QB365 - Question Bank Software

PRACTICE PAPER -2 (2020-21) CLASS XII MATHEMATICS

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS: 80

GENERAL INSTRUCTIONS:

- 1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions.
- 3. Both Part A and Part B have choices.

Part – A

- 1. It consists of two sections- I and II.
- 2. Section I comprises of 16 very short answers type questions.
- Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part – B

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 questions of 3 marks each.
- 4. Section V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section –III, 2 questions of Section IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART – A

SECTION - 1

(All questions are compulsory. In case of internal choices attempt any one)

1. Write the smallest reflexive relation on set A = {1, 2, 3, 4}.

Or

If $f: A \rightarrow B$ is an injection such that range of $f = \{a\}$. Determine the number of elements in A.

- 2. If R is a symmetric relation on a set A, then write a relation between R and R⁻¹.
- **3.** Let A = {1, 2, 3}. Then, what is the number of equivalence relations containing (1, 2) ?

Or

If $A = \{a, b, c\}$ and $B = \{-2, -1, 0, 1, 2\}$, write total number of one-one functions from A to B.

- **4.** If $\begin{bmatrix} a+b & 2\\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2\\ 5 & 8 \end{bmatrix}$, find the values of a and b.
- **5.** If I is the identity matrix and A is a square matrix such that $A^2 = A$, then what is the value of $(I + A)^2 3A$?

Or

Write a square matrix which is both symmetric as well as skew-symmetric.

6. A matrix A of order 3×3 is such that |A| = 4. Find the value of |2A|.

<u>QB365 - Question Bank Software</u>

7. Write a value of $\int e^x \sec x QB365^{dx} Question Bank Software$

Or

Write a value of $\int \frac{1-\sin x}{\cos^2 x} dx$

- **8.** Find the area bounded by the curves $y = \sin x$ between the ordinates x = 0, $x = \pi$ and the x –axis.
- **9.** If sin x is an integrating factor of the differential equation $\frac{dy}{dx}$ + Py = Q, then write the value of P.

Or

Write the order of the differential equation associated with the primitive

 $y=C_1+C_2\,e^x+C_3e^{-2x+C_4}$, where C1, C2, C3, C4 are arbitrary constants.

- **10.** Find a vector in the direction of $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$, which has magnitude of 6 units.
- **11.** For what value of λ are the vectors $\vec{a} = 2i + \lambda i + k$ and $\vec{b} = I 2j + 3k$ perpendicular to each other?
- **12.** If \vec{a} and \vec{b} are mutually perpendicular unit vectors, write the value of $|\vec{a} + \vec{b}|$.
- **13.** The cartesian equation of a line AB is $\frac{2x-1}{\sqrt{3}} = \frac{y+2}{2} = \frac{z-3}{3}$. Find the direction cosines of a line

parallel to AB.

14. Write the distance between the parallel planes 2x - y + 3z = 4 and 2x - y + 3z = 18.

15. If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (
$$A \cup B$$
).

16. If X is a random-variable with probability distribution as given below :

Find the value of k .

SECTION II

(Both the Case study based questions are compulsory. Attempt any 4 sub parts from each question 17 and 18 . Each part carries 1 mark)

17. Following is the pictorial description for a page.

The total area of the page is 150 cm^2 . The combined width of the margin at the top and bottom is 3 cm and the side 2 cm.

Using the information given above, answer the following :

(i) The relation between x and y is given by (a) (x -3)y =150

(b) xy =150

<u> QB365 - Question Bank Software</u>

(c) x(y - 2) =150 (d) (x - 2)(y - 3) =150

(ii) The area of page where printing can be done, is given by
(a) xy
(b) (x + 3)(y + 2)
(c) (x -3)(y - 2)
(d) (x -3)(y + 2)

(iii) The area of the printable region of the page, in terms of x, is
(a) 156 + 2x + 450/x
(b) 156 - 2x + 450/x
(c) 156 - 2x - 45/x

(d) 156 - 2x - 450/x

(iv) For what value of 'x', the printable area of the page is maximum?

- (a) 15 cm
- (b) 10 cm
- (c) 12 cm
- (d) 15 units

(v) What should be dimension of the page so that it has maximum area to be printed?

- (a) Length =1 cm, width = 15 cm
- (b) Length = 15 cm, width = 10 cm
- (c) Length = 15 cm, width = 12 cm
- (d) Length = 150 cm, width = 1 cm
 - **18.** Let X denotes the no. of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that

$$P(X = x) = \begin{cases} kx, \text{ if } x = 0 \text{ or } 1\\ 2kx, \text{ if } x = 2\\ k(5-x), \text{ if } x = 3 \text{ or } 0, \text{ if } x > 4 \end{cases}$$

; where k is a positive constant.

Based on the above information answer the following :

(i) The value of k is

- (a) 1
- (b) 1/3
- (c) 1/7
- (d) 1/8

(ii) The probability that you will get admission in exactly one college, is

- (a) 1/2
- (b) 1/3
- (c) 1/8
- (d) 1/5

(iii) The probability that you will get admission in at most two colleges, is

- (a) 7/12
- (b) 5/8
- (c) 5/21
- (d) 8/17

(iv) What is the probability that you will get admission in at least 2 colleges ftware

QB365 - Question Bank Software

(a) 1/3 (b) 2/7 (c) 3/8 (d) 7/8

(v) What is the probability that you will get admission in more than 4 colleges?

- (a) 0
- (b) 1
- (c) 1/2

(d) 1/8

PART – B SECTION III

- 19. If $\frac{dy}{dx} = e^{-2y}$ and y = 0 when x = 5, then the value of x when y = 3.
- ^{20.} If the points A (-1, 3, 2), B (-4, 2, -2) and C (5, 5, λ) are collinear, find the value of λ .
- Find a vector in the direction of $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ which has magnitude 6 units.
- 22. Find the principal value of

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) + \cot^{-1}\left(\cot\frac{7\pi}{6}\right)$$

23. Evaluate

$$\int_{0}^{\frac{\pi}{2}} \log\left(\frac{3+5\cos x}{3+5\sin x}\right) dx.$$

- OR Evaluate $\int \frac{\log(\sin x)}{\tan x} dx$
- 24. Find the slope of the normal to the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ at $\theta = \frac{\pi}{4}$.

25. If
$$y = \tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right)$$
 find $\frac{dy}{dx}$

26. Find matrices X and Y, if

$$X + Y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} \text{ and } X - Y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$$

- OR Find the value of k so that the points A(5, 5) B(k, 1) and C(11, 7) are collinear.
- 27. A bag contains 15 tickets numbered from 1 to 15. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
- ^{OR} A die is tossed thrice. Find the probability of getting an odd number at least once.
- ^{28.} Using integration, find the area of the region bounded by the line y 1 = x, the x-axis and the ordinates x = -2 and x = 3.

SECTION IV

(All questions are compulsory. In case of internal choices attempt any one.)

QB365 - Question Bank Software

QB365 - Question Bank Software

- 29. Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z, (a b) \text{ is divisible by 5}\}$. Prove that R is an equivalence relation.
- 30. Using integration, find the area of the region bounded by the following curves, after making a rough sketch:

y = 1 + |x + 1|, x = -3, x = 3, y = 0.

- OR Find the area bounded by the parabola $y^2 = 4x$ and the straight line x + y = 3.
- 31. Evaluate

$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

32. Find the intervals in which $f(x) = (x + 1)^3 (x - 3)^3$ is increasing or decreasing.

33. If
$$x = \tan\left(\frac{1}{a}\log y\right)$$
, show that $(1+x^2)\frac{d^2y}{dx^2} + (2x-a)\frac{dy}{dx} = 0$.

34. If $x = ae^{\theta}$ (sin $\theta - \cos \theta$) and $y = ae^{\theta}$ (sin $\theta + \cos \theta$), find $\frac{dy}{dx}$

OR If
$$y^x = e^{y-x}$$
, prove that $\frac{dy}{dx} = \frac{(1+\log y)^2}{\log y}$

35. Solve the following differential equation

$$(x^2-1) \frac{dy}{dx} + 2xy = \frac{1}{x^2-1}; |x| \neq 1$$

SECTION V

(All questions are compulsory. In case of internal choices attempt any one.)

36. Find the equation of the plane through the intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j}) - 6 = 0$ and $\vec{r} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$, whose perpendicular distance from origin is unity.

Find the distance of the point (2, 3, 4) from the line $\frac{x+3}{3} = \frac{y-2}{6} = \frac{z}{2}$ measured parallel to the plane 3x + 2y + 2z - 5 = 0.

37. Solve the following LPP Graphically :

Maximise z = 1000x + 600y

Subject to $x + y \le 200, x \ge 20, y \ge 4x, x, y \ge 0.$

OR

Solve the following linear programming problem graphically: Maximise z = 6x + 5y subject to $3x + 5y \le 15$, $5x + 2y \le 10$, $x, y \ge 0$.

36. Solve the following system of equations 3x + 2y + z = 6; 4x - y + 2z = 5; 7x + 3y - 3z = 7.

If
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{bmatrix}$$
 find A^{-1} .

QB365 - Question Bank Software

Find AB, use this to solve the system of equations $x_{\overline{k}} = 3.2x + 3y + 4z = 17$, y + 2z = 7.

	1	-1	0		2	2	-4	
Where A =	2	3	4	and <i>B</i> =	-4	2	-4	.
	0	1	2		2	-1	5	

QB365 - Question Bank Software