QB365-Question Bank Software

Class: XII 2020-21 Mathematics

Practice Question Paper 3 (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

1. This question paper contains two parts \mathbf{A} and \mathbf{B}. Each part is compulsory. Part A carries $\mathbf{2 4}$ marks and Part B Carries $\mathbf{5 6}$ marks
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part A and Part B have choices.

Part-A:

1. It consists of two sections- I and II
2. Section I comprises of 16 very short answer type questions.
3. Section II contains $\mathbf{2}$ case studies. Each case study comprise of 5 case-based MCQs. An examinee is to Attempt any 4 out of 5 MCQs.

Part -B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 question of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of $\mathbf{5}$ marks each.
5. Internal choice is provided in $\mathbf{3}$ questions of Section -III, $\mathbf{2}$ questions of Section- IV and $\mathbf{3}$ questions of Section-V. You have to attempt only one of the alternatives in all such questions.

Sr. No.	Part-A	Marks
	All questions are compulsory. In case of internal choices attempt any one.	Section I function is one-one or not.
1.	Consider $f: \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Check whether the fun	

	Let R be the relation in the set $\{1,2,3,4\}$ given by $R=$ $\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$ Is R symmetric and Transitive?	
2.	Is the function $f: N \rightarrow N$, given by $f(1)=f(2)=1$ and $f(x)=$ $x-1$ for every $x \geq 2$ is onto?	1
3.	An equivalence relation R in A divides it into equivalence classes A_{1}, A_{2}, A_{3}. What is the value of $A_{1} \cup A_{2} \cup A_{3}$ and $A_{1} \cap A_{2} \cap A_{3}$. Or Let $A\{1,2,3$,$\} The number of equivalence relations containing (1,2)$ is	1
4	If A is a matrix of order $m X n$ and B is a matrix such that $A B^{\prime}$ and $B^{\prime} A$ are defined. The order of B is \qquad	1
5	The elements of a 3×4 matrix are given by $a_{i j}=\frac{1}{2}\|-3 i+j\|$. Write the value of $a_{32}-a_{14}$.	1
6	If A and B are square matrix of order 3 and $\|A\|=5,\|B\|=3$, then the value of $\|3 A B\|$ is \qquad	1
7	Evaluate $\int x^{2} e^{x^{3}} d x$ Or Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$.	1
8	Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.	1
9	Write the order and degree of the differential equation $2 x^{2} \frac{d^{2} y}{d x}-3\left(\frac{d y}{d x}\right)^{2}+y=0$ Or What is the value of the constant of integration in the particular solution of the differential equation $\frac{d y}{d x}=\frac{2 x}{y^{2}} \quad \text { if } f(-2)=3$	1
10	Find the projection of $a=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k} \quad$ on $\quad b=\hat{\imath}+2 \hat{\jmath}+\hat{k}$	1

11	Find the area of a parallelogram whose two adjacent sides are $\hat{\jmath}+2 \hat{k}$ and $\hat{\imath}+2 \hat{\jmath}$.	1
12	For what value of ' k ', the matrix $\left(\begin{array}{cc}2 & 5 \\ k & 10\end{array}\right)$ is a singular matrix?	1
13	If a plane has the intercepts a, b, c and is a distance of ' p ' units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=$. \qquad fill in the blank.	1
14	Find the coordinates of the point where the line $\frac{x-5}{-2}=\frac{y-1}{3}=\frac{z-6}{-5}$ crosses the ZX- plane.	1
15	Given two independent events A and B such that $P(A)=0.3$ and $P(B)=0.6$. find $P(A$ and not $B)$.	1
16	Whether true or false. If A and B are events such that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, then $A \cap B=\emptyset$.	1
	SECTION II Both the case study questions are compulsory. Attempt any 4 sub parts from each question. Each question carries 1 mark.	
17	An open toy box with a square base is to be made out of a given quantity of metal sheet of area c^{2}. Based on the above information answer following. a) If x represents the side of square base and y represents the height of the toy box then the relation between the variables a) $66 x y=c^{2}$ b) $x^{3}=c^{2}$ c) $x^{2}+4 x y=c^{2}$ d) $2 x y+4 x^{2}=c^{2}$	4

QB365-Question Bank Software

	b) The volume of the toy box V expressed as a function x is a) $V=x y^{2}$ b) $V=\frac{c^{2} x-x^{3}}{4}$ c) $V=\frac{x^{3}-c^{2} x}{4}$ d) $V=\frac{x^{2}\left(c^{2} x-x^{2}\right)}{4}$ c) The maximum volume of the box is. a) $\frac{c^{2}}{6 \sqrt{3}}$ b) $\frac{6 c^{2}}{\sqrt{3}}$ c) $\frac{\sqrt{3} c^{2}}{6}$ d) $\frac{c^{\frac{6}{3}}}{6 \sqrt{3}}$ d) If the box were to be closed then the relation between x and y would be a) $2 x^{2}+4 x y=c^{2}$ b) $4 x^{2}+2 x y=c^{2}$ c) $6 x y=c^{2}$ d) $6 x^{2}=c^{2}$ e) If the box were to be closed then the volume of the box expressed as a function of x. a) $\frac{x^{2}\left(c^{2}-2 x^{2}\right)}{4}$ b) $V=\frac{c^{2} x-2 x^{3}}{4}$ c) $V=x^{3}$ d) $V=\frac{2 x^{3}-c^{2} x}{4}$	
18	By examining the Covid-19 test report of some laboratory, the probability that a person is diagnosed Covid-19 positive when he is actually suffering from it is 0.99 . The probability that the report incorrectly diagnosed a person to be Covid-19 positive on the basis of report is 0.001 . In a certain city 300 of 1000 persons suffer from Covid19. Based on the above information answer the following. i) The conditional probability that a person is diagnosed Covid19 positive given that he actually has Covid-19	4

QB365-Question Bank Software

	Part- B	
	Section III	
19	Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$	2
20	$\left(\begin{array}{lll} x & -5 & -1 \end{array}\right)\left(\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right)\left(\begin{array}{l} x \\ 4 \\ 1 \end{array}\right)=0$ Solve for ' x ' Or $2\left(\begin{array}{ll} 3 & 4 \\ 5 & x \end{array}\right)+\left(\begin{array}{ll} 1 & y \\ 0 & 1 \end{array}\right)=\left(\begin{array}{cc} 7 & 0 \\ 10 & 5 \end{array}\right)$ Find $(x-y)$.	2
21	Find K so that the function $f(x)=\left\{\begin{array}{ll}k x+1, & \text { if } x \leq \pi \\ \cos x, & \text { if, } x>\pi\end{array}\right\}$ Is continuous at $x=\pi$.	2
22	Find the slope of the normal to the curve $x=1-a \sin \theta, y=$ $b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.	2
23	Find $\int e^{x} \frac{\sin ^{4} x-\cos ^{4} x}{\sin x-\cos x} d x$ Or Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$	2
24	What is the area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0, x=2$.	2
25	Solve the differential equation $\frac{d y}{d x}=x^{3} \operatorname{cosec} y$, given that $f(0)=0$	2

QB365-Question Bank Software

26	Find the vector equation of a plane passing through $A(2,5,-3), B(-2,-3,5)$ and $c(5,3,-3)$.	2
27	Find the distance between lines $\begin{aligned} & \quad \begin{array}{l} \vec{r} \end{array} \quad \hat{\imath}+2 \hat{\jmath}-4 \hat{k}+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \\ & \vec{\rightarrow} \\ & \text { and } r \end{aligned}=3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}+\mu(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) . ~ \$$	2
28	The random variable x has a probability distribution $P(x)$ of the following form, where k is a number, $\mathrm{P}(\mathrm{X}=\mathrm{x})=\left\{\begin{array}{lr} k, & \text { if } x=0 \\ 2 k, & \text { if } x=1 \\ 3 k, & \text { if } x=2 \\ 0, & \text { other wise } \end{array}\right.$ Determine the value of $p(X \leq 2)$.	2
	Section IV All questions are compulsory. In case of internal choices attempt any one.	
29	Show that the relation R in the set $\mathrm{A}=\{x \in Z: 0 \leq x \leq 12\}$, given by $\mathrm{R}=\{(a, b:\|a-b\|)$ is a multiple of 4$\}$ Is an equivalence relation.	3
30	If $y=x^{a}+x^{\sin x}$, find $\frac{d y}{d x}$	3
31	If $\mathrm{y}=3 e^{2 x}+2 e^{3 x}$ Prove that $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$ Or $\begin{gathered} \text { If } x=a(\cos \theta+\theta \sin \theta) \\ y=a(\sin \theta-\theta \cos \theta) \end{gathered}$ Find $\frac{d^{2} y}{d x^{2}}$.	3

32	Find the intervals in which the function f given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is, (a) Strictly increasing (b) Strictly decreasing.	3
33	Find $\int \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$	3
34	Find the area of the ellipse $x^{2}+9 y^{2}=36$ using integration	3
35	Find the general solution of the differential equation $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$ Find the general solution of the differential equation $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$	3
	Section V All questions are compulsory. In case of internal choices, attempt any one.	
36	Using matrices solve the following system of equations. $\begin{gathered} x+2 y-3 z=-4 \\ 2 x+3 y+2 z=2 \\ 3 x-3 y-4 z=11 \end{gathered}$ Or Given $A=\left(\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right), B=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right)$ Find BA and use this to solve the system of equation. $y+2 z=7, x-y=3,2 x+3 y+4 z=17$	5
37	Find the foot of perpendicular from the point ($2,3,-8$) to the line	5

	$\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Also find the perpendicular distance from the given point to the line. Or Find the equation of the plane through the intersection of the planes $\vec{r} .(i+3 j)-6=0$ and $\vec{r} .(3 \hat{\imath}-\hat{\jmath}-4 \hat{k})=0$ whose perpendicular distance from the origin is unity.	
38	Maximize $\mathrm{Z}=x+y$ subject to the constraints $\begin{gathered} x+4 y \leq 8 \\ 2 x+3 y \leq 12 \\ 3 x+y \leq 9 \\ x \geq 0, y \geq 0 \end{gathered}$ Or The corner points of the feasible region determined by the system of linear equations are as share below: Answer each of the following	5

| i.Let $Z=x+2 y$ be the objective function. Find the maximum and
 minimum value of Z and also the corresponding points at which
 the maximum and minimum values occurs. | |
| :--- | :--- | :--- |
| ii.Let $Z=p x+q y$, where $p, q>0$ be the objective function. Find
 the condition on p and q so that the maximum Z
 occurs at $\mathrm{Q}\left(\frac{3}{2}, \frac{15}{4}\right), \mathrm{R}\left(\frac{7}{2}, \frac{3}{4}\right)$. Also mention the number of optimal
 solutions in this case. | |

