12th MATHS MARKING SCHEME (PRACTICE PAPER- 2)

PART – A SECTION – I

2.
$$R = R^{-1}$$

7.
$$e^x \sec x + C$$
 OR $\tan x - \sec x + C$

10.
$$4\hat{i} - 2\hat{j} + 4\hat{k}$$

12.
$$\sqrt{2}$$

13.
$$\frac{\sqrt{3}}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$$

14.
$$\sqrt{14}$$

SECTION II

PART - B SECTION III

$$\frac{dy}{dx} = e^{-2y} \implies \frac{dy}{e^{-2y}} = dx$$

2

$$\int e^{2y} dy = \int dx \implies \frac{e^{2y}}{2} = x + C$$

When x = 5 and y = 0, then substituting these values in Eq. (i), we get

$$\frac{e^0}{2} = 5 + C$$

$$\Rightarrow$$

$$\frac{1}{2} = 5 + C \implies C = \frac{1}{2} - 5 = -\frac{9}{2}$$

$$e^{2y} = 2x - 9$$

When
$$y = 3$$
, then

$$e^6 = 2x - 9 \implies 2x = e^6 + 9$$

$$x=\frac{(e^6+9)}{2}.$$

2

2

$$\frac{x+1}{-4+1} = \frac{y-3}{2-3} = \frac{z-2}{-2-2}$$

$$\Rightarrow \frac{x+1}{-3} = \frac{y-3}{-1} = \frac{z-2}{-4}$$

$$\Rightarrow \frac{x+1}{3} = \frac{y-3}{1} = \frac{z-2}{4} \qquad \dots (i)$$

If the points A (-1, 3, 2), B(-4, 2, -2) and C(5, 5, λ) are collinear, then the coordinates of C must satisfy equation (i). Therefore,

$$\frac{5+1}{3} = \frac{5-3}{1} = \frac{\lambda-2}{4}$$

$$\Rightarrow \frac{\lambda - 2}{4} = 2$$

$$\Rightarrow$$
 $\lambda = 10.$

Firstly, we find a unit vector in the direction of $\overrightarrow{a} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$

$$=\frac{2\hat{i}-\hat{j}+2\hat{k}}{\sqrt{(2)^2+(-1)^2+(2)^2}}$$

$$=\frac{2\hat{i}-\hat{j}+2\hat{k}}{\sqrt{9}}$$

$$= \frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$$

Now, vector of magnitude 6 units = $6\left[\frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right]$ = $4\hat{i} - 2\hat{j} + 4\hat{k}$

22. We know that the principal value branch of $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\cot^{-1}x$ is $(0, \pi)$.

$$\therefore \text{ Principal value of } \tan^{-1} \left(\tan \frac{7\pi}{6} \right) + \cot^{-1} \left(\cot \frac{7\pi}{6} \right)$$

$$= \tan^{-1} \left[\tan \left(\pi + \frac{\pi}{6} \right) \right] + \cot^{-1} \left[\cot \left(\pi + \frac{\pi}{6} \right) \right]$$

$$= \tan^{-1}\left(\tan\frac{\pi}{6}\right) + \cot^{-1}\left(\cot\frac{\pi}{6}\right)$$

$$=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}.$$

2

2

$$I = \int_{0}^{\frac{\pi}{2}} \log \left(\frac{3 + 5 \cos\left(\frac{\pi}{2} - x\right)}{3 + 5 \sin\left(\frac{\pi}{2} - x\right)} \right) dx \qquad \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right]$$

$$\left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx\right]$$

 $\left[\because \int \sin x \, dx = -\cos x + C\right]$

$$= \int_{0}^{\frac{\pi}{2}} \log \left(\frac{3 + 5 \sin x}{3 + 5 \cos x} \right) dx = -I$$

$$2I = 0 \implies I = 0$$

OR The differentiation of log(sin x) is tan x, which exists in denominator. So solve by substitution method.

Given integral is $\int \frac{\log(\sin x)}{\tan x} dx$

Putting

$$\log \sin x = t$$

$$\Rightarrow$$

$$\frac{1}{\sin x} \cdot \cos x \, dx = dt$$

$$\Rightarrow$$

$$\cot x \, dx = dt$$

$$\Rightarrow$$

$$\frac{1}{\tan x}dx = dt$$

$$\int \frac{\log(\sin x)}{\tan x} dx = \int t \, dt$$

$$= \frac{t^2}{2} + 0$$

$$=\frac{(\log\sin x)}{2}$$

We have, 24.

$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$

$$\Rightarrow$$

$$\frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta$$

and

$$\frac{dy}{d\theta} = 3a \sin^2 \theta \cos \theta$$

Now,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}}$$

$$\Rightarrow$$

$$\frac{dy}{dx} = \frac{3a\sin^2\theta\cos\theta}{-3a\cos^2\theta\sin\theta} = -\tan\theta$$

∴ Slope of the normal at any point on the curve = $-\frac{1}{\underline{dy}} = \frac{-1}{-\tan \theta} = \cot \theta$

Hence, (Slope of the normal at $\theta = \frac{\pi}{4}$) = $\cot \frac{\pi}{4} = 1$.

$$y = \tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right)$$

$$= \tan^{-1} \left\{ \frac{\sin\left(\frac{\pi}{2} + x\right)}{1 - \cos\left(\frac{\pi}{2} + x\right)} \right\}$$

$$= \tan^{-1} \left\{ \frac{2 \sin \left(\frac{\pi}{4} + \frac{x}{2} \right) \cos \left(\frac{\pi}{4} + \frac{x}{2} \right)}{2 \sin^2 \left(\frac{\pi}{4} + \frac{x}{2} \right)} \right\}$$

$$= \tan^{-1} \left\{ \cot \left(\frac{\pi}{4} + \frac{x}{2} \right) \right\}$$

$$= \tan^{-1}\left\{\tan\frac{\pi}{2} - \left(\frac{\pi}{4} + \frac{x}{2}\right)\right\}$$

$$= \tan^{-1} \left\{ \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right\}$$

$$= \frac{\pi}{4} - \frac{x}{2}$$

$$\frac{dy}{dx} = -\frac{1}{2}.$$

26.

$$\frac{1}{dx} = \frac{1}{2}.$$

$$X + Y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} \text{ and } X - Y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow (X + Y) + (X - Y) = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow 2X = \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$$

$$\Rightarrow \qquad 2X = \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$$

$$\Rightarrow \qquad X = \frac{1}{2} \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$$

$$\Rightarrow \qquad \qquad X = \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}$$

2

and,
$$(X + Y) - (X - Y) = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow$$

$$2Y = \begin{bmatrix} 2 & -4 \\ 0 & 10 \end{bmatrix}$$

$$Y = \frac{1}{2} \begin{bmatrix} 2 & -4 \\ 0 & 10 \end{bmatrix}$$

OR Let A (5,5), B (k, 1) and C (11, 7) be three vertices of a $\triangle ABC$.

Then area of

$$\Delta ABC = \frac{1}{2} \begin{vmatrix} 5 & 5 & 1 \\ k & 1 & 1 \\ 11 & 7 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [5(1-7) - 5(k-11) + 1(7k-11)]$$

$$= \frac{1}{2} [-30 - 5k + 55 + 7k - 11]$$

$$= \frac{1}{2} [2k + 14] = (k+7) \text{ sq. units}$$

2

2

2

But it is given that A(5, 5), B(k, 1) and C(11, 7) are collinear.

$$\therefore \qquad \text{area of } \triangle ABC = 0$$

area of
$$\triangle ABC = 0$$

$$k + 7 = 0 \implies k = -7$$

Let A and B be the events of drawings an even number ticket in the first and second drawn **27.** respectively.

In the first draw, there are 7 even numbers out of 15 numbers

$$P(A) = \frac{7}{15}$$

After first draw, there are 14 tickets left.

In the second drawn, one even number ticket is drawn out of 14 tickets.

$$P(B/A) = \frac{6}{14} = \frac{3}{7}$$

$$P(A \cap B) = P(A) \cdot P(B|A) = \frac{7}{15} \times \frac{3}{7} = \frac{1}{5}$$

When a die is thrown, there are 3 odd numbers on the die out of 6 numbers. OR

Probability of getting odd number = $\frac{3}{6} = \frac{1}{2}$

Probability of getting even number = $1 - \frac{1}{2} = \frac{1}{2}$

Now probability of getting no odd number when the die is tossed thrice

= Probability of getting even number when the die is tossed thrice

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Probability of getting an odd number at least once when the die is tossed thrice

$$= 1 - \frac{1}{8} = \frac{7}{8}$$
.

$$y-1=x$$
 or $y=x+1$ is the given line DE.

x = -2 is the line EF.

x = 3 is the line CD.

Let A be a point of intersection of (i) and x-axis.

Limits are x = -2 and x = -1 for the area AEF and the limits for the area ACD are x = -1 and x = 3.

... (i)

3

3

The required area = Shaded area

$$= |\Delta AFE| + |\Delta ACD|$$

$$= \left| \int_{-2}^{-1} (x+1) dx \right| + \left| \int_{-1}^{3} (x+1) dx \right|$$

$$= \left| \left[\frac{x^2}{2} + x \right]_{-2}^{-1} \right| + \left| \left[\frac{x^2}{2} + x \right]_{-1}^{3} \right|$$

$$= \left| \left(\frac{1}{2} - 1 \right) - (2 - 2) \right| + \left| \left(\frac{9}{2} + 3 \right) - \left(\frac{1}{2} - 1 \right) \right|$$

SECTION IV

29. $R = \{(a, b) : a - b \text{ is divisible by } 5, a, b \in Z\}$

For reflexive: $(a, a) \in R \Rightarrow a - a$ is divisible by 5, true. Hence R is reflexive.

For symmetric: $(a, b) \in R \Rightarrow a - b$ divisible by $5 \Rightarrow b - a$ is divisible by $5 \Rightarrow (b, a) \in R$, Hence

R is symmetric.

For transitive: Let for (a, b), $(b, c) \in R$

 $(a, b) \in R \Rightarrow a - b$ divisible by 5

 $(b, c) \in R \Rightarrow b - c$ divisible by 5

As a - b divisible by 5 and b - c divisible by 5. Hence a - c is also divisible by 5

i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$. Hence R is transitive.

From above R is reflexive, symmetric, transitive, therefore R is an equivalence relation.

30. Given curve is

$$y = 1 + |x + 1| = \begin{cases} 1 + x + 1, & \text{if } x + 1 \ge 0 \\ 1 - (x + 1), & \text{if } x + 1 < 0 \end{cases}$$

or, $y = \begin{cases} x + 2, & \text{if } x \ge -1 \\ -x, & \text{if } x < -1 \end{cases}$... (i)

Given lines are x = -3, y = 0 ... (ii)

The rough sketch of (i) has been shown in the figure.

.. The required area = the area of the shaded region ABECDA

$$= \int_{-3}^{-1} y_{BE} dx + \int_{-1}^{3} y_{EC} dx$$

$$= \int_{-3}^{-1} (-x) dx + \int_{-1}^{3} (x+2) dx$$

$$= -\left[\frac{x^2}{2}\right]_{-1}^{-1} + \left[\frac{x^2}{2} + 2x\right]_{-1}^{3}$$

$$= -\frac{1}{2}(1-9) + \left[\left(\frac{9}{2} + 6 \right) - \left(\frac{1}{2} - 2 \right) \right]$$

= 4 + 12 = 16 sq. units.

OR Given curves are

$$v^2 = 4x$$

... (i)

3

and

$$x + v = 3$$

... (ii)

Curve (i) is a right handed parabola whose vertex is (0, 0) and axis is y = 0.

Line (ii) cuts x-axis at (3, 0) and y-axis at (0, 3). Here required area OCDAO is bounded by curves (i) and (ii) and abscissa at A and C.

Hence we will find the values of y from equations (i) and (ii).

Putting the value of x from equation (ii) in (i), we get

$$y^2 = 4(3 - y)$$

$$y^2 + 4y - 12 = 0$$

$$v = -6.2$$

Required area OCDAO = $\int_{-6}^{2} (x_1 - x_2) dy$

$$= \int_{-6}^{1} \left(x_{line(i)} - x_{curve(ii)} \right) dy$$

$$= \int_{-6}^{2} \left[(3-y) - \frac{y^2}{4} \right] dy = \left[3y - \frac{y^2}{2} - \frac{y^3}{12} \right]_{-6}^{2}$$

$$=\left(6-2-\frac{2}{3}\right)-\left(-18-18+\frac{216}{12}\right)=\frac{10}{3}+18=\frac{64}{3}$$
 sq. units.

31. Let

$$I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$$

... (i)

... (ii)

3

$$I = \int_0^{\pi} \frac{(\pi - x)\sin(\pi - x)}{1 + \cos^2(\pi - x)} dx$$

$$\left[\because \int_a^a f(x) dx = \int_a^a f(a-x) dx \right]$$

$$I = \int_0^\pi \frac{(\pi - x)\sin x}{1 + \cos^2 x} dx$$

On adding Eqs. (i) and (ii), we get

$$2I = \int_0^{\pi} \frac{(x + \pi - x)\sin x}{1 + \cos^2 x} dx$$

$$I = \frac{\pi}{2} \int_0^\pi \frac{\sin x}{1 + \cos^2 x} dx$$

[::Let $t = \cos x$, $dt = -\sin x dx$]

 $\therefore \int_a^b f(x) dx = -\int_a^a f(x) dx$

[upper limit
$$\rightarrow \cos \pi = -1$$
]
Lower limit $\rightarrow \cos 0 = 1$

$$I = \frac{\pi}{2} \int_{1}^{1} \frac{-dt}{1+t^{2}} = \frac{\pi}{2} \int_{1}^{1} \frac{dt}{1+t^{2}}$$

$$= \frac{\pi}{2} [\tan^{-1} t]_{-1}^{1} = \frac{\pi}{2} [\tan^{-1} (1) - \tan^{-1} (-1)]$$

$$= \frac{\pi}{2} \left[\frac{\pi}{4} - \left(-\frac{\pi}{4} \right) \right] = \frac{\pi}{2} \left(\frac{\pi}{4} + \frac{\pi}{4} \right) = \frac{\pi}{2} \cdot \frac{\pi}{2}$$

$$= \pi^{2}$$

3

$$f(x) = (x + 1)^3 (x - 3)^3$$

$$\Rightarrow f'(x) = (x-3)^3 \cdot 3(x+1)^2 \frac{d}{dx}(x+1) + (x+1)^3 \cdot 3(x-3)^2 \frac{d}{dx}(x-3)$$

$$\Rightarrow f'(x) = 3(x+1)^2 (x-3)^3 + 3(x+1)^3 (x-3)^2$$

$$\Rightarrow f'(x) = 3 (x+1)^2 (x-3)^2 (x+1+x-3)^2$$

$$\Rightarrow f'(x) = 6(x+1)^2(x-3)^2(x-1)$$

For f(x) to be increasing, we must have

⇒
$$f'(x) = 3(x+1)^2(x-3)^3 + 3(x+1)^3(x-3)^2$$

⇒ $f'(x) = 3(x+1)^2(x-3)^2(x+1+x-3)$
⇒ $f'(x) = 6(x+1)^2(x-3)^2(x-1)$
For $f(x)$ to be increasing, we must have
$$f'(x) \ge 0$$
⇒ $6(x+1)^2(x-3)^2(x-1) \ge 0$
⇒ $x \in [1, \infty)$
So, $f(x)$ is increasing on $[1, \infty)$

$$\Rightarrow$$
 $x \in [1, \infty)$

So, f(x) is increasing on $[1, \infty)$.

For f(x) to be decreasing, we must have

$$\Rightarrow \qquad \qquad x \in (-\infty, 1]$$

So, f(x) is decreasing on $(-\infty, 1]$.

$$x = \tan\left(\frac{1}{a}\log y\right)$$

 $\tan^{-1} x = \frac{1}{a} \log y$ \Rightarrow

$$a \tan^{-1} x = \log y$$

Now, differentiating both sides w.r.t. x, we get

$$a \times \frac{1}{1+x^2} = \frac{1}{v} \cdot \frac{dy}{dx}$$

$$\left[\because \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}\right]$$

$$\Rightarrow$$

$$(1+x^2)\frac{dy}{dx} = ay$$

[By cross multiplication]

Differentiating again on both sides w.r.t. x, we get

$$(1+x^2)\cdot\frac{d}{dx}\left(\frac{dy}{dx}\right)+\frac{dy}{dx}\frac{d}{dx}(1+x^2)=\frac{d}{dx}(ay)$$

$$\left[\because \frac{d}{dx} (u \cdot v) = u \frac{dv}{dx} + v \frac{du}{dx} \right]$$

$$\Rightarrow$$

$$(1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot (2x) = a \cdot \frac{dy}{dx}$$

$$\Rightarrow$$

$$(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} - a\frac{dy}{dx} = 0$$

$$\Rightarrow$$

$$(1+x^2)\frac{d^2y}{dx^2} + (2x-a)\frac{dy}{dx} = 0$$
. Hence proved.

34.

$$x = ae^{\theta} (\sin \theta - \cos \theta)$$

3

Diff. w.r.t. θ

$$\frac{dx}{d\theta} = a[e^{\theta}(\cos\theta + \sin\theta) + (\sin\theta - \cos\theta)e^{\theta}]$$
$$= ae^{\theta}[\cos\theta + \sin\theta + \sin\theta - \cos\theta]$$

Now,

$$y = ae^{\theta} (\sin \theta + \cos \theta)$$

Diff. w.r.t. θ

$$\frac{dy}{d\theta} = a[e^{\theta}(\cos\theta - \sin\theta) + (\sin\theta + \cos\theta)e^{\theta}]$$

=
$$ae^{\theta} [\cos \theta - \sin \theta + \sin \theta + \cos \theta]$$

= $2ae^{\theta}\cos\theta$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{2ae^{\theta}\cos\theta}{2ae^{\theta}\sin\theta}$$
$$= \cot\theta.$$

OR

Given that

$$\mathbf{v}^{\mathsf{x}} = \mathbf{e}^{\mathsf{y}-\mathsf{x}}$$

3

Taking log on both sides, we get

 $\log y^x = \log e^{(y-x)}$

$$\Rightarrow x \log y = (y - x) \log e$$

 $[\cdot \cdot \log e = 1]$

$$\Rightarrow$$

$$x \log y = y - x$$

 \Rightarrow

$$\chi = \frac{y}{1 + \log y}$$

Differentiating eq. (i) both sides w.r.t. x, we get

$$\Rightarrow x \cdot \frac{d}{dx} (\log y) + \log y \frac{d}{dx} (x) = \frac{d}{dx} (y) - \frac{d}{dx} (x)$$

$$\Rightarrow \qquad x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + \log y \cdot 1 = \frac{dy}{dx} - 1$$

$$\Rightarrow \qquad (1 + \log y) = \frac{dy}{dx} \left(1 - \frac{x}{y} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{y(1 + \log y)}{(y - x)} \qquad \dots (ii)$$

Put the value of x from Eq. (i) in Eq. (ii), we get

$$\frac{dy}{dx} = \frac{y(1+\log y)}{y - \left(\frac{y}{1+\log y}\right)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y(1+\log y)^2}{(y+y\log y - y)}$$

$$\begin{bmatrix} \because x \log y = y - x \\ or \ x = \frac{y}{1+\log y} \end{bmatrix}$$

Given differential equation is 35.

$$(x^2-1) \frac{dy}{dx} + 2xy = \frac{1}{x^2-1}; |x| \neq 1$$

Dividing both sides by $x^2 - 1$, we get

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = \frac{1}{(x^2 - 1)^2}$$
 ... (i)

3

This is a linear differential equation and is of the form

differential equation and is of the form

$$\frac{dy}{dx} + Py = Q \qquad (ii)$$
s. (i) and (ii), we get

$$P = \frac{2x}{x^2 - 1} \text{ and } Q = \frac{1}{(x^2 - 1)^2}$$
If above equation is given by
$$y \times 1.F. = \int (Q \times 1.F.) dx + c \qquad (iii)$$

Comparing Eqs. (i) and (ii), we get

$$P = \frac{2x}{x^2 - 1}$$
 and $Q = \frac{1}{(x^2 - 1)^2}$

Now, solution of above equation is given by

$$y \times I.F. = \int (Q \times I.F.) dx + c$$
 ... (iii)

where, I.F. = Integrating factor and I.F. = $e^{\int Pdx}$

$$\therefore \qquad \text{I.F.} = e^{\int \frac{2x}{x^2 - 1} dx} = e^{\log(x^2 - 1)} = x^2 - 1 \qquad [\because e^{\log x} = x]$$

$$\left[\because \int \frac{2x}{x^2 - 1} dx \text{ Put } x^2 - 1 = t \Rightarrow 2x \, dx = dt \therefore \int \frac{dt}{t} = \log|t| = \log|x^2 - 1| + c\right]$$

Putting I.F. = $x^2 - 1$ and $Q = \frac{1}{(x^2 - 1)^2}$ in Eq. (iii),

we get

$$y(x^{2} - 1) = \int (x^{2} - 1) \cdot \frac{1}{(x^{2} - 1)^{2}} dx$$

$$\Rightarrow \qquad y(x^{2} - 1) = \int \frac{1}{x^{2} - 1} dx$$

$$\Rightarrow \qquad y(x^{2} - 1) = \int \frac{dx}{x^{2} - (1)^{2}}$$

$$y(x^{2} - 1) = \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| + C$$

Let P(2, 3, 4) be the given point and given equation of line be

$$\frac{x+3}{3} = \frac{y-2}{6} = \frac{z}{2}$$

Any random point T on the given lines is calculated as

$$\frac{x+3}{3} = \frac{y-2}{6} = \frac{z}{2} = \lambda$$
 [Say]

or
$$x = 3\lambda - 3$$
, $y = 6\lambda + 2$, $z = 2\lambda$

 \therefore Coordinates of T are $(3\lambda - 3, 6\lambda + 2, 2\lambda)$

Now, DR's of line PT are

$$(3\lambda - 3 - 2, 6\lambda + 2 - 3, 2\lambda - 4) = (3\lambda - 5, 6\lambda - 1, 2\lambda - 4)$$

Since, the line PT is parallel to the plane

$$3x + 2y + 2z - 5 = 0$$

$$\therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$$

[:: Line is parallel to the plane, therefore normal to the

plane is perpendicular to the line]

where,

$$a_1 = 3\lambda - 5$$
, $b_1 = 6\lambda - 1$, $c_1 = 2\lambda - 4$

and

$$a_1 = 3\lambda - 5, b_1 = 6\lambda - 1,$$

 $a_2 = 3, b_2 = 2, c_2 = 2$

[: a_2 , b_2 , c_2 are DR's of plane whose equation is 3x + 2y + 2z - 5 = 0]

∴ We get,

$$3(3\lambda - 5) + 2(6\lambda - 1) + 2(2\lambda - 4) = 0$$

$$\Rightarrow$$
 9 λ - 15 + 12 λ - 2 + 4 λ - 8 = 0

$$\Rightarrow$$
 25 λ - 25 = 0

$$\Rightarrow$$
 25 λ = 25

or $\lambda = 1$

$$\therefore \quad \text{Coordinates of } T = (3\lambda - 3, 6\lambda + 2, 2\lambda) = (0, 8, 2)$$
 [Put $\lambda = 1$]

Finally, the required distance between points P(2, 3, 4) and T(0, 8, 2) is given by

$$PT = \sqrt{(0-2)^2 + (8-3)^2 + (2-4)^2}$$

[:
$$(x_1, y_1, z_1) = (2, 3, 4)$$
 and $(x_2, y_2, z_2) = (0, 8, 2)$]
= $\sqrt{4 + 25 + 4} = \sqrt{33}$ units.

We have, $\vec{n}_1 = (\hat{i} + 3\hat{j})$, $d_1 = 6$ and $\vec{n}_2 = (3\hat{i} - \hat{j} - 4\hat{k})$, $d_2 = 0$

Using the relation,

$$\vec{r}\cdot(\vec{n}_{\scriptscriptstyle 1}+\lambda\vec{n}_{\scriptscriptstyle 2})=d_{\scriptscriptstyle 1}+d_{\scriptscriptstyle 2}\lambda$$

$$\Rightarrow \qquad \vec{r} \cdot [(\hat{i} + 3\hat{j}) + \lambda (3\hat{i} - \hat{j} - 4\hat{k})] = 6 + 0 \cdot \lambda$$

$$\Rightarrow \qquad \vec{r} \cdot [(1+3\lambda)\hat{i} + (3-\lambda)\hat{j} + \hat{k}(-4\lambda)] = 6 \qquad \dots (i)$$

On dividing both sides by $\sqrt{(1+3\lambda)^2+(3-\lambda)^2+(-4\lambda)^2}$, we get

$$\frac{\vec{r} \cdot [(1+3\lambda)\hat{i} + (3-\lambda)\hat{j} + \hat{k}(-4\lambda)]}{\sqrt{(1+3\lambda)^2 + (3-\lambda)^2 + (-4\lambda)^2}} = \frac{6}{\sqrt{(1+3\lambda)^2 + (3-\lambda)^2 + (-4\lambda)^2}}$$

Since, the perpendicular distance from origin is unity.

$$\frac{6}{\sqrt{(1+3\lambda)^2 + (3-\lambda)^2 + (-4\lambda)^2}} = 1$$

$$\Rightarrow \qquad (1+3\lambda)^2 + (3-\lambda)^2 + (-4\lambda)^2 = 36$$

$$\Rightarrow \qquad 1+9\lambda^2 + 6\lambda + 9 + \lambda^2 - 6\lambda + 16\lambda^2 = 36$$

$$\Rightarrow \qquad 26\lambda^2 + 10 = 36$$

$$\Rightarrow \qquad \lambda^2 = 1$$

$$\therefore \qquad \lambda = \pm 1$$

Using Eq. (i), the required equation of plane is

$$\vec{r} \cdot [(1 \pm 3)\hat{i} + (3 \mp 1)\hat{j} + (\mp 4)\hat{k}] = 6$$

$$\Rightarrow \qquad \vec{r} \cdot [(1 + 3)\hat{i} + (3 - 1)\hat{j} + (-4)\hat{k}] = 6$$
and
$$\vec{r} \cdot [(1 - 3)\hat{i} + (3 + 1)\hat{j} + 4\hat{k}] = 6$$

$$\Rightarrow \qquad \vec{r} \cdot (4\hat{i} + 2\hat{j} - 4\hat{k}) = 6$$
and
$$\vec{r} \cdot (-2\hat{i} + 4\hat{i} + 4\hat{k}) = 6$$

$$\Rightarrow \qquad 4x + 2y - 4z - 6 = 0$$

and

and
$$-2x + 4y + 4z - 6 = 0$$

$$z = 1000x + 600y$$

Subject to

$$x + y \le 200, x \ge 20, y \ge 4x, x, y \ge 0.$$

Consider the linear constraint defined by the inequality

$$x + y \le 200$$

First draw the graph of the line x + y = 200

Х	100	80
У	100	120

Putting (0, 0) in the inequality $x + y \le 200$, we have

$$0 + 0 \le 200 \implies 0 \le 200$$
, which is true

So the half plane of $x + y \le 200$ is towards the origin.

Now consider the linear constraint defined by the inequality

$$x \ge 20$$

First draw the graph of the line x = 20

Putting (0, 0) in the inequality $x \ge 20$, we have

So the half plane of $x \ge 20$ is away from origin.

Now consider the linear constraint defined by the inequality

$$y \ge 4x$$

First draw the graph of the line y = 4x

Х	10	20
У	40	80

Putting (10, 0) in the inequality $y \ge 4x$, we have

$$0 \ge 4 \times 10 \implies 0 \ge 40$$
, which is false

So the half plane of $y \ge 4x$ is away from the point (10, 0).

Since $x, y \ge 0$

So the feasible region lies in the first quadrant.

The coordinates of the corner points of the feasible region are A (20, 80), B (40, 160) and

C(20, 180). These points have been obtained by solving equations of the corresponding intersecting lines simultaneously.

Now
$$z = 1000x + 600y$$

At
$$A(20, 80)$$
 $z = 1000 \times 20 + 600 \times 80 = 20000 + 48000 = 68000$

At
$$B(40, 160)$$
 $z = 1000 \times 40 + 600 \times 160 = 40000 + 96000 = 136000$

At
$$C(20, 180)$$
 $z = 1000 \times 20 + 600 \times 180 = 20000 + 108000 = 128000$

Thus z is maximum at (40, 160) and maximum value = 136000

OR.

The given objective function is z = 6x + 5y

Consider the linear constraint defined by the inequality

$$3x + 5y \le 15$$

First draw the graph of the line 3x + 5y = 15

х	0	5
У	3	0

Putting (0, 0) in the inequality $3x + 5y \le 15$, we have

$$3 \times 0 + 5 \times 0 \le 15 \Rightarrow 0 \le 15$$
, which is true

So the half plane of $3x + 5y \le 15$ is towards the origin.

Now consider the linear constraint defined by the inequality

$$5x + 2y \le 10$$

First draw the graph of the line 5x + 2y = 10

х	0	2
У	5	0

Putting (0, 0) in the inequality $5x + 2y \le 10$, we have

$$5 \times 0 + 2 \times 0 \le 10$$
 \Rightarrow $0 \le 10$, which is true

So the half plane of $5x + 2y \le 10$ is towards the origin.

Since
$$x, y \ge 0$$

So the feasible region lies in first quadrant.

The coordinates of the corner points of the feasible region are O(0, 0)

A(2,0), $B\left(\frac{20}{19},\frac{45}{19}\right)$ and C(0,3). These points have been obtained by solving equations of the

corresponding intersecting lines simultaneously.

z = 6x + 5yNow

At
$$O(0, 0)$$
 $z = 6 \times 0 + 5 \times 0 = 0$

At
$$A(2,0)$$
 $z = 6 \times 2 + 5 \times 0 = 12 + 0 = 12$

At
$$B\left(\frac{20}{19}, \frac{45}{19}\right)$$
 $z = 6 \times \frac{20}{19} + 5 \times \frac{45}{19} = \frac{120}{19} + \frac{225}{19} = \frac{345}{19}$

At
$$C(0, 3)$$
 $z = 6 \times 0 + 5 \times 3 = 0 + 15 = 15$

Thus z is maximum at $\left(\frac{20}{19}, \frac{45}{19}\right)$ and maximum value = $\frac{345}{19}$.

Given that 38.

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{bmatrix}$$

The given system of equations can be written as

$$AX = B$$

where,

equations can be written as
$$AX = B$$

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix}$$

Solution of above system of equations is given by

$$X = A^{-1}B$$
 ... (i)

So, now we find A^{-1} ,

where
$$A^{-1} = \frac{\text{adj}(A)}{|A|}$$
Now,
$$|A| = 3(3-6) - 2(-12-14) + 1(12+7)$$

$$= 3(-3) - 2(-26) + 1(19)$$

$$= -9 + 52 + 19 = 62$$

$$|A| \neq 0,$$

hence unique solution.

$$adj(A) = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}^{T}$$

$$A_{11} = (-1)^2 \begin{vmatrix} -1 & 2 \\ 3 & -3 \end{vmatrix} = (-1)^2 \times (3-6) = -3$$

$$A_{12} = (-1)^3 \begin{vmatrix} 4 & 2 \\ 7 & -3 \end{vmatrix} = -1(-12 - 14) = 26$$

$$A_{13} = (-1)^4 \begin{vmatrix} 4 & -1 \\ 7 & 3 \end{vmatrix} = 1(12+7) = 19$$

$$A_{21} = (-1)^3 \begin{vmatrix} 2 & 1 \\ 3 & -3 \end{vmatrix} = -1(-6-3) = 9$$

$$A_{22} = (-1)^4 \begin{vmatrix} 3 & 1 \\ 7 & -3 \end{vmatrix} = 1(-9 - 7) = -16$$

$$A_{23} = (-1)^5 \begin{vmatrix} 3 & 2 \\ 7 & 3 \end{vmatrix} = -1(9 - 14) = 5$$

$$A_{22} = (-1)^4 \begin{vmatrix} 3 & 1 \\ 7 & -3 \end{vmatrix} = 1(-9 - 7) = -16$$

$$A_{23} = (-1)^5 \begin{vmatrix} 3 & 2 \\ 7 & 3 \end{vmatrix} = -1(9 - 14) = 5$$

$$A_{31} = (-1)^4 \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 1(4 + 1) = 5$$

$$A_{42} = (-1)^5 \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} = -1(6 - 4) = -2$$

$$A_{32} = (-1)^5 \begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix} = -1(6-4) = -2$$

$$A_{33} = (-1)^6 \begin{vmatrix} 3 & 2 \\ 4 & -1 \end{vmatrix} = 1(-3-8) = -11$$

adj (A) =
$$\begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix}^{\mathsf{T}}$$

$$= \begin{bmatrix} -3 & 9 & 5 \\ 26 & -16 & -2 \\ 19 & 5 & -11 \end{bmatrix}$$

$$\Rightarrow$$

$$A^{-1} = \frac{1}{62} \begin{bmatrix} -3 & 9 & 5\\ 26 & -16 & -2\\ 19 & 5 & -11 \end{bmatrix} \begin{bmatrix} 6\\ 5\\ 7 \end{bmatrix}$$

Now, by using Eq. (i), we get

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{62} \begin{bmatrix} -3 & 9 & 5 \\ 26 & -16 & -2 \\ 19 & 5 & -11 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 7 \end{bmatrix}$$

$$= \frac{1}{62} \begin{bmatrix} -18 + 45 + 35 \\ 156 - 80 - 14 \\ 114 + 25 - 77 \end{bmatrix} = \frac{1}{62} \begin{bmatrix} 62 \\ 62 \\ 62 \end{bmatrix}$$

$$x = \frac{62}{62}; \quad y = \frac{62}{62}; \quad z = \frac{62}{62}$$

Hence, x = 1, y = 1 and z = 1.

OR

First find the product AB and then premultiply both sides of product AB by A^{-1} and obtain A^{-1} . Then, using the relation $X = A^{-1}C$ and simplify it to get the result.

First we find the product AB

$$AB = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2+4+0 & 2-2-0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 6I$$

$$\therefore \qquad \qquad AB = 6I \qquad \qquad \dots (i)$$

Now, given system of equations can be written as

$$AX = C \Rightarrow X = A^{-1}C \qquad \dots (ii)$$

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad C = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$

where

Now, again from Eq. (i)

 \Rightarrow

$$AB = 6I$$

 $\Rightarrow A^{-1}AB = 6A^{-1}I$

 $B = 6A^{-1}$

A⁻¹I [Premultiplying by A⁻¹ on both sides]

 $[\cdot \cdot \cdot A^{-1}A = I \text{ and } IB = B]$

 $A^{-1} = \frac{1}{6}B = \frac{1}{6}\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$

Now from Eq. (ii), we get

$$X = A^{-1}C$$
 where $C = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 6+34-28\\ -12+34-28\\ 6-17+35 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12\\ -6\\ 24 \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}$$

 $\therefore \qquad x = 2, \quad y = -1 \quad \text{and} \quad z = 4$