Class: XII Session: 2020-21

Subject: Mathematics

Practice Question Paper 5 (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B Carries **56** marks _____
- 2. **Part-A** has Objective Type Questions and **Part-B** has Descriptive Type Questions.
- 3. Both Part A and Part B have choices.

Part-A:

- 1. It consists of two sections- I and II
- 2. Section I comprises of 16 very short answer type questions.
- **3.** Section II contains **2** case studies. Each case study comprise of 4 case-based MCQs.

Part –B:

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 question of **3 marks** each.
- 4. Section **V** comprises of 3 questions of **5 marks** each.
- Internal choice is provided in 3 questions of Section –III, 2 questions of Section- IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions

Sr.	Part-A	Marks
No.		
	Section I	
	All questions are compulsory. In case of internal choices attempt	
	any one.	
1.	If A is a square matrix of 3 order and A =5, then find the value of 2A	1
	OR	
	If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A'$, what will be the relation between x and y.	
2.	An equivalence relation R in A is divided into equivalence classes A1, A2, A3. What is the value of A1UA2UA3 and A1NA2NA3.	1
3.	If matrix A = $\begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric, find the value of a and b. OR	1
	If $A = \begin{bmatrix} \gamma & -\alpha \end{bmatrix}$ is such that $A^2 = 1$. Find the realtion between α , β , γ .	
4.	What is the property of relation if each element of A is related to itself?	1
5.	Check if relation R in the set R of real numbers defined as R = {(a,b) : a <b} is="" symmetric.<="" td=""><td>1</td></b}>	1
6.	Suppose P and Q are two different matrices of order 3×n and n×p, then what will be the order of P×Q?	1
7.	Evaluate $\int x^2 e^{x^3} dx$	1
	OR	
	Find the value of $\int_0^{\pi/2} \cos x e^{\sin x} dx$	
8.	A card is picked at random from a pack of 52 cards. Given that picked card is queen, find the probability to be spade.	1
9.	A die is thrown once. Let A be the event that number obtained is greater than 3. Let B be the event that number obtained is less than 5. Find the value of P(AUB).	1

10.	Find the vector equation of line which passes through point (3,4,5)	1
	and is parallel to vector $2\hat{i}+2\hat{j}-3\hat{k}$.	
	OR	
	Find the distance of a point P (a,b,c) from x axis.	
11.	Find the order and degree of differential equation	1
	$x^{2} \left[\frac{d^{2} y}{dx^{2}} \right] = \left[1 + \left(\frac{d y}{dx} \right)^{2} \right]^{4}$	
12.	A line makes an angle α , β , γ with x axis, y axis and z axis. Find the value of cos 2α + cos 2β + cos 2γ .	1
13.	If line $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-5}{-1}$ is parallel to plane px+3y-z+5=0. Find the value of p.	1
14.	Evaluate $\int_{-\pi/2}^{\pi/2} x^2 \sin x dx$	1
	OR	
	$\int_{0}^{8} \sqrt{10-x} dx$	
	$\int_2 \sqrt{x} + \sqrt{10 - x} dx$	
15	Find the area bounded by survey $x = x^2$ the varie and lines $x = 1$ and	1
15.	Find the area bounded by curve $y = x^2$, the x axis and lines $x = -1$ and $x = 1$	1
	OR	
	Find the area region bounded by curve $x = y^2$, y axis, line y=3 and y=4.	
16.	For what value of n will the following line be a homogenous	1
	differential equations	
	$\frac{dy}{dx} = \frac{x^3 - y^n}{2}$	
	$dx x^2y + xy^2$	
	OB	
	Find the integrating factor of differential equation	
	dy	
	$\frac{dx}{dx}(x\log x) + y = 2\log x$	
	SECTION – II	
	Case study based MCQ's (There are 2 quetions of case studies with 5 MCQ's each, all are compulsory)	
17.	A rectangle of perimeter 36 cm is rolled out to form cylinder of	
	volume as large as possible. Based on this information, answer the	
	following:	
	У	
	x	

	(i) l r	f x and y represent the length and breadth of rectangular egion, then relation between variable is:	1
	a) X= 18-y	
	k) Y=18-x	
	C	z) 2y=18-2x	
	C	l) 2x=36-y	
	(ii) \	/olume of formed cylinder V expressed as function of x is:	1
	ā) $V(x) = \pi x^3 (x - 18)$	
	k	b) $V(x) = \pi (18x^2 - 18)$	
	C	$V(x) = \pi (18x^2 - x^3)$	
	C	1) $V(x) = \pi(18x^3 - x^2)$	
	(iii) T	The dimensions of rectangle for maximum volume should be:	1
	a	n) X=12, y=6	
	k	b) X=10, y=8	
	C	x) X=8, y=2	
	C	I) X=11, y=7	
	(iv) N	Maximum volume of cylinder:	1
	a) 846π <i>cm</i> ³	
	k	b) $864\pi \ cm^3$	
	C	c) $684\pi cm^3$	
	C	I) $866\pi \ cm^3$	
		12.1	1
	(v) T	The value of $\frac{d^2v}{dx^2}$ at maximum point is	1
	(a)-36 π	
	(b)-63 π	
	(c) 36π	
	(d) 63 π	
18.	There a	re 3 urns containing 2 white and 3 black balls, 3 white and 2	
	black ba	alls and 4 white and 1 black balls respectively. There is an	
	equal p	robability of each urn being chosen. A ball is drawn at random	
	from th	e chosen urn and it is found to be white. There are 3 urns U1,	
	U_2, U_3		
	$E_1 - an$	event where ball is chosen from U_1	
	E ₂ -ane	event where ball is chosen from U_2	
	E ₃ -ane	event where ball is chosen from U_3	
	E- an ev	ient where white dall is drawn	
	Based o	n this information, answer the following:	

	i) What is the value of $P(U_1)$?	1
	a) 2/3	
	b) $3/3$	
	c) $1/3$	
	ii) Calculate $P(F_{-})$	1
	a) $2/3$	1
	b) 1/3	
	c) 2/5	
	d) 4/5	
	iii) The value of $P(E/E_1)$ and $P(E/E_3)$ will be?	1
	a) 4/5, 2/5	
	b) 2/5, 3/5	
	c) 3/5, 4/5	
	d) 2/5, 4/5	
	iv) Find the probability that ball drawn was from second urn?	1
	a) 1/3	
	D) 4/5	
	d) 3/5	
	x) What is the value of $P(E_2) \cdot P(E/E_2)$?	1
	PART B	
	SECTION III	
19.	Express $tan^{-1}\left(\frac{cosx}{1-sinx}\right):\frac{-3\pi}{2} < x < \frac{\pi}{2}$ in simplest form	2
	r 2 2 01	
20.	Find a matrix A such that 2A-3B+5C=0 where B= $\begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix}$	2
	And $C = \begin{bmatrix} 2 & 0 & -2 \end{bmatrix}$	
	And $C = \begin{bmatrix} 7 & 1 & 6 \end{bmatrix}$	
	UR Solve for x and y	
	[2] $[3]$ $[-8]$	
	$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 11 \end{bmatrix} = 0$	
21.	If function f is defined as:	2
	$f(x) = f(x) = \int \frac{x^2 - 9}{x - 2}, x \neq 3$ is continuous at $x = 2$. Find k	
	$\int (x) - \int (x) - \int x^{-3} x = 3$ is continuous at x=3. Find K	
22.	Find the equation of tangent and normal to the curve	2
	$16x^2 + 9y^2 = 145$ at (2,3)	

23.	Evaluate $\int \frac{\cos 2x + 2\sin^2 x}{\sin^2 x} dx$	2
	OB	
	$\int_{a}^{a} \frac{dx}{dx} = \frac{\pi}{a}$ Find the value of a	
24.	Find the area bounded by a parabola $y^2 = x$ and straight line $2y=x$	2
25.	Find the particular solution of the diffrential equation	2
	$\frac{dy}{dx} + 2y \ tanx = sinx$ at y=0 and x= $\pi/3$	
26.	Using vector show P(2,-1,3), Q(3,-5,1) and R(-1,11,9) are collinear	2
27.	Find the vector equation of plane that passes through the point \vec{r}	2
	$(1,0,0)$ and contains the line $r-\lambda j$	
28.	Given E. F are events such that P(E)=0.8 . P(F)=0.7 . P(EOF)=0.6. Find	
	$P(\bar{E}/\bar{F})$	
	OR	2
	If $P(A \cap B) = \frac{7}{10}$, $P(B) = \frac{17}{20}$ find $P\left(\frac{A}{B}\right)$	2
	NBA.	
	SECTION IV	
	7 questions of 3 marks each	
29.	Show that function f in A = R - {2/3} defined as function $f(x) = \frac{4x+3}{6x-4}$.	3
	is one-one and onto.	
30	Prove that curve $y = y^2$ and $yy = k$ cut at right angles if	
50.	$8k^2 = 1$	
	OR	3
	Differentiate $\tan^{-1} \sqrt{\frac{1-\cos x}{1-\cos x}} = -\frac{\pi}{-\frac{\pi}{2}} < x < \frac{\pi}{-\frac{\pi}{2}}$	
24	$\int \frac{1+\cos x}{\sqrt{1+\cos x}} + \frac{4}{\sqrt{4}}$	2
31.	Using integration, find the area of region in the first quadrant enclosed by x axis, the line y=x and circle $x^2 \pm y^2 = 32$	5
	Enclosed by x axis, the line $y-x$ and circle $x^2 + y^2 = 32$	
32.	Find the interval in which the function $f(x) = \frac{x^4}{4} - x^3 - 5x^2 + 24x + 2$	3
	is:	
	a) Strictly increasing	
	b) Strictly decreasing	

33.	Solve $\int \frac{2\cos x+1}{(1-\sin x)(1+\sin^2 x)} dx$	3
	OR If $\int dx = -2 \log \left[1 + \alpha^2 \right] + 2 \log \left[\alpha + 2 \right] + C$ Find the	
	If $\int \frac{1}{(x+2)(x^2+1)} = a\log[1 + x^2] + blan = x + \log[x + 2] + C$ Find the values of a and b	
34.	Solve the differential equation x dy - y dx = $\sqrt{x^2 + y^2}$ dx	3
35.	If $\log(x^2 + y^2) = 2tan^{-1}\left(\frac{y}{x}\right)$, show that $\frac{dy}{dx} = \frac{x+y}{x-y}$	3
	SECTION V	
	3 questions of 5 marks each	
36	Evaluate the product AB where $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$.	
	Hence, solve the system of linear equation:	
	x-y=3 2x+3y+4z=17	
	Y+2z=7	
	OP Str	5
	Solve the following system of equations	
	$\begin{bmatrix} 3 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix} \begin{bmatrix} 2y \\ z \end{bmatrix}$	
	$\begin{bmatrix} 2 & 1 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 3y \end{bmatrix}$	
27		
57	Maximize Z = 15x + 10y	
	Subject to	
	$3x + 2y \leq 80$ $2x + 3y \leq 70$	
	$\begin{array}{c} 2x + 3y \leq 10 \\ x, y \geq 0 \end{array}$	5
	OR Find the coordinates of foot of perpendicular drawn from origin to	
	the plane 3y+4z-6=0	
38	Find the Cartesian equation of plane passing through points	5
	passing through (4,3,1) and parallel to the plane obtained above.	

