Class: XII 2020-21 Mathematics

Practice Question Paper 3 (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B Carries **56** marks
- Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part A and Part B have choices.

Part-A:

- 1. It consists of two sections- I and II
- 2. Section I comprises of 16 very short answer type questions.
- 3. Section II contains 2 case studies. Each case study comprise of 5 case-based MCQs. An examinee is to Attempt **any 4 out of 5 MCQs.**

Part –B:

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 question of **3 marks** each.
- 4. Section V comprises of 3 questions of 5 marks each.
- Internal choice is provided in 3 questions of Section –III, 2 questions of Section- IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

Sr.	Part-A	Marks
No.		
	Section I	
	All questions are compulsory. In case of internal choices attempt any	
	one.	
1.	Consider f: $R_+ \rightarrow [4, \infty]$ given by $f(x) = x^2 + 4$. Check whether the function is one-one or not.	1

	Or	
	Let R be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$ Is R symmetric and	
	Transitive?	
2.	Is the function $f: N \to N$, given by $f(1) = f(2) = 1$ and $f(x) = x - 1$ for every $x \ge 2$ is onto?	1
3.	An equivalence relation R in A divides it into equivalence classes A_1, A_2, A_3 . What is the value of $A_1 \cup A_2 \cup A_3$ and $A_1 \cap A_2 \cap A_3$. Or	1
	Let A {1, 2, 3, } The number of equivalence relations containing (1, 2) is	
4	If A is a matrix of order m X n and B is a matrix such that AB' and B'A are defined. The order of B is	1
5	The elements of a 3x4 matrix are given by $a_{ij} = \frac{1}{2} -3i+j $. Write the value of $a_{32} - a_{14}$.	1
6	If A and B are square matrix of order 3 and $ A = 5$, $ B = 3$, then the value of $ 3AB $ is	1
7	Evaluate $\int x^2 e^{x^3} dx$ Or Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{tanx}}{\sqrt{cotx} + \sqrt{tanx}} dx$.	1
8	Find the area of the region bounded by the curve $y = x^2$ and the line $y = 4$.	1
9	Write the order and degree of the differential equation $2x^{2}\frac{d^{2}y}{dx} - 3\left(\frac{dy}{dx}\right)^{2} + y = 0$ Or What is the value of the constant of integration in the particular solution of the differential equation $\frac{dy}{dx} = \frac{2x}{y^{2}} if f(-2) = 3$	1
10	Find the projection of $a = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on $b = \hat{i} + 2\hat{j} + \hat{k}$	1

11	Find the area of a parallelogram whose two adjacent sides are $\hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j}$.	1
12	For what value of 'k', the matrix $\begin{pmatrix} 2 & 5 \\ k & 10 \end{pmatrix}$ is a singular matrix?	1
13	If a plane has the intercepts a, b, c and is a distance of 'p' units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \dots$ fill in the blank.	1
14	Find the coordinates of the point where the line $\frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5}$ crosses the ZX- plane.	1
15	Given two independent events A and B such that P(A)=0.3 and P(B)=0.6. find P(A and not B).	1
16	Whether true or false. If A and B are events such that $P(A B)=P(B A)$, then $A \cap B = \emptyset$.	1
	SECTION II	
	Both the case study questions are compulsory.	
	Attempt any 4 sub parts from each question. Each	
	question carries 1 mark.	
17	An open toy box with a square base is to be made out of a given quantity of metal sheet of area c^2 .	4
	Based on the above information answer following. a) If x represents the side of square base and y represents the height of the toy box then the relation between the variables a) $66xy = c^2$ b) $x^3 = c^2$ c) $x^2 + 4xy = c^2$ d) $2xy + 4x^2 = c^2$	

	Part- B	
	Section III	
19	Find the value of $tan^{-1}(1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)$	2
20	Solve for 'x' $(x -5 -1) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 1 \end{pmatrix} = 0$ Or $2 \begin{pmatrix} 3 & 4 \\ 5 & x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 10 & 5 \end{pmatrix}$	2
	Find $(x - y)$.	
21	Find K so that the function $f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ cosx, & \text{if } x > \pi \end{cases}$ Is continuous at $x = \pi$.	2
22	Find the slope of the normal to the curve $x = 1 - asin\theta$, $y = bcos^2\theta$ at $\theta = \frac{\pi}{2}$.	2
23	Find $\int e^{x} \frac{\sin^{4}x - \cos^{4}x}{\sin x - \cos x} dx$ Or Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{7}x dx$	2
24	What is the area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$, $x = 2$.	2
25	Solve the differential equation $\frac{dy}{dx} = x^{3} cosec \ y, \text{ given that } f(0) = 0$	2

26Find the vector equation of a plane passing through A(2, 5, -3), B(-2, -3, 5) and c(5, 3, -3).227Find the distance between lines \rightarrow $r = l + 2j - 4k + \lambda(2l + 3j + 6k)$ \rightarrow and $r = 3l + 3j - 5k + \mu(2l + 3j + 6k)$.228The random variable x has a probability distribution P(x) of the following form, where k is a number, $2k$, $if x = 0$ $2k$, $if x = 1$ $3k$, $if x = 2$ 0 , other wise2Determine the value of $p(X \le 2)$.Section IVAll questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b : a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y = a(sn\theta - \theta cos\theta)$ 3	A(2, 5, -3), B(-2, -3, 5) and c(5, 3, -3). Prind the distance between lines $\begin{array}{c} \rightarrow \\ r = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) \\ \rightarrow \\ \text{and } r = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}). \end{array}$	2
$ \begin{array}{c c} \rightarrow \\ r = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) \\ \rightarrow \\ \text{and } r = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}). \end{array} \end{array} $ 28 The random variable x has a probability distribution P(x) of the following form, where k is a number, $ \begin{cases} k, & \text{if } x = 0 \\ 2k, & \text{if } x = 2 \\ 0, & \text{other wise} \end{cases} $ Determine the value of $p(X \leq 2)$. $ \begin{array}{c} \textbf{Section IV} \\ \textbf{All questions are compulsory. In case of internal choices attempt any one. \end{cases} $ 29 Show that the relation R in the set $ A = \{x \in Z : 0 \leq x \leq 12\}, \text{ given by} \\ R = \{(a, b : a - b) \text{ is a multiple of } 4\} \\ \text{ Is an equivalence relation.} \end{aligned} $ 30 $ \begin{array}{c} \text{If } y = x^a + x^{sinx}, \text{ find } \frac{dy}{dx} \\ \text{Prove that } \frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0 \\ \text{Or} \\ \text{if } x = a(\cos\theta + \theta \sin\theta) \end{array} $	$ \overrightarrow{r} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) $ $ \overrightarrow{r} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) $ and $r = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}). $ 28 The random variable x has a probability distribution P(x) of the following form, where k is a number, following form, where k is a number, $r_{i} = \begin{pmatrix} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{pmatrix} $	
$r = i + 2j - 4\hat{k} + \lambda(2i + 3j + 6\hat{k})$ $\rightarrow and r = 3i + 3j - 5\hat{k} + \mu(2i + 3j + 6\hat{k}).$ 28 The random variable x has a probability distribution P(x) of the following form, where k is a number, $P(X=x) = \begin{cases} x, & if x = 0 \\ 2k, & if x = 1 \\ 3k, & if x = 2 \\ 0. & other wise \end{cases}$ Determine the value of $p(X \le 2)$. Section IV All questions are compulsory. In case of internal choices attempt any one. 29 Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}, \text{ given by}$ $R = \{(a, b: a - b) \text{ is a multiple of } 4\}$ Is an equivalence relation. 30 If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y = 3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$	$r = \hat{\imath} + 2\hat{\jmath} - 4\hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ \rightarrow and $r = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k} + \mu(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}).$ 28 The random variable x has a probability distribution P(x) of the following form, where k is a number, following form, where k is a number, $P(X=x) = \begin{cases} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{cases}$	2
28The random variable x has a probability distribution P(x) of the following form, where k is a number, $x, if x = 0$ $2k, if x = 1$ $3k, if x = 2$ $0. other wise2Determine the value of p(X \le 2).Section IVAll questions are compulsory. In case of internalchoices attempt any one.29Show that the relation R in the setA = \{x \in Z : 0 \le x \le 12\}, given byR = \{(a, b : a - b) \text{ is a multiple of } 4\}Is an equivalence relation.330If y = x^a + x^{sinx}, find \frac{dy}{dx}331If y = 3e^{2x} + 2e^{3x}Prove that \frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 03OrIf x = a(\cos\theta + \theta \sin\theta)3$	28 The random variable x has a probability distribution P(x) of the following form, where k is a number, $P(X=x) = \begin{cases} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{cases}$	2
28The random variable x has a probability distribution P(x) of the following form, where k is a number, $x, if x = 0$ $2k, if x = 1$ $3k, if x = 2$ $0. other wise2Determine the value of p(X \le 2).Section IVAll questions are compulsory. In case of internalchoices attempt any one.29Show that the relation R in the setA = \{x \in Z : 0 \le x \le 12\}, given byR = \{(a, b : a - b) \text{ is a multiple of } 4\}Is an equivalence relation.330If y = x^a + x^{sinx}, find \frac{dy}{dx}331If y = 3e^{2x} + 2e^{3x}Prove that \frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 03OrIf x = a(\cos\theta + \theta \sin\theta)3$	28 The random variable x has a probability distribution P(x) of the following form, where k is a number, $P(X=x) = \begin{cases} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{cases}$	2
following form, where k is a number, $ \begin{cases} k, & if x = 0 \\ 2k, & if x = 1 \\ 3k, & if x = 2 \\ 0, & other wise \end{cases} $ Determine the value of $p(X \le 2)$. Section IV All questions are compulsory. In case of internal choices attempt any one. 29 Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b : a - b) \text{ is a multiple of } 4\}$ Is an equivalence relation. 30 If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y = x^a + x^{sinx}$, find $\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ 33	following form, where k is a number, $P(X=x) = \begin{cases} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{cases}$	2
$P(X=x) = \begin{cases} k, & \text{if } x = 0\\ 2k, & \text{if } x = 1\\ 3k, & \text{if } x = 2\\ 0. & \text{other wise} \end{cases}$ Determine the value of $p(X \le 2)$. $Section IV$ All questions are compulsory. In case of internal choices attempt any one. 29 Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}, \text{ given by}$ $R = \{(a, b : a - b) \text{ is a multiple of } 4\}$ Is an equivalence relation. 30 If $y = x^a + x^{\sin x}$, find $\frac{dy}{dx}$ 3 31 If $y = 3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta\sin\theta)$	$P(X=x) = \begin{cases} k, & if \ x = 0 \\ 2k, & if \ x = 1 \\ 3k, & if \ x = 2 \\ 0. & other \ wise \end{cases}$	
Determine the value of $p(X \le 2)$.Section IVAll questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z : 0 \le x \le 12\}$, given by $R=\{(a, b : a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
Determine the value of $p(X \le 2)$.Section IVAll questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z : 0 \le x \le 12\}$, given by $R=\{(a, b : a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
Determine the value of $p(X \le 2)$.Section IVAll questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z : 0 \le x \le 12\}$, given by $R=\{(a, b : a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
Section IVAll questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z: 0 \le x \le 12\}$, given by $R=\{(a, b: a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
All questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z: 0 \le x \le 12\}$, given by $R=\{(a, b: a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3	Determine the value of $p(X \le 2)$.	
All questions are compulsory. In case of internal choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z: 0 \le x \le 12\}$, given by $R=\{(a, b: a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3	Section IV	
choices attempt any one.29Show that the relation R in the set3 $A=\{x \in Z: 0 \le x \le 12\}$, given by $R=\{(a, b: a - b) is a multiple of 4\}$ Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
29Show that the relation R in the set3 $A=\{x \in Z: 0 \le x \le 12\}$, given by $R=\{(a, b: a - b) is a multiple of 4\}$ 330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$ 3		
A={ $x \in Z : 0 \le x \le 12$ }, given by R={ $(a, b : a - b)$ is a multiple of 4} Is an equivalence relation.30If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 31If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$ 3Or If $x = a(cos\theta + \theta sin\theta)$		
R={(a, b: a - b) is a multiple of 4}Is an equivalence relation.30If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 31If $y=3e^{2x}+2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ OrIf $x = a(cos\theta + \theta sin\theta)$	29 Show that the relation R in the set	3
Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ 3Or If $x = a(\cos\theta + \theta \sin\theta)$ 3	$A=\{x \in Z: 0 \le x \le 12\}, \text{ given by}$	
Is an equivalence relation.330If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 331If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ 3Or If $x = a(\cos\theta + \theta \sin\theta)$ 3	$\mathbf{D}\left(\left(x,h\right),\left[x,h\right]\right)$ is a multiple of A	
30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ 3	$R = \{(a, b : a - b) \text{ is a multiple of } 4\}$	
31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ 33	Is an equivalence relation	
31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ 33	is an equivalence relation.	
Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$		3
Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$		3
Or If $x = a(\cos\theta + \theta \sin\theta)$		3
If $x = a(\cos\theta + \theta \sin\theta)$	30 If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$	
If $x = a(\cos\theta + \theta \sin\theta)$	30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$	
	30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = 0$	
	30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = 0$ Or	
-2	30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$	
Find $\frac{d^2y}{dx^2}$.	30 If $y = x^{a} + x^{sinx}$, find $\frac{dy}{dx}$ 31 If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^{2}y}{dx^{2}} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ $y = a(\sin\theta - \theta \cos\theta)$	

i.	Let $Z = x + 2y$ be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum values occurs.	
ii.	Let $Z = px + qy$, where $p, q > 0$ be the objective function. Find the condition on p and q so that the maximum Z occurs at $Q\left(\frac{3}{2}, \frac{15}{4}\right)$, $R\left(\frac{7}{2}, \frac{3}{4}\right)$. Also mention the number of optimal solutions in this case.	

