12th Standard Chemistry

MARKING SCHEME (PRACTICE PAPER 1)

SECTION – A

Q.No	Value point	Marks
1(i)	b	1
(ii)	d	1
(iii)	В	1
(iv)	D	1
2(i)	В	1
(ii)	Α	1
(iii)	A	1
(iv)	A	1
3	C	1
4	A OR C	1
5	D	1
6	В	1
7	Α	1
8	D OR B	1
9	A OR C	1
10	C	1
11	C OR A	1
12	В	1
13	A OR A	1
14	Α	1
15	Α	1
16	В	1 5
		G, T

	T T	
Q.No	CECTION D	
17	(i) It is due to double bond character in chlorobenzene due to resonance which is difficult to break as compared to single bond (C – CI) in CH3Cl. (ii) - NO ₂ group is an electron withdrawing group, it stablises the carbanion formed During nucleophilic substitution of chlorobenzene. OR	
	(i) CH ₃ CH ₂ OH SOCl ₂ , Pyridine CH ₃ CH ₂ Cl CH ₃ CH ₂ F -AgCl CH ₃ CH ₂ F	
	(ii) $CH_3 - CH = CH_2$ HBr, Peroxide $CH_3 - CH_2 - CH_2 - Br$ $CH_3 - CH_2 - CH_2 - Br$ $CH_3 - CH_3 - CH_3$	
	T _W	
18	No.	
	XeO ₃ HClO ₃	
19	$M^{2+} = 91.7\%$, $M^{3+} = 8.3\%$	
20	Mixtures of liquids having the same composition in liquid and vapour phase and Boiling at a constant temperature are called azeotropes. It is not possible to separate the components of an azeotrope by fractional distillation. The solutions which shows negative deviation from Raoult's law form maximum Boiling azeotropes. Acetone-Chloroform is an example of this type of azeotrope.	
21	Since this is an optically active compound, the three alkyl groups attached to central C -atom have to be different. Thus, the compound has the structure. $\begin{array}{c} CH_3 \\ C_2H_5 - C - Br \\ C_3H_7 \end{array}$	
	Mechanism of the reaction (SN1) $\begin{array}{c} CH_3 & CH_3 \\ C_2H_5 - C \xrightarrow{Br} \xrightarrow{Slow} C_2H_5 \xrightarrow{C_3H_7} \end{array}$	
	$\begin{array}{c} \text{Carbocation} \\ \text{CH}_3 \\ \text{HO} - \text{C} - \text{C}_2\text{H}_5 \xrightarrow{\text{OH}^-} \begin{array}{c} \text{CH}_3 \\ \text{C}_2\text{H}_5 & \text{C}_3\text{H}_7 \end{array} \\ \text{C}_3\text{H}_7 \\ \text{d-form} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{C}_2\text{H}_5 & \text{C}_3\text{H}_7 \\ \text{carbocation} \end{array}$	

22	Kolbe's reaction
	QNa QH OH
	COONa
	$+ CO_2 \xrightarrow{400 \text{ K}} \longrightarrow \longrightarrow$
	Sod. phenoxide Sod. salicylate 2-Hydroxybenzoic acid
	(Salicylic acid, major product)
	Williamson's ether synthesis
	R -X + R' - ONa
	A
23	(i) Coagulation and Peotisation: The process of setting of colloidal particles is called
	Coagulation. Peptization is the process of conversion of precipitate into colloidal sol.
	(ii) Lyophilic and Lyophobic:
	'Lyophilic' means liquid loving, lyophilic sols are prepared directly by mixing
	Substances like gum, gelatine, starch, rubber, etc with the liquid dispersion medium.
	Lyophobic means liquid hating, They cannot be prepared directly, they are prepared
	By special methods only.
	Colloidal system Dispersed phase Dispersion medium
	(i) Smoke Solid (Carbon) Gas(Air)
	(ii) Milk Liquid (fat) Liquid (water)
	45
24	(i) Diammine <mark>dichlo</mark> rido(ethan <mark>e-1,2-diami</mark> ne)chromium(III) chloride
	(ii) [Co(NH ₃) ₅ (ONO)] ²⁺
	OR
	Since the coordination number of Mn2+ ion in the complex ion is 4, it will be either tetrahedral (sp3 hybridisation) or square planar (dsp2 hybridisation). But the fact that the
	magnetic moment of the complex ion is 5.9 BM, it should be tetrahedral in shape rather than
	square planar because of the presence of five unpaired electrons in the d orbitals.
25	(i) Electrophoresis takes place
	(ii) Coagulation of the sol takes place and a precipitate of Fe(OH)3 is obtained.
SECTI	ON -C
26	(a) I -Cl bond is weaker than I-I and Cl – Cl bond.
	(b) Bi has +5 oxidation state in NaBiO3. +3 O.S of Bi is more stable than +5 due to
	inert pair effect
	(C) Noble gases are monoatomic and their atoms are held together by weak
	dispersion forces.

	· · · · · · · · · · · · · · · · · · ·		
27	(a) Peptide linkage:		
	It is an amide linkage formed between -COOH group and -NH2 group of alpha		
	aminoacids in proteins.		
	(b) Primary structure:		
	The specific sequence in which various amino acids are linked to one another in a		
	Protein molecule is called its primary structure.		
	(c) Denaturation:		
	A process in which secondary and tertiary structures of proteins are destroyed but		
	Primary structure remains the same is called denaturation of protiens. It is caused by		
	change in temp, change in pH etc.		
28	(i) Mn, because it has electronic configuration 3d54s2, Thus there are 7 electrons		
	that can be shared.		
	(ii) Cr, because Cr has configuration 3d54s1, 6 unpaired electrons participated in		
	formation of metallic bonds.		
	(iii) Mn. The change from Mn ³⁺ to Mn ²⁺ results in half filled (d ⁵) stable configuration.		
	OR		
	(i) Cr ²⁺ is stronger reducing agent than Fe ²⁺ .		
	d ⁴ to d ³ occur in case of Cr ²⁺ to Cr ³⁺ and in medium like water d ³ is more stable as		
	compared to d_5 (CFSE).		
	(ii) V ⁴⁺		
	(iii) because of the presence of unpaired electrons they show d -d transition		
29	C ₆ H ₅ COOH C ₆ H ₅ CONH ₂ C ₆ H ₅ NH ₂		
29			
	Benzoicacid (A) Benzamide (B) OR Benzenamine (C)		
	(i) Higher pkb means, lower is the basic character i.e aniline is weaker base than		
	methyl amine. In aniline lone pair of electron on nitrogen atom is delocalized over		
	the benzene ring due to the resonance effect. As a result electron density on		
	nitrogen atom decrease.In methylamine due to +I effect electron density on nitrogen		
	atom increase.		
	(ii) Aniline does not undergo Friedel-Crafts reaction due to salt formation with		
	aluminium chloride.		
	(iii) Gabriel phthalimide reaction gives pure 1° amines.		
30	Density = $(z \times M)/a^3 \times Na$		
	$11.5 = z \times 93/[(300 \times 10^{-10})^3 \times 6.022 \times 10^{23}]$		
	Z = 2		
	Body centred cubic		
31			
	(a) Molar conductivity may be defined as the conductance		
	Of all the ions at dilution V produced when one mole strong electrolyte		
	of the electrolyte is dissolved in V cm ³ of the solution,		
	the distance between the electrolytes being 1 cm.		
	Change of molar conductivity with concentration Λ_m		
	Molar conductivity increase sharply for weak electrolytes		
	With decrease in concentration as shown in the figure		
	Because number of ions as well as mobilty of ions increase		
	With dilution.		
	In case of strong electrolyte, molar conductivity increase slightly on dilution		
	Because number of ions do not increase much whereas mobilty of ions increase.		
	(b)		
	\~/		

Fe(s)
$$\longrightarrow$$
 Fe²⁺(aq) + 2e⁻

$$2H^{+}(aq) + 2e^{-} \longrightarrow H_{2}(g)$$
Fe(s) + 2H⁺(aq) \longrightarrow Fe²⁺(aq) + H₂(g)

Here, $n = 2$

$$E_{Cell} = E^{\circ}_{Cell} - \frac{0.0591}{2} \log \frac{[Fe^{2+}]}{[H^{+}]^{2}}$$

$$= (E^{\circ}_{H^{+}/H_{2}} - E^{\circ}_{Fe^{2+}/Fe}) - \frac{0.0591}{2} \log \frac{10^{-3}}{[10^{-2}]^{2}}$$

$$= [0 - (-0.44 \text{ V})] - \frac{0.0591}{2} \log 10$$

$$= +0.44 \text{ V} - 0.0295$$

$$= 0.4105 \text{ V}.$$
OR

Kohlrausch law states that limiting molar conductivity of an electrolyte can be represented as sum of the individual contributions of the anion and cation of the electrolyte.

$$\Lambda^{\circ}_{m}(\text{HCOOH}) = \lambda^{\circ}_{m} \text{ HCOO}^{-} + \lambda^{\circ}_{m} \text{ H}^{+}$$

$$\Lambda^{\circ}_{m}(\text{HCOOH}) = \lambda^{\circ}(\text{H}^{+}) + \lambda^{\circ}(\text{HCOO}^{-}) = 349.6 + 54.6 \text{ S cm}^{2} \text{ mol}^{-1} = 404.2 \text{ S cm}^{2} \text{ mol}^{-1}$$

$$\Lambda^{\circ}_{m} = 46.1 \text{ S cm}^{2} \text{ mol}^{-1} \quad (Given)$$

$$\alpha = \frac{\lambda_m^0}{\lambda_m^0} = \frac{461}{4042} = 0.114$$

Initial conc.
$$c \mod L^{-1}$$

Conc. at eqm. $c(1-\alpha)$ $c \alpha$ $c \alpha$

$$\alpha = \frac{\wedge_{m}^{c}}{\wedge_{m}^{0}} = \frac{461}{4042} = 0.114$$
HCOOH

Initial conc.

 $c \text{ mol } L^{-1}$

Conc. at eqm.

$$c \alpha = \frac{c \alpha \cdot c \alpha}{c (1 - \alpha)} = \frac{c \alpha^{2}}{1 - \alpha} = \frac{0.025 \times (0.114)^{2}}{1 - 0.114} = 3.67 \times 10^{-4}$$

 $C_6H_5CHO(A)$, $C_6H_5COONa \& C_6H_5CH_2OH(B \& C)$, $C_6H_5CH = NNHCONH_2(D)$, 32 $C_6H_5CH(OH)CH_3$ (E)

OR

- (i) CH₃CH(CN)OH
- (ii) CH₃CH(OH)CH₂CH₃
- (iii) CH₃CH₃
- (b) Ethanal > Propanal > Propanone > Butanone
- (c) Propanal gives red -brown ppt with Fehling's reagent / Propanal gives silver mirror test but propanone does not react both of these reagents.

33. (a)
$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

or

Substituting the values, we have

$$k = \frac{2.303}{40} \log \frac{100}{70}$$

$$k = \frac{2.303}{40} \times 0.1549 = 0.0089 \text{ min}^{-1}$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.0089} = 77.86 \text{ minutes}$$

(b) Suppose order w.r.t A is α and w.r.t B is β

Rate = k [A]
$$^{\alpha}$$
 [B] $^{\beta}$
(Rate)_{expt 1} = 6.0 × 10⁻³ = k (0.1) $^{\alpha}$ (0.1) $^{\beta}$...(i)
(Rate)_{expt 2} = 7.2 × 10⁻² = k (0.3) $^{\alpha}$ (0.2) $^{\beta}$...(ii)
(Rate)_{expt 3} = 2.88 × 10⁻¹ = k (0.3) $^{\alpha}$ (0.4) $^{\beta}$...(iii)
(Rate)_{expt 4} = 2.4 × 10⁻² = k (0.4) $^{\alpha}$ (0.1) $^{\beta}$...(iv)

$$\frac{(\text{Rate})_{\text{expt 1}}}{(\text{Rate})_{\text{expt 4}}} = \frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}} = \frac{k (0.1)^{\alpha} (0.1)^{\beta}}{k (0.4)^{\alpha} (0.1)^{\beta}} \quad \text{or} \quad \frac{1}{4} = \frac{(0.1)^{\alpha}}{(0.4)^{\alpha}} = \left(\frac{1}{4}\right)^{\alpha} \quad \text{or} \quad \alpha = 1$$

$$\frac{(\text{Rate})_{\text{expt 2}}}{(\text{Rate})_{\text{expt 3}}} = \frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}} = \frac{k (0.3)^{\alpha} (0.2)^{\beta}}{k (0.3)^{\alpha} (0.4)^{\beta}} \quad \text{or} \quad \frac{1}{4} = \frac{(0.2)^{\beta}}{(0.4)^{\beta}} = \left(\frac{1}{2}\right)^{\beta}$$
or $\beta = 2$

k can be calculated as in the first method. Rate law expression is: Rate = $k [A] [B]^2$.

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

For three-fourth of the reaction to take place, $[R] = \frac{[R]_0}{4}$ or $\frac{[R]_0}{[R]} = 4$

Substituting the values in the rate equation, we have

$$2.54 \times 10^{-3} = \frac{2.303}{t} \log 4$$
$$t = \frac{2.303}{2.54} \times 10^{3} \times 0.6021 = 5.46 \times 10^{2} \text{ s}$$

- (b) (i) dx/dt = k[A][B]2
 - (ii) 9 times

or

(iii) 8 times