clause:
SELECT  * FROM 
EMPLOYEE
ORDER BY Salary, 
Bonus;

SELECT  * FROM 
EMPLOYEE
ORDER BY 
Salary,Bonus 
DESC;

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii152

is different from 0 (zero). Also, any arithmetic operation 
performed with NULL value gives NULL. For example: 
5 + NULL = NULL because NULL is unknown hence 

the result is also unknown. In order to check for NULL 

value in a column, we use IS NULL operator.

Example 9.11 The following query selects details of all those 

employees who have not been given a bonus. This implies 

that the bonus column will be blank. 

mysql> SELECT * FROM EMPLOYEE

    -> WHERE Bonus IS NULL;
+-------+----------+--------+-------+--------+
| EmpNo | Ename    | Salary | Bonus | DeptId |
+-------+----------+--------+-------+--------+
|   107 | Vergese  |  15000 |  NULL | D01    |
|   108 | Nachaobi |  29000 |  NULL | D05    |
|   109 | Daribha  |  42000 |  NULL | D04    |
+-------+----------+--------+-------+--------+
3 rows in set (0.00 sec)

Example 9.12 The following query selects names of all 

employees who have been given a bonus (i.e., Bonus is not 

null) and works in the department D01. 
mysql> SELECT EName FROM EMPLOYEE

    -> WHERE Bonus IS NOT NULL

    -> AND DeptID = ‘D01’;
+----------+
| EName    |
+----------+
| Kritika  |
| Shabbir  |
+----------+
2 rows in set (0.00 sec)

(H) Substring pattern matching

Many a times we come across situations where we do 

not want to query by matching exact text or value. 

Rather, we are interested to find matching of only a few 
characters or values in column values. For example, 

to find out names starting with “T” or to find out pin 
codes starting with ‘60’. This is called substring pattern 
matching. We cannot match such patterns using = 

operator as we are not looking for an exact match. 

SQL provides a LIKE operator that can be used with  

the WHERE clause to search for a specified pattern in 
a column.

The LIKE operator makes use of the following two 

wild card characters:
• % (per cent)- used to represent zero, one, or multiple 

characters

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 153

• _ (underscore)- used to represent exactly a single 

character

Example 9.13 The following query selects details of all those 

employees whose name starts with 'K'.

mysql> SELECT  * FROM EMPLOYEE

    -> WHERE Ename like 'K%';
+-------+---------+--------+-------+--------+
| EmpNo | Ename   | Salary | Bonus | DeptId |
+-------+---------+--------+-------+--------+
|   102 | Kritika |  60000 |   123 | D01    |
+-------+---------+--------+-------+--------+
1 row in set (0.00 sec)

Example 9.14 The following query selects details of all those 

employees whose name ends with 'a', and gets a salary more 

than 45000.
mysql> SELECT  * FROM EMPLOYEE
    -> WHERE Ename like '%a'
    -> AND Salary > 45000;

+-------+---------+--------+-------+--------+
| EmpNo | Ename   | Salary | Bonus | DeptId |
+-------+---------+--------+-------+--------+
|   102 | Kritika |  60000 |   123 | D01    |
|   106 | Sanya   |  48000 |   695 | D02    |
|   110 | Tanya   |  50000 |   467 | D05    |
+-------+---------+--------+-------+--------+
3 rows in set (0.00 sec)

Example 9.15 The following query selects details of all 

those employees whose name consists of exactly 5 letters 

and starts with any letter but has ‘ANYA’ after that.

mysql> SELECT  * FROM EMPLOYEE

    -> WHERE Ename like '_ANYA';
+-------+-------+--------+-------+--------+
| EmpNo | Ename | Salary | Bonus | DeptId |
+-------+-------+--------+-------+--------+
|   106 | Sanya |  48000 |   695 | D02    |
|   110 | Tanya |  50000 |   467 | D05    |
+-------+-------+--------+-------+--------+
2 rows in set (0.00 sec)

Example 9.16 The following query selects names of all 

employees containing 'se' as a substring in name.

mysql> SELECT  Ename FROM EMPLOYEE

    -> WHERE Ename like '%se%';
+---------+
| Ename   |
+---------+
| Joseph  |
| Vergese |
+---------+
2 rows in set (0.00 sec)

When we type first 
letter of a contact 

name in our contact 

list in our mobile 

phones all the 

names containing 

that character are 

displayed. Can you 

relate SQL statement 

with the process? 

List other real-life 

situations where 

you can visualise a 

SQL statement in 

operation.

 

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii154

Example 9.17 The following query selects names of all 

employees containing 'a' as the second character.

mysql> SELECT  EName FROM EMPLOYEE

    -> WHERE Ename like '_a%';
+----------+
| EName    |
+----------+
| Aaliya   |
| Sanya    |
| Nachaobi |
| Daribha  |
| Tanya    |
+----------+
5 rows in set (0.00 sec)

9.7 data updatIon and deLetIon

Updation and deletion of data are also part of SQL Data 

Manipulation Language (DML). In this section, we are 

going to apply these two data manipulation methods on 

the StudentAttendance database given in section 9.4.

9.7.1 Data Updation

We may need to make changes in the value(s) of one or 

more columns of existing records in a table. For example, 

we may require some changes in address, phone number 

or spelling of name, etc. The UPDATE statement is used 

to make such modifications in existing data.
Syntax:

UPDATE table_name
SET attribute1 = value1, attribute2 = value2, ...
WHERE condition; 

STUDENT Table 9.7 has NULL value in GUID for the 
student with roll number 3. Suppose students with roll 

numbers 3 and 5 are siblings. Then, in the STUDENT 

table, we need to fill the GUID value for the student with 
roll number 3 as 101010101010. In order to update 
or change GUID of a particular row (record), we need 

to specify that record using WHERE clause, as shown 
below: 
mysql> UPDATE STUDENT

    -> SET GUID = 101010101010

    -> WHERE RollNumber = 3;

Query OK, 1 row affected (0.06 sec) Rows matched: 1 
Changed: 1 Warnings: 0

We can then verify the updated data using the 

statement SELECT * FROM STUDENT.

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 155

Caution : If we miss the where clause in the UPDATE statement 

then the GUID of all the records will be changed to 101010101010.

We can also update values for more than one column 

using the UPDATE statement. Suppose, the guardian 

with GUID 466444444666 has requested to change 
Address to 'WZ - 68, Azad Avenue, Bijnour, MP' and 
Phone number to '9010810547'.

mysql> UPDATE GUARDIAN
    -> SET GAddress = 'WZ - 68, Azad Avenue, 
-> Bijnour, MP', GPhone = 9010810547
    -> WHERE  GUID = 466444444666;
Query OK, 1 row affected (0.06 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM GUARDIAN ;
+------------+---------------+------------+--------------------------------------+
|GUID        |GName          |Gphone      |GAddress                              |
+------------+---------------+------------+--------------------------------------+
|444444444444|Amit Ahuja     |5711492685  |G-35, Ashok vihar, Delhi              |
|111111111111|Baichung Bhutia|7110047139  |Flat no. 5, Darjeeling Appt., Shimla  |
|101010101010|Himanshu Shah  |9818184855  |26/77, West Patel Nagar, Ahmedabad    |
|333333333333|Danny Dsouza   |NULL        |S -13, Ashok Village, Daman           |
|466444444666|Sujata P.      |9010810547  |WZ - 68, Azad Avenue, Bijnour, MP     |
+------------+---------------+------------+--------------------------------------+
5 rows in set (0.00 sec)

9.7.2 Data Deletion

DELETE statement is used to delete/remove one or 
more records from a table.

Syntax:
DELETE FROM table_name
WHERE condition;

Suppose the student with roll number 2 has left the 

school. We can use the following MySQL statement to 

delete that record from the STUDENT table.

mysql> DELETE FROM STUDENT WHERE RollNumber = 2;

Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM STUDENT ;
+------------+--------------+--------------+--------------+
| RollNumber | SName        | SDateofBirth | GUID         |
+------------+--------------+--------------+--------------+
|          1 | Atharv Ahuja | 2003-05-15   | 444444444444 |
|          3 | Taleem Shah  | 2002-02-28   | 101010101010 |
|          4 | John Dsouza  | 2003-08-18   | 333333333333 |
|          5 | Ali Shah     | 2003-07-05   | 101010101010 |
|          6 | Manika P.    | 2002-03-10   | 466444444666 |
+------------+--------------+--------------+--------------+
5 rows in set (0.00 sec)

Caution: Like UPDATE statement, we need to be careful to include 

the WHERE clause while using a DELETE statement to delete 
records in a table. Otherwise, all the records in the table will get 

deleted.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii156

9.8 functIonS In SQL 

In this section, we will understand how to use single 

row functions, multiple row functions, group records 

based on some criteria, and working on multiple tables 

using SQL.

Inventory

CarID
CarName
Price
Model
YearManufacture
FuelType

Sale

InvoiceNo
CarID
CustID
SaleDate
PaymentMode
EmpID
SalePrice

Customer

CustID
CustName
CustAdd
Phone
Email

Employee

EmpID
EmpName
DOB
DOJ
Designaiton
Salary

Figure 9.2: Schema diagram of database CARSHOWROOM

Let us create a database called CARSHOWROOM 
having the schema as shown in Figure 9.2 It has the 

following four relations: 
1) INVENTORY: Stores name, price, model, year 

of manufacturing, and fuel type for each car in 

inventory of the showroom, 

2) CUSTOMER: Stores customer id, name, address, 
phone number and email for each customer, 

3) SALE: Stores the invoice number, car id, customer 
id, sale date, mode of payment, sales person’s 

employee id and selling price of the car sold, 

4) EMPLOYEE: Stores employee id, name, date of 
birth, date of joining, designation and salary of 

each employee in the showroom.

The records of the four relations are shown in Tables 

9.9, 9.10, 9.11, and 9.12, respectively.

Table 9.9 INVENTORY

mysql> SELECT * FROM INVENTORY;
+--------+--------------+------------+-------------+-------------------+--------------+
| CarId | CarName | Price     | Model      | YearManufacture | Fueltype  |
+--------+--------------+------------+-------------+-------------------+--------------+
| D001  | Dzire    | 582613.00 | LXI        |            2017 | Petrol    |

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 157

| D002  | Dzire    | 673112.00 | VXI        |            2018 | Petrol    |
| B001  | Baleno   | 567031.00 | Sigma1.2   |            2019 | Petrol    |
| B002  | Baleno   | 647858.00 | Delta1.2   |            2018 | Petrol    |
| E001  | EECO     | 355205.00 | 5 STR STD  |            2017 | CNG       |
| E002  | EECO     | 654914.00 | CARE       |            2018 | CNG       |
| S001  | SWIFT    | 514000.00 | LXI        |            2017 | Petrol    |
| S002  | SWIFT    | 614000.00 | VXI        |            2018 | Petrol    |
+--------+--------------+------------+-------------+-------------------+--------------+
8 rows in set (0.00 sec)

Table 9.10 CUSTOMER
mysql> SELECT * FROM CUSTOMER;
+--------+--------------+-------------------------+------------+---------------------+
| CustId | CustName     | CustAdd                 | Phone      | Email               |
+--------+--------------+-------------------------+------------+---------------------+
| C0001  | Amit Saha    | L-10, Pitampura         | 4564587852 | amitsaha2@gmail.com |
| C0002  | Rehnuma      | J-12, SAKET             | 5527688761 | rehnuma@hotmail.com |
| C0003  | Charvi Nayyar| 10/9, FF, Rohini        | 6811635425 | charvi123@yahoo.com |
| C0004  | Gurpreet     | A-10/2, SF, Mayur Vihar | 3511056125 | gur_singh@yahoo.com |
+--------+--------------+-------------------------+------------+---------------------+
4 rows in set (0.00 sec)

Table 9.11 SALE
mysql> SELECT * FROM SALE;
+-----------+-------+--------+------------+--------------+-------+-----------+
| InvoiceNo | CarId | CustId | SaleDate   | PaymentMode  | EmpID | SalePrice |
+-----------+-------+--------+------------+--------------+-------+-----------+
| I00001    | D001  | C0001  | 2019-01-24 | Credit Card  | E004  | 613248.00 |
| I00002    | S001  | C0002  | 2018-12-12 | Online       | E001  | 590321.00 |
| I00003    | S002  | C0004  | 2019-01-25 | Cheque       | E010  | 604000.00 |
| I00004    | D002  | C0001  | 2018-10-15 | Bank Finance | E007  | 659982.00 |
| I00005    | E001  | C0003  | 2018-12-20 | Credit Card  | E002  | 369310.00 |
| I00006    | S002  | C0002  | 2019-01-30 | Bank Finance | E007  | 620214.00 |
+-----------+-------+--------+------------+--------------+-------+-----------+
6 rows in set (0.00 sec)

Table 9.12 EMPLOYEE

mysql> SELECT * FROM EMPLOYEE;
+-------+----------+------------+------------+--------------+--------+
| EmpID | EmpName  | DOB        | DOJ        | Designation  | Salary |
+-------+----------+------------+------------+--------------+--------+
| E001  | Rushil   | 1994-07-10 | 2017-12-12 | Salesman     |  25550 |
| E002  | Sanjay   | 1990-03-12 | 2016-06-05 | Salesman     |  33100 |
| E003  | Zohar    | 1975-08-30 | 1999-01-08 | Peon         |  20000 |
| E004  | Arpit    | 1989-06-06 | 2010-12-02 | Salesman     |  39100 |
| E006  | Sanjucta | 1985-11-03 | 2012-07-01 | Receptionist |  27350 |
| E007  | Mayank   | 1993-04-03 | 2017-01-01 | Salesman     |  27352 |
| E010  | Rajkumar | 1987-02-26 | 2013-10-23 | Salesman     |  31111 |
+-------+----------+------------+------------+--------------+--------+
7 rows in set (0.00 sec)

We know that a function is used to perform some 

particular task and it returns zero or more values as a 
result. Functions are useful while writing SQL queries 

also. Functions can be applied to work on single or 

multiple records (rows) of a table. Depending on their 

application in one or multiple rows, SQL functions are 

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii158

Numeric Functions

POWER()

ROUND()

MOD()

String Functions

UCASE()

LCASE()

MID()

LENGTH()

LEFT()

RIGHT()

INSERT()

LTRIM()

RTRIM()

TRIM()

Date Functions

NOW()

DATE()

MONTH()

MONTHNAME()

YEAR()

DAY()

DAYNAME()

Single Row Functions

 

 

Figure 9.3: Three categories of single-row functions in SQL

categorised as Single Row functions and Aggregate 

functions. 

9.8.1 Single Row Functions

These are also known as Scalar functions. Single row 

functions are applied on a single value and return 

a single value. Figure 9.3 lists different single row 

functions under three categories — Numeric (Math), 

String, Date and Time. 

Math Functions 
accept numeric value 
as input and return 
a numeric value 
as a result. String 
Functions accept 
character value as 
input and return 
either character or 
numeric values as 
output. Date and 
Time functions accept 
date and time value 
as input and return 
numeric or string 
or Date and Time  
as output. 

(A) Math Functions

Three commonly used numeric functions are POWER(), 

ROUND() and MOD(). Their usage along with syntax is 

given in Table 9.13.

Table 9.13 Math Functions

Function Description Example with output

POWER(X,Y)
can also be written as 
POW(X,Y)

Calculates X to the power Y. mysql> SELECT POWER(2,3);
Output:
8

ROUND(N,D) Rounds off number N to D 
number of decimal places.
Note: If D=0, then it rounds 
off the number to the nearest 
integer. 

mysql>SELECT ROUND(2912.564, 1);
Output:
2912.6
mysql> SELECT ROUND(283.2);
Output:
283

MOD(A, B) Returns the remain
der after dividing number A by 
number B.

mysql> SELECT MOD(21, 2);
Output:
1

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 159

Example 9.18 In order to increase sales, suppose the car 

dealer decides to offer his customers to pay the total amount 

in 10 easy EMIs (equal monthly instalments). Assume that 
EMIs are required to be in multiples of 10000. For that, 
the dealer wants to list the CarID and Price along with the 

following data from the Inventory table:

a) Calculate GST as 12 per cent of Price and display the 

result after rounding it off to one decimal place.
mysql> SELECT ROUND(12/100*Price,1) "GST" FROM 
INVENTORY;
+------------+
| GST        |
+------------+
| 69913.6    |
| 80773.4    |
| 68043.7    | 
| 77743.0    |
| 42624.6    |
| 78589.7    |
| 61680.0    |
| 73680.0    |
+------------+
8 rows in set (0.00 sec)

b) Add a new column FinalPrice to the table inventory 

which will have the value as sum of Price and 12 per 

cent of the GST.
mysql> ALTER TABLE INVENTORY ADD(FinalPrice 
Numeric(10,1));
Query OK, 8 rows affected (0.03 sec)
Records: 8  Duplicates: 0  Warnings: 0

mysql> UPDATE INVENTORY SET 
FinalPrice=Price+Round(Price*12/100,1);
Query OK, 8 rows affected (0.01 sec)
Rows matched: 8  Changed: 8  Warnings: 0

Activity 9.10

Using the table SALE 

of CARSHOWROOM 
database, write 

SQL queries for the 

following:
a)  Display the 

InvoiceNo and 

commission value 

rounded off to zero 
decimal places.

b) Display the details 

of SALE where 

payment mode 

is credit 

card. 

mysql> SELECT * FROM INVENTORY;
+-------+--------+-----------+-----------+----------------+----------+------------+
| CarId |CarName | Price     | Model   |YearManufacture | FuelType | FinalPrice |
+-------+--------+-----------+-----------+----------------+----------+------------+
| D001  | Dzire  | 582613.00 | LXI       | 2017           | Petrol   | 652526.6   |
| D002  | Dzire  | 673112.00 | VXI       | 2018           | Petrol   | 753885.4   |
| B001  | Baleno | 567031.00 | Sigma1.2  | 2019           | Petrol   | 635074.7   |
| B002  | Baleno | 647858.00 | Delta1.2  | 2018           | Petrol   | 725601.0   |
| E001  | EECO   | 355205.00 | 5 STR STD | 2017           | CNG      | 397829.6   |
| E002  | EECO   | 654914.00 | CARE    | 2018           | CNG      | 733503.7   |
| S001  | SWIFT  | 514000.00 | LXI     | 2017           | Petrol   | 575680.0   |
| S002  | SWIFT  | 614000.00 | VXI     | 2018           | Petrol   | 687680.0   |
+-------+--------+-----------+-----------+----------------+----------+------------+
8 rows in set (0.00 sec)

c) Calculate and display the amount to be paid 

each month (in multiples of 1000) which is to be 
calculated after dividing the FinalPrice of the car into 

10 instalments.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii160

d) After dividing the amount into EMIs, find out the 
remaining amount to be paid immediately, by 

performing modular division.

Following SQL query can be used to solve the 

above mentioned (c) and (d) problem:
mysql> SELECT CarId, FinalPrice, ROUND(FinalPrice-
MOD(FinalPrice,1000)/10,0) "EMI", 
MOD(FinalPrice,10000) "Remaining Amount" FROM 
INVENTORY;
+-------+--------------+---------+------------------+
| CarId | FinalPrice   | EMI     | Remaining Amount |
+-------+--------------+---------+------------------+
| D001  |   652526.6   | 652474  | 2526.6           |
| D002  |   753885.4   | 753797  | 3885.4           |
| B001  |   635074.7   | 635067  | 5074.7           |
| B002  |   725601.0   | 725541  | 5601.0           |
| E001  |   397829.6   | 397747  | 7829.6           |
| E002  |   733503.7   | 733453  | 3503.7           |
| S001  |   575680.0   | 575612  | 5680.0           |
| S002  |   687680.0   | 687612  | 7680.0           |
+-------+--------------+---------+------------------+
8 rows in set (0.00 sec)

Example 9.19  

a) Let us now add a new column Commission to the 

SALE table. The column Commission should have 

a total length of 7 in which 2 decimal places to  
be there.
mysql> ALTER TABLE SALE ADD(Commission 
Numeric(7,2));
Query OK, 6 rows affected (0.34 sec)
Records: 6  Duplicates: 0  Warnings: 0

b) Let us now  calculate commission for sales agents as 

12% of the SalePrice, Insert the values to the newly 

added column Commission and then display records 

of the table SALE where commission > 73000.
mysql> UPDATE SALE SET 
Commission=12/100*SalePrice;
Query OK, 6 rows affected (0.06 sec)
Rows matched: 6  Changed: 6  Warnings: 0

mysql> SELECT * FROM SALE WHERE Commission > 73000;
+----------+------+--------+-----------+-------------+-------+-----------+------------+
|invoiceno |carid | custid | saledate  | paymentmode | empid | saleprice | Commission |
+----------+------+--------+-----------+-------------+-------+-----------+------------+
| I00001   |D001 | C0001  | 2019-01-24 | Credit Card | E004  | 613248.00 | 73589.64   |
| I00004   |D002 | C0001  | 2018-10-15 | Bank Finance| E007  | 659982.00 | 79198.84   |
| I00006   |S002 | C0002  | 2019-01-30 | Bank Finance | E007 | 620214.00 | 74425.68   |
+----------+------+--------+-----------+-------------+-------+-----------+------------+
3 rows in set (0.02 sec)

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 161

Table 9.14 String Functions

Function Description Example with output

UCASE(string)

OR

UPPER(string)

converts string into uppercase. mysql> SELECT 
UCASE(“Informatics 
Practices”);
Output:
INFORMATICS PRACTICES

LOWER(string)

OR

LCASE(string)

converts string into lowercase. mysql> SELECT 
LOWER(“Informatics 
Practices”);
Output:
informatics practices

MID(string, pos, n)

OR

SUBSTRING(string,  

pos, n)

OR

SUBSTR(string, pos, n)

Returns a substring of size n 
starting from the specified position 
(pos) of the string. If n is not 

specified, it returns the substring 
from the position pos till end of 

the string.

mysql> SELECT 
MID(“Informatics”, 3, 4);
Output:
form

mysql> SELECT 
MID(‘Informatics’,7);
Output:
atics

LENGTH(string) Return the number of characters 

in the specified string.
mysql> SELECT 
LENGTH(“Informatics”);
Output:
11

LEFT(string, N) Returns N number of characters 

from the left side of the string.
mysql> SELECT 
LEFT(“Computer”, 4);
Output:
Comp

c) Display InvoiceNo, SalePrice and Commission such 

that commission value is rounded off to 0.
mysql> SELECT InvoiceNo, SalePrice, 
Round(Commission,0) FROM SALE;
+-----------+-----------+---------------------+
| InvoiceNo | SalePrice | Round(Commission,0) |
+-----------+-----------+---------------------+
| I00001    | 613248.00 |               73590 |
| I00002    | 590321.00 |               70839 |
| I00003    | 604000.00 |               72480 |
| I00004    | 659982.00 |               79198 |
| I00005    | 369310.00 |               44317 |
| I00006    | 620214.00 |               74426 |
+-----------+-----------+---------------------+
6 rows in set (0.00 sec)

(B) String Functions

String functions can perform various operations on 

alphanumeric data which are stored in a table. They 

can be used to change the case (uppercase to lowercase 

or vice-versa), extract a substring, calculate the length 

of a string and so on. String functions and their usage 

are shown in Table 9.14.

Activity 9.11

Using the table 

INVENTORY from 
CARSHOWROOM 
database, write 

sql queries for the 

following:
a) Convert the CarMake 

to uppercase if its value 

starts with the letter ‘B’.

b) If the length of the car’s 

model is greater than 4 
then fetch the substring 

starting from position 

3 till the end 

from attribute 

Model. 

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii162

RIGHT(string, N) Returns N number of characters 

from the right side of the string.
mysql> SELECT 
RIGHT(“SCIENCE”, 3);
NCE

INSTR(string, 

substring)

Returns the position of the first 
occurrence of the substring in 

the given string. Returns 0, if the 
substring is not present in the 

string.

mysql> SELECT 
INSTR(“Informatics”, 
“ma”);
Output:
6

LTRIM(string) Returns the given string after 

removing leading white space 

characters.

mysql> SELECT LENGTH(“  
DELHI”),  LENGTH(LTRIM(“  
DELHI”));
Output:
+--------+--------+
| 7      | 5      |
+--------+--------+
1 row in set (0.00 sec)

RTRIM(string) Returns the given string after 

removing trailing white space 

characters.

mysql>SELECT LENGTH(“PEN  
“)LENGTH(RTRIM(“PEN  “));
Output:
+--------+--------+
| 5 | 3 |
+--------+--------+
1 row in set (0.00 sec)

TRIM(string) Returns the given string after 

removing both leading and trailing 

white space characters.

mysql> SELECT LENGTH(“  
MADAM  “),LENGTH(TRIM(“  
MADAM  “));
Output:
+--------+--------+
| 9 | 5 |
+--------+--------+
1 row in set (0.00 sec)

Example 9.20 Let us use Customer relation shown in Table 

9.10 to understand the working of string functions.

a) Display customer name in lower case and customer 

email in upper case from table CUSTOMER. 

mysql> SELECT LOWER(CustName), UPPER(Email) FROM 
CUSTOMER;
+-----------------+---------------------+
| LOWER(CustName) | UPPER(Email)        |
+-----------------+---------------------+
| amit saha       | AMITSAHA2@GMAIL.COM |
| rehnuma         | REHNUMA@HOTMAIL.COM |
| charvi nayyar   | CHARVI123@YAHOO.COM |
| gurpreet        | GUR_SINGH@YAHOO.COM |
+-----------------+---------------------+
4 rows in set (0.00 sec)

b) Display the length of the email and part of the email 

from the email id before the character ‘@’. Note - Do 

not print ‘@’.

mysql> SELECT LENGTH(Email), LEFT(Email, INSTR(Email, 
"@")-1) FROM CUSTOMER;

Activity 9.12

Using the table 

EMPLOYEE from 

CARSHOWROOM 
database, write 

SQL queries for the 

following:
a) Display employee name 

and the last 2 characters 

of his EmpId.

b) Display designation 

of employee and the 

position of 

character ‘e’ in 

designation, if 

present. 

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 163

+---------------+----------------------------------+
| LENGTH(Email) | LEFT(Email, INSTR(Email, "@")-1) |
+---------------+----------------------------------+
|            19 | amitsaha2                        |
|            19 | rehnuma                          |
|            19 | charvi123                        |
|            19 | gur_singh                        |
+---------------+----------------------------------+
4 rows in set (0.03 sec)

The function INSTR will return the position of “@” in 

the email address. So, to print email id without “@” we 

have to use position -1.

c) Let us assume that four-digit area code is reflected in 
the mobile number starting from position number 3. 

For example, 1851 is the area code of mobile number 

9818511338. Now, write the SQL query to display 

the area code of the customer living in Rohini.

mysql> SELECT MID(Phone,3,4) FROM CUSTOMER WHERE 
CustAdd like ‘%Rohini%’;
+----------------+
| MID(Phone,3,4) |
+----------------+
| 1163           |
+----------------+
1 row in set (0.00 sec)

d) Display emails after removing the domain name 

extension “.com” from emails of the customers.
mysql> SELECT TRIM(“.com” from Email) FROM 
CUSTOMER;
+-------------------------+
| TRIM(".com" FROM Email) |
+-------------------------+
| amitsaha2@gmail         |
| rehnuma@hotmail         |
| charvi123@yahoo         |
| gur_singh@yahoo         |
+-------------------------+
4 rows in set (0.00 sec)

e) Display details of all the customers having yahoo 

emails only.

mysql> SELECT * FROM CUSTOMER WHERE Email LIKE "%yahoo%";
+--------+--------------+-------------------------+------------+----------------------+
| CustID | CustName     | CustAdd                 | Phone      | Email                |
+--------+--------------+-------------------------+------------+----------------------+
| C0003  | Charvi Nayyar| 10/9, FF, Rohini        | 6811635425 | charvi123@yahoo.com  |
| C0004  | Gurpreet     | A-10/2, SF, Mayur Vihar | 3511056125 | gur_singh@yahoo.com  |
+--------+--------------+-------------------------+------------+----------------------+
2 rows in set (0.00 sec)

(C) Date and Time Functions

There are various functions that are used to perform 

operations on date and time data. Some of the operations 

Activity 9.13

Using the table 

EMPLOYEE of 

CARSHOWROOM 
database, list the 

day of birth for all 

employees whose 

salary is more 

than 25000. 

Can we use arithmetic 

operators (+, -. *, or /) 
on date functions?

 

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii164

include displaying the current date, extracting each 

element of a date (day, month and year), displaying day 

of the week and so on. Table 9.15 explains various date 

and time functions.

Table 9.15 Date Functions

Function Description Example with output

NOW() It returns the current system date 

and time.
mysql> SELECT NOW();
Output:
2019-07-11 19:41:17

DATE() It returns the date part from the 

given date/time expression. 
mysql> SELECT DATE(NOW());
Output:
2019-07-11

MONTH(date) It returns the month in numeric 

form from the date.
mysql> SELECT MONTH(NOW());
Output:
7

MONTHNAME(date) It returns the month name from 

the specified date. 
mysql> SELECT 
MONTHNAME(“2003-11-28”);
Output:
November

YEAR(date) It returns the year from the date. mysql> SELECT YEAR(“2003-10-
03”);
Output:
2003

DAY(date) It returns the day part from the 

date.
mysql> SELECT DAY(“2003-03-
24”);
Output:
24

DAYNAME(date) It returns the name of the day 

from the date.
mysql> SELECT 
DAYNAME(“2019-07-11”);
Output:
Thursday

Example 9.21 Let us use the EMPLOYEE table of 

CARSHOWROOM database to illustrate the working of some 
of the date and time functions. 

a) Select the day, month number and year of joining of 

all employees.

mysql> SELECT DAY(DOJ), MONTH(DOJ), YEAR(DOJ) 
FROM EMPLOYEE;
+----------+------------+-----------+
| DAY(DOJ) | MONTH(DOJ) | YEAR(DOJ) |
+----------+------------+-----------+
|       12 |         12 |      2017 |
|        5 |          6 |      2016 |
|        8 |          1 |      1999 |
|        2 |         12 |      2010 |
|        1 |          7 |      2012 |
|        1 |          1 |      2017 |
|       23 |         10 |      2013 |
+----------+------------+-----------+
7 rows in set (0.03 sec)

Activity 9.14

a) Find sum of Sale 
Price of the cars 
purchased by the 
customer having ID 
C0001 from table 
SALE.

b) Find the 
maximum and 
minimum 
commission 
from the 

SALE table. 

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 165

Table 9.16 Differences between Single and Multiple Row Functions

Single Row Function Multiple row function

1. It operates on a single row at a time.

2. It returns one result per row.

3. It can be used in Select, Where, and Order by 

clause.

4. Math, String and Date functions are examples 

of single row functions.

1. It operates on groups of rows.

2. It returns one result for a group of rows.

3. It can be used in the select clause only.

4. Max(), Min(), Avg(), Sum(), Count() and 

Count(*) are examples of multiple row 

functions.

Table 9.17 Aggregate Functions in SQL

Function Description Example with output

MAX(column) Returns the largest value from 

the specified column.
mysql> SELECT MAX(Price) FROM 
INVENTORY;

Output:

673112.00

MIN(column) Returns the smallest value from 

the specified column.
mysql> SELECT MIN(Price) FROM 
INVENTORY;

Output:

355205.00

b) If the date of joining is not a Sunday, then  

display it in the following format "Wednesday, 26, 
November, 1979."
mysql> SELECT DAYNAME(DOJ), DAY(DOJ), 
MONTHNAME(DOJ), YEAR(DOJ) FROM EMPLOYEE WHERE 
DAYNAME(DOJ)!='Sunday';

+--------------+----------+----------------+-----------+
| DAYNAME(DOJ) | DAY(DOJ) | MONTHNAME(DOJ) | YEAR(DOJ) |
+--------------+----------+----------------+-----------+
| Tuesday      |       12 | December       |      2017 |
| Friday       |        8 | January        |      1999 |
| Thursday     |        2 | December       |      2010 |
| Wednesday    |       23 | October        |      2013 |
+--------------+----------+----------------+-----------+
4 rows in set (0.00 sec)

9.8.2 Aggregate Functions 

Aggregate functions are also called Multiple Row 

functions. These functions work on a set of records as 

a whole and return a single value for each column of 

the records on which the function is applied. Table 9.16 
shows the differences between single row functions and 

multiple row functions. Table 9.17 describes some of 
the aggregate functions along with their usage. Note 

that column must be of numeric type.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii166

AVG(column) Returns the average of the values 

in the specified column.
mysql> SELECT AVG(Price) FROM 
INVENTORY;

Output:

576091.625000

SUM(column) Returns the sum of the values 

for the specified column.
mysql> SELECT SUM(Price) FROM 
INVENTORY;

Output:

4608733.00

COUNT(*) Returns the number of records 

in a table. 

Note: In order to display the 
number of records that matches 

a particular criteria in the table, 

we have to use COUNT(*) with 

WHERE clause.

mysql> SELECT COUNT(*) from 
MANAGER;
+----------+
| count(*) |
+----------+
|        4 |
+----------+

1 row in set (0.00 sec)

COUNT(column) Returns the number of values 

in the specified column ignoring 
the NULL values.

Note:
In this example, let us consider 

a MANAGER table having two 

attributes and four records.

mysql> SELECT * from MANAGER;
+------ +---------+
| MNO   | MEMNAME |
+------ +---------+
| 1 | AMIT    |
| 2 | KAVREET |
| 3 | KAVITA  |
| 4 | NULL    |
+------+----------+

4 rows in set (0.00 sec)

mysql> SELECT COUNT(MEMNAME) FROM 
MANAGER;
+----------------+
| COUNT(MEMNAME) |
+----------------+
|           3   |
+----------------+
1 row in set (0.01 sec)

Example 9.22   

a) Display the total number of records from table 

INVENTORY having a model as VXI.
mysql> SELECT COUNT(*) FROM INVENTORY WHERE 
Model=”VXI”;
+----------+
| COUNT(*) |
+----------+
|        2 |
+----------+
1 row in set (0.00 sec) 

b) Display the total number of different types of Models 

available from table INVENTORY.
mysql> SELECT COUNT(DISTINCT Model) FROM 
INVENTORY;

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 167

+-----------------------+
| COUNT(DISTINCT MODEL) |
+-----------------------+
|                     6 |
+-----------------------+
1 row in set (0.09 sec)

c) Display the average price of all the cars with Model 

LXI from table INVENTORY.
mysql> SELECT AVG(Price) FROM INVENTORY WHERE 
Model="LXI";
+---------------+
| AVG(Price)    |
+---------------+
| 548306.500000 |
+---------------+
1 row in set (0.03 sec)

9.9 group By cLauSe In SQL

At times we need to fetch a group of rows on the basis 

of common values in a column. This can be done using 

a group by clause. It groups the rows together that 

contains the same values in a specified column. We 
can use the aggregate functions (COUNT, MAX, MIN, 

AVG and SUM) to work on the grouped values. HAVING 
Clause in SQL is used to specify conditions on the rows 

with Group By clause. 

Consider the SALE table from the CARSHOWROOM 
database:

Activity 9.15

a)  List the total number 

of cars sold by each 

employee.

b) List the maximum 

sale made 

by each 

employee. 

mysql> SELECT * FROM SALE;
+---------+------+-------+------------+-------------+------+----------+----------+
|InvoiceNo|CarId |CustId | SaleDate   | PaymentMode |EmpID |SalePrice |Commission|
+---------+------+-------+------------+-------------+------+----------+----------+
| I00001  | D001 | C0001 | 2019-01-24 | Credit Card | E004 |613248.00 | 73589.64 |
| I00002  | S001 | C0002 | 2018-12-12 | Online      | E001 |590321.00 | 70838.52 |
| I00003  | S002 | C0004 | 2019-01-25 | Cheque      | E010 |604000.00 | 72480.00 |
| I00004  | D002 | C0001 | 2018-10-15 | Bank Finance| E007 |659982.00 | 79198.84 |
| I00005  | E001 | C0003 | 2018-12-20 | Credit Card | E002 |369310.00 | 44318.20 |
| I00006  | S002 | C0002 | 2019-01-30 | Bank Finance| E007 |620214.00 | 74425.68 |
+---------+------+-------+------------+-------------+------+----------+----------+
6 rows in set (0.11 sec)

CarID, CustID, SaleDate, PaymentMode, EmpID, 

SalePrice are the columns that can have rows with the 

same values in it. So, Group by clause can be used 

in these columns to find the number of records of a 
particular type (column), or to calculate the sum of the 

price of each car type.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii168

Example 9.23 

a) Display the number of Cars purchased by each 

Customer from SALE table.

mysql> SELECT CustID, COUNT(*) "Number of Cars" 
FROM SALE GROUP BY CustID;
+--------+----------------+
| CustID | Number of Cars |
+--------+----------------+
| C0001  |              2 |
| C0002  |              2 |
| C0003  |              1 |
| C0004  |              1 |
+--------+----------------+
4 rows in set (0.00 sec)

b) Display the Customer Id and number of cars 

purchased if the customer purchased more than 1 

car from SALE table.
mysql> SELECT CustID, COUNT(*) FROM SALE GROUP BY 
CustID HAVING Count(*)>1;
+--------+----------+
| CustID | COUNT(*) |
+--------+----------+
| C0001  |        2 |
| C0002  |        2 |
+--------+----------+
2 rows in set (0.30 sec)

c) Display the number of people in each category of 

payment mode from the table SALE.
mysql> SELECT PaymentMode, COUNT(PaymentMode) 
FROM SALE GROUP BY Paymentmode ORDER BY 
Paymentmode;
+--------------+--------------------+
| PaymentMode  | Count(PaymentMode) |
+--------------+--------------------+
| Bank Finance |                  2 |
| Cheque       |                  1 |
| Credit Card  |                  2 |
| Online       |                  1 |
+--------------+--------------------+
4 rows in set (0.00 sec)

d) Display the PaymentMode and number of payments 

made using that mode more than once.
mysql> SELECT PaymentMode, Count(PaymentMode) 
FROM SALE GROUP BY Paymentmode HAVING COUNT(*)>1 
ORDER BY Paymentmode;
+--------------+--------------------+
| PaymentMode  | Count(PaymentMode) |
+--------------+--------------------+
| Bank Finance |                  2 |
| Credit Card  |                  2 |
+--------------+--------------------+
2 rows in set (0.00 sec)

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 169

9.10 operatIonS on reLatIonS 

We can perform certain operations on relations like 
Union, Intersection and Set Difference to merge the 
tuples of two tables. These three operations are binary 
operations as they work upon two tables. Note here that 
these operations can only be applied if both the relations 
have the same number of attributes and corresponding 
attributes in both tables have the same domain. 

9.10.1 UNION (∪)

This operation is used to combine the selected rows of 

two tables at a time. If some rows are same in both 

the tables, then result of the Union operation will  

show those rows only once. Figure 9.4 shows union of 
two sets. 

Music Dance

Figure 9.4: Union of two sets

Let us consider two relations DANCE and MUSIC 

shown in Tables 9.18 and 9.19 respectively.  

Table 9.18 DANCE

+------+--------+-------+
| SNo  | Name   | Class |
+------+--------+-------+
| 1     | Aastha | 7A    |
| 2     | Mahira | 6A    |
| 3     | Mohit  | 7B    |
| 4     | Sanjay | 7A    |
+------+--------+-------+

Table 9.19 MUSIC

+------+---------+-------+
| SNo  | Name    | Class |
+------+---------+-------+
| 1    | Mehak   | 8A |
| 2    | Mahira  | 6A |
| 3    | Lavanya | 7A |
| 4    | Sanjay  | 7A |
| 5    | Abhay   | 8A |
+------+---------+-------+

If we need the list of students participating in either 

of events, then we have to apply UNION operation 

(represented by symbol U) on relations DANCE and 

MUSIC. The output of UNION operation is shown in 

Table 9.20.

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii170

Table 9.20 DANCE U MUSIC

+------+---------+-------+
| SNo  | Name    | Class |
+------+---------+-------+
| 1   | Aastha  | 7A    |
| 2   | Mahira  | 6A    |
| 3   | Mohit   | 7B    |
| 4   | Sanjay  | 7A    |
| 1   | Mehak   | 8A    |
| 3   | Lavanya | 7A    |
| 5   | Abhay   | 8A    |
+------+---------+-------+

9.10.2 INTERSECT (∩)
Intersect operation is used to get the common tuples 

from two tables and is represented by symbol ∩. Figure 
9.5 shows intersection of two sets. 

Music Dance

Figure 9.5: Intersection of two sets 

Suppose, we have to display the list of students 

who are participating in both the events (DANCE and 

MUSIC), then intersection operation is to be applied on 

these two tables. The output of INTERSECT operation is 

shown in Table 9.21.

Table 9.21 DANCE ∩ MUSIC 
+----+---------+-------+
| SNo| Name    | Class |
+----+---------+-------+
|  2 | Mahira  | 6A    |
|  4 | Sanjay  | 7A    |  
+----+---------+-------+

9.10.3 MINUS (-)

This operation is used to get tuples/rows which are 
in the first table but not in the second table and the 
operation is represented by the symbol - (minus). Figure 

9.6 shows minus operation (also called set difference) 
between two sets.

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 171

Music Dance

 

Figure 9.6: Difference of two sets 

Suppose we want the list of students who are only 

participating in MUSIC and not in DANCE event. Then, 

we will use the MINUS operation, whose output is given 

in Table 9.22.

Table 9.22 DANCE - MUSIC

+------+---------+-------+
| SNo  | Name    | Class |
+------+---------+-------+
| 1    | Mehak   | 8A    |
| 3    | Lavanya | 7A    |
| 5    | Abhay   | 8A    |
+------+---------+-------+

9.10.4 Cartesian Product (X)

Cartesian product operation combines tuples from 

two relations. It results in all pairs of rows from the 

two input relations, regardless of whether or not they  

have the same values on common attributes. It is 

denoted as ‘X’.

The degree of the resulting relation is calculated 

as the sum of the degrees of both the relations under 

consideration. The cardinality of the resulting relation is 

calculated as the product of the cardinality of relations 

on which cartesian product is applied. Let us use the 

relations DANCE and MUSIC to show the output of 

cartesian product. Note that both relations are of degree 

3. The cardinality of relations DANCE and MUSIC is 4 
and 5 respectively. Applying cartesian product on these 

two relations will result in a relation of degree 6 and 
cardinality 20, as shown in Table 9.23.

Table 9.23 DANCE X MUSIC
+---+-------+-------+------+---------+-------+
|SNo| Name  | Class | SNo  | Name    | Class |
+---+-------+-------+------+---------+-------+
| 1 | Aastha | 7A | 1 | Mehak   | 8A   |
| 2 | Mahira | 6A | 1 | Mehak   | 8A   |
| 3 | Mohit  | 7B | 1 | Mehak   | 8A   |
| 4 | Sanjay | 7A | 1 | Mehak   | 8A   |
| 1 | Aastha | 7A | 2 | Mahira  | 6A   |
| 2 | Mahira | 6A | 2 | Mahira  | 6A   |

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii172

| 3 | Mohit  | 7B | 2 | Mahira  | 6A   |
| 4 | Sanjay | 7A | 2 | Mahira  | 6A   |
| 1 | Aastha | 7A | 3 | Lavanya | 7A   | 
| 2 | Mahira | 6A | 3 | Lavanya | 7A   |
| 3 | Mohit  | 7B | 3 | Lavanya | 7A   |
| 4 | Sanjay | 7A | 3 | Lavanya | 7A   |
| 1 | Aastha | 7A | 4 | Sanjay  | 7A   |
| 2 | Mahira | 6A | 4 | Sanjay  | 7A   |
| 3 | Mohit  | 7B | 4 | Sanjay  | 7A   |
| 4 | Sanjay | 7A | 4 | Sanjay  | 7A   |
| 1 | Aastha | 7A | 5 | Abhay   | 8A   |
| 2 | Mahira | 6A | 5 | Abhay   | 8A   |
| 3 | Mohit  | 7B | 5 | Abhay   | 8A   |
| 4 | Sanjay | 7A | 5 | Abhay   | 8A   |
+---+-------+-------+------+---------+-------+
20 rows in set (0.03 sec)

9.11 uSIng two reLatIonS In a Query

Till now we have written queries in SQL using a single 

relation only.  In this section, we will learn to write 

queries using two relations.

9.11.1 Cartesian product on two tables

From the previous section, we learnt that application 

of operator cartesian product on two tables results 

in a table having all combinations of tuples from the 

underlying tables. When more than one table is to be 

used in a query, then we must specify the table names 

by separating commas in the FROM clause, as shown in 

Example 9.24. On execution of such a query, the DBMS 
(MySql) will first apply cartesian product on specified 
tables to have a single table. The following query of 

example 9.24 applies cartesian product on the two 
tables DANCE and MUSIC:

Example 9.24 

a) Display all possible combinations of tuples of 

relations DANCE and MUSIC
mysql> SELECT * FROM DANCE, MUSIC;

As we are using SELECT * in the query, the 

output will be the Table 9.23 having degree 6 and 
cardinality 20.

b) From the all possible combinations of tuples of 

relations DANCE and MUSIC display only those  

rows such that the attribute name in both have the 

same value.
mysql> SELECT * FROM DANCE D, MUSIC M WHERE 
D.Name = M.Name;

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 173

Table 9.24 Tuples with same name

+------+--------+-------+------+--------+-------+
| Sno  | Name   | Class | Sno  | Name   | class |
+------+--------+-------+------+--------+-------+
|    2 | Mahira | 6A    |    2 | Mahira | 6A    |
|    4 | Sanjay | 7A    |    4 | Sanjay | 7A    |
+------+--------+-------+------+--------+-------+
2 rows in set (0.00 sec)

Note that in this query we have used table aliases (D 

for DANCE and M for MUSIC), just like column aliases 

(see Section 9.6.2) to refer to tables by shortened names. 
It is important to note that table alias is valid only for 

current query and the original table name cannot be 

used in the query if its alias is given in FROM clause.

9.11.2 JOIN on two tables

JOIN operation combines tuples from two tables on 

specified conditions. This is unlike cartesian product 
which make all possible combinations of tuples. While 

using the JOIN clause of SQL, we specify conditions on 

the related attributes of two tables within the FROM 

clause. Usually, such an attribute is the primary key 

in one table and foreign key in another table. Let us 

create two tables UNIFORM (UCode, UName, UColor) 

and COST (UCode, Size, Price) in the SchoolUniform 
database. UCode is Primary Key in table UNIFORM. 

UCode and Size is the Composite Key in table COST. 
Therefore, Ucode is a common attribute between the 

two tables which can be used to fetch the common data 

from both tables. Hence, we need to define Ucode as 
foreign key in the Price table while creating this table.

Table 9.25 Uniform table

+-------+-------+--------+
| Ucode | Uname | Ucolor |
+-------+-------+--------+
|   1   | Shirt | White  |
|   2   | Pant  | Grey   | 
|   3   | Tie   | Blue   |
+-------+-------+--------+

Table 9.26 Cost table

+-------+------+-------+
| Ucode | Size | Price |
+-------+------+-------+
|   1   | L    |   580 |
|   1   | M    |   500 |
|   2   | L    |   890 |
|   2   | M    |   810 |
+-------+------+-------+

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii174

Example 9.25 List the UCode, UName, UColor, Size and 
Price of related tuples of tables UNIFORM and COST.

The given query may be written in three different 

ways as given below.

a) Using condition in where clause
mysql> SELECT * FROM UNIFORM U, COST C WHERE 
U.UCode = C.UCode;

Table 9.27 Output of the query

+-------+-------+--------+-------+-----+-------+
| UCode | UName | UColor | Ucode |Size | Price |
+-------+-------+--------+-------+-----+-------+
|   1   | Shirt | White  | 1     | L   |   580 |
|   1   | Shirt | White  | 1     | M   |   500 |
|   2   | Pant  | Grey   | 2     | L   |   890 |
|   2   | Pant  | Grey   | 2     | M   |   810 |
+-------+-------+--------+-------+-----+-------+
4 rows in set (0.08 sec)

As the attribute Ucode is in both tables, we need 

to use table alias to remove ambiguity. Hence, we 
have used qualifier with attribute UCode in SELECT 
and FROM clauses to indicate its scope.

b) Explicit use of JOIN clause
mysql> SELECT * FROM UNIFORM U JOIN COST C ON 
U.Ucode=C.Ucode;

The output of the query is same as shown in 

Table 9.26. In this query we have used JOIN clause 
explicitly along with condition in From clause. Hence 
no condition needs to be given in where clause.

c) Explicit use of NATURAL JOIN clause

 The output of queries (a) and (b) shown in Table 

9.26 has a repetitive column Ucode having exactly 
the same values. This redundant column provides 

no additional information. There is an extension of 

JOIN operation called NATURAL JOIN which works 

similar to JOIN clause in SQL but removes the 

redundant attribute. This operator can be used to 

join the contents of two tables if there is one common 

attribute in both the tables. The above SQL query 

using NATURAL JOIN is shown below:

mysql> SELECT * FROM UNIFORM  NATURAL JOIN COST;
+-------+-------+--------+------+-------+
| UCode | UName | UColor | Size | Price |
+-------+-------+--------+------+-------+
|   1   | Shirt | White  | L    |  580  |
|   1   | Shirt | White  | M    |  500  |
|   2   | Pant  | Grey   | L    |   890 |

noteS

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 175

|   2   | Pant  | Grey   | M    |   810 |
+-------+-------+--------+------+-------+
4 rows in set (0.17 sec)

It is clear from the output that the result of this query 

is same as that of queries written in (a) and (b) except 

that the attribute Ucode appears only once.

Following are some of the points to be considered 

while applying JOIN operations on two or more relations:
• If two tables are to be joined on equality condition 

on the common attribute, then one may use JOIN 

with ON clause or NATURAL JOIN in FROM clause. 

If three tables are to be joined on equality condition, 

then two JOIN or NATURAL JOIN are required.

• In general, N-1 joins are needed to combine N tables 

on equality condition.

• With JOIN clause, we may use any relational 

operators to combine tuples of two tables.

noteS

SuMMary

• Database is a collection of related tables. MySQL 
is a ‘relational’ DBMS.

• DDL (Data Definition Language) includes SQL 
statements such as, Create table, Alter table and 
Drop table.

• DML (Data Manipulation Language) includes SQL 
statements such as, insert, select, update and 
delete.

• A table is a collection of rows and columns, where 
each row is a record and columns describe the 
feature of records.

• ALTER TABLE statement is used to make changes 
in the structure of a table  like adding, removing 
or changing datatype of column(s).

• UPDATE statement is used to modify existing 
data in a table.

• WHERE clause in SQL query is used to enforce 
condition(s).

• DISTINCT clause is used to eliminate repetition 
and display the values only once.

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii176

exercISe

1.  Answer the following questions:
a) Define RDBMS. Name any two RDBMS software.
b) What is the purpose of the following clauses in a 

select statement?

i) ORDER BY

ii) GROUP BY

c) Site any two differences between Single Row Functions 

and Aggregate Functions.

d) What do you understand by Cartesian Product?

e) Differentiate between the following statements: 

noteS • The BETWEEN operator defines the range of 
values inclusive of boundary values.

• The IN operator selects values that match any 
value in the given list of values.

• NULL values can be tested using IS NULL and IS 
NOT NULL.

• ORDER BY clause is used to display the result of a 
SQL query in ascending or descending order with 
respect to specified attribute values. By default, 
the order is ascending.

• LIKE operator is used for pattern matching. % 
and _ are two wild card characters. The per cent 
(%) symbol is used to represent zero or more 
characters. The underscore (_) symbol is used to 
represent a single character.

• A Function is used to perform a particular task 
and return a value as a result.

• Single Row functions work on a single row of the 
table and return a single value. 

• Multiple Row functions work on a set of records 
as a whole and return a single value. Examples 
include COUNT, MAX, MIN, AVG and SUM.

• GROUP BY function is used to group rows of a 
table that contain the same values in a specified 
column. 

• Join is an operation which is used to combine 
rows from two or more tables based on one or 
more common fields between them.

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 177

i)  ALTER and UPDATE

ii) DELETE and DROP
f) Write the name of the functions to perform the 

following operations:

i) To display the day like “Monday”, “Tuesday”, 

from the date when India got independence.

ii) To display the specified number of characters 
from a particular position of the given string.

iii) To display the name of the month in which 

you were born.

iv) To display your name in capital letters.

2.  Write the output produced by the following SQL 

statements:
a) SELECT POW(2,3);

b) SELECT ROUND(342.9234,-1);
c) SELECT LENGTH("Informatics Practices");
d) SELECT YEAR(“1979/11/26”), 

MONTH(“1979/11/26”), DAY(“1979/11/26”), 
MONTHNAME(“1979/11/26”);

e) SELECT LEFT("INDIA",3), RIGHT("Computer 
Science",4), MID("Informatics",3,4), 
SUBSTR("Practices",3);

3. Consider the following MOVIE table and write the SQL 
queries based on it. 

MovieID  MovieName      Category   ReleaseDate   ProductionCost   
BusinessCost
001  Hindi_Movie     Musical     2018-04-23  124500       130000
002  Tamil_Movie     Action      2016-05-17  112000       118000
003  English_Movie   Horror      2017-08-06  245000       360000
004  Bengali_Movie   Adventure   2017-01-04  72000            100000
005  Telugu_Movie    Action         -        100000         -
006  Punjabi_Movie   Comedy         -        30500              -

a) Display all the information from the Movie table.

b) List business done by the movies showing only 

MovieID, MovieName and Total_Earning. Total_

Earning to be calculated as the sum of ProductionCost 

and BusinessCost.

c) List the different categories of movies.

d) Find the net profit of each movie showing its 
MovieID, MovieName and NetProfit. Net Profit is to be 
calculated as the difference between Business Cost 

and Production Cost.  

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii178

e) List MovieID, MovieName and Cost for all movies with 

ProductionCost greater than 10,000 and less than 
1,00,000.

f) List details of all movies which fall in the category of 

comedy or action.

g) List details of all movies which have not been released 

yet.

4. Suppose your school management has decided to 

conduct cricket matches between students of Class XI 

and Class XII. Students of each class are asked to join 

any one of the four teams – Team Titan, Team Rockers, 

Team Magnet and Team Hurricane. During summer 
vacations, various matches will be conducted between 

these teams. Help your sports teacher to do the following:
a) Create a database “Sports”.

b) Create a table “TEAM” with following considerations:
i) It should have a column TeamID for storing an 

integer value between 1 to 9, which refers to 

unique identification of a team.
ii) Each TeamID should have its associated name 

(TeamName), which should be a string of length 

not less than 10 characters.
c) Using table level constraint, make TeamID as the 

primary key.

d) Show the structure of the table TEAM using a SQL 

statement.

e) As per the preferences of the students four teams 

were formed as given below. Insert these four rows in 

TEAM table:
Row 1: (1, Team Titan)
Row 2: (2, Team Rockers)
Row 3: (3, Team Magnet)
Row 3: (4, Team Hurricane)

f) Show the contents of the table TEAM using a DML 

statement.

g) Now create another table MATCH_DETAILS and 
insert data as shown below. Choose appropriate data 

types and constraints for each attribute.

Table: MATCH_DETAILS 
MatchID  MatchDate    FirstTeamID  SecondTeamID  FirstTeamScore SecondTeamScore
M1 2018-07-17 1 2 90 86
M2 2018-07-18 3 4 45 48
M3 2018-07-19 1 3 78 56
M4 2018-07-19 2 4 56 67
M5 2018-07-18 1 4 32 87
M6 2018-07-17 2 3 67 51

5. Using the sports database containing two relations 

(TEAM, MATCH_DETAILS) and write the queries for the 
following:

QB365-Question Bank Software

QB365-Question Bank Software



StruCtured Query language (SQl) 179

a) Display the MatchID of all those matches where both 

the teams have scored more than 70. 
b) Display the MatchID of all those matches where 

FirstTeam has scored less than 70 but SecondTeam 
has scored more than 70. 

c) Display the MatchID and date of matches played by 

Team 1 and won by it.

d) Display the MatchID of matches played by Team 2 

and not won by it. 

e) Change the name of the relation TEAM to T_DATA. 

Also change the attributes TeamID and TeamName 

to T_ID and T_NAME respectively.

6. A shop called Wonderful Garments who sells school 

uniforms maintains a database SCHOOLUNIFORM as 
shown below. It consisted of two relations - UNIFORM 

and COST. They made UniformCode as the primary key 

for UNIFORM relations. Further, they used UniformCode 

and Size to be composite keys for COSTrelation. By 
analysing the database schema and database state, 

specify SQL queries to rectify the following anomalies.

a) M/S Wonderful Garments also keeps handkerchiefs 
of red colour, medium size of Rs. 100 each. 

b) INSERT INTO COST (UCode, Size, Price) values (7, 
'M',100);

When the above query is used to insert data, 

the values for the handkerchief without entering its 

details in the UNIFORM relation is entered. Make 

a provision so that the data can be entered in the 

COST table only if it is already there in the UNIFORM 

table.   

c) Further, they should be able to assign a new UCode to 

an item only if it has a valid UName. Write a query to 

add appropriate constraints to the SCHOOLUNIFORM 
database. 

d) Add the constraint so that the price of an item is 

always greater than zero.

7. Consider the following table named “Product”, showing 

details of products being sold in a grocery shop.

PCode PName           UPrice Manufacturer

P01 Washing Powder 120 Surf

P02 Toothpaste       54 Colgate

P03 Soap             25 Lux

P04 Toothpaste       65 Pepsodent

P05 Soap             38 Dove

P06 Shampoo       245 Dove

noteS

QB365-Question Bank Software

QB365-Question Bank Software



Computer SCienCe - ClaSS Xii180

Write SQL queries for the following:
a) Create the table Product with appropriate data types 

and constraints. 

b) Identify the primary key in Product.

c) List the Product Code, Product name and price in 

descending order of their product name. If PName is 

the same, then display the data in ascending order 

of price.

d) Add a new column Discount to the table Product.

e) Calculate the value of the discount in the table Product 

as 10 per cent of the UPrice for all those products 
where the UPrice is more than 100, otherwise the 
discount will be 0.

f) Increase the price by 12 per cent for all the products 

manufactured by Dove.

g) Display the total number of products manufactured 

by each manufacturer.

Write the output(s) produced by executing the 

following queries on the basis of the information 

given above in the table Product:
h) SELECT PName, Average (UPrice) FROM Product 

GROUP BY Pname;

i) SELECT DISTINCT Manufacturer FROM Product;

j) SELECT COUNT (DISTINCT PName) FROM Product;

k) SELECT PName, MAX(UPrice), MIN(UPrice) FROM 

Product GROUP BY PName;

8. Using the CARSHOWROOM database given in the 
chapter, write the SQL queries for the following:
a) Add a new column Discount in the INVENTORY table.
b) Set appropriate discount values for all cars keeping 

in mind the following:

(i) No discount is available on the LXI model.

(ii) VXI model gives a 10 per cent discount.
(iii) A 12 per cent discount is given on cars other 

than LXI model and VXI model. 
c) Display the name of the costliest car with fuel type 

“Petrol”. 

d) Calculate the average discount and total discount 

available on Baleno cars.

e) List the total number of cars having no discount. 

noteS

QB365-Question Bank Software

QB365-Question Bank Software


