QB365-Question Bank Software

Class: XII Session: 2020-21

Subject: Mathematics

Practice Question Paper 5
(Theory)

Time Allowed: 3 Hours

Maximum Marks: $\mathbf{8 0}$

General Instructions:

1. This question paper contains two parts \mathbf{A} and \mathbf{B}. Each part is compulsory. Part A carries $\mathbf{2 4}$ marks and Part B Carries 56 marks
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part A and Part B have choices.

Part-A:

1. It consists of two sections-I and II
2. Section I comprises of 16 very short answer type questions.
3. Section II contains $\mathbf{2}$ case studies. Each case study comprise of 4 case-based MCQs.

Part -B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 question of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of $\mathbf{5}$ marks each.
5. Internal choice is provided in $\mathbf{3}$ questions of Section -III, $\mathbf{2}$ questions of Section- IV and $\mathbf{3}$ questions of Section-V. You have to attempt only one of the alternatives in all such questions

Sr. No.	Part-A	Marks
	Section I All questions are compulsory. In case of internal choices attempt any one.	
1.	If A is a square matrix of 3 order and $\|A\|=5$, then find the value of $\|2 A\|$ OR If $\mathrm{A}=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $\mathrm{A}=\mathrm{A}^{\prime}$, what will be the relation between x and y .	1
2.	An equivalence relation R in A is divided into equivalence classes $A 1$, $A 2, A 3$. What is the value of A1UA2UA3 and A1חA2nA3.	1
3.	If matrix $A=\left[\begin{array}{ccc}0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0\end{array}\right]$ is skew symmetric, find the value of a and b. OR If $A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $A^{2}=1$. Find the realtion between α, β, γ.	1
4.	What is the property of relation if each element of A is related to itself?	1
5.	Check if relation R in the set R of real númbers defined as $R=\{(a, b)$: $a<b\}$ is symmetric.	1
6.	Suppose P and Q are two different matrices of order $3 \times n$ and $n \times p$, then what will be the order of $P \times Q$?	1
7.	Evaluate $\int x^{2} e^{x^{3}} d x$ OR Find the value of $\int_{0}^{\pi / 2} \cos x e^{\sin x} d x$	1
8.	A card is picked at random from a pack of 52 cards. Given that picked card is queen, find the probability to be spade.	1
9.	A die is thrown once. Let A be the event that number obtained is greater than 3 . Let B be the event that number obtained is less than 5. Find the value of $P(A \cup B)$.	1

10.	Find the vector equation of line which passes through point $(3,4,5)$ and is parallel to vector $2 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$. OR Find the distance of a point $P(a, b, c)$ from x axis.	1
11.	Find the order and degree of differential equation $x^{2}\left[\frac{d^{2} y}{d x^{2}}\right]=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{4}$	1
12.	A line makes an angle α, β, γ with x axis, y axis and z axis. Find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.	1
13.	If line $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-5}{-1}$ is parallel to plane $p x+3 y-z+5=0$. Find the value of p.	1
14.	Evaluate $\int_{-\pi / 2}^{\pi / 2} x^{2} \sin x d x$ $\int_{2}^{8} \frac{\text { OR }}{\sqrt{10-x}} \sqrt{x}+\sqrt{10-x} d x$	1
15.	Find the area bounded by curve $\mathrm{y}=x^{2}$, the x axis and lines $\mathrm{x}=-1$ and $x=1$. OR Find the area region bounded by curve $x=y^{2}$, y axis, line $y=3$ and $y=4$.	1
16.	For what value of n will the following line be a homogenous differential equations $\frac{d y}{d x}=\frac{x^{3}-y^{n}}{x^{2} y+x y^{2}}$ OR Find the integrating factor of differential equation $\frac{d y}{d x}(x \log x)+y=2 \log x$	1
	SECTION - II Case study based MCQ's (There are 2 quetions of case studies with 5 MCQ's each, all are compulsory)	
17.	A rectangle of perimeter 36 cm is rolled out to form cylinder of volume as large as possible. Based on this information, answer the following:	

	(i) If x and y represent the length and breadth of rectangular region, then relation between variable is: a) $X=18-y$ b) $Y=18-x$ c) $2 y=18-2 x$ d) $2 x=36-y$	1
	(ii) Volume of formed cylinder V expressed as function of x is: a) $V(x)=\pi x^{3}(x-18)$ b) $V(x)=\pi\left(18 x^{2}-18\right)$ c) $\mathrm{V}(\mathrm{x})=\pi\left(18 x^{2}-x^{3}\right.$ d) $\mathrm{V}(\mathrm{x})=\pi\left(18 x^{3}-x^{2}\right)$	1
	(iii) The dimensions of rectangle for maximum volume should be: a) $x=12, y=6$ b) $X=10, y=8$ c) $x=8, y=2$ d) $X=11, y=7$	1
	(iv) Maximum volume of cylinder: a) $846 \pi \mathrm{~cm}^{3}$ b) $864 \pi \mathrm{~cm}^{3}$ c) $684 \pi \mathrm{~cm}^{3}$ d) $866 \pi \mathrm{~cm}^{3}$	1
	(v) The value of $\frac{d^{2} v}{d x^{2}}$ at maximum point is (a) -36π (b) -63π (c) 36π (d) 63π	1
18.	There are 3 urns containing 2 white and 3 black balls, 3 white and 2 black balls and 4 white and 1 black balls respectively. There is an equal probability of each urn being chosen. A ball is drawn at random from the chosen urn and it is found to be white. There are 3 urns U1, U_{2}, U_{3} E_{1} - an event where ball is chosen from U_{1} E_{2} - an event where ball is chosen from U_{2} E_{3} - an event where ball is chosen from U_{3} E - an event where white ball is drawn Based on this information, answer the following:	

			What is the value of $\mathrm{P}\left(U_{1}\right)$? a) $2 / 3$ b) $3 / 3$ c) $1 / 3$ d) $3 / 2$	1
			Calculate $\mathrm{P}\left(E_{2}\right)$ a) $2 / 3$ b) $1 / 3$ c) $2 / 5$ d) $4 / 5$	1
			The value of $\mathrm{P}\left(\mathrm{E} / E_{1}\right)$ and $\mathrm{P}\left(\mathrm{E} / E_{3}\right)$ will be? a) $4 / 5,2 / 5$ b) $2 / 5,3 / 5$ c) $3 / 5,4 / 5$ d) $2 / 5,4 / 5$	1
			Find the probability that ball drawn was from second urn? a) $1 / 3$ b) $4 / 5$ c) $3 / 15$ d) $3 / 5$	1
			What is the value of $\mathrm{P}\left(E_{2}\right) \cdot \mathrm{P}\left(E / E_{2}\right)$?	1
			PART B SECTION III	
19.			Express $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right): \frac{-3 \pi}{2}<x<\frac{\pi}{2}$ in simplest form	2
20.			Find a matrix A such that $2 A-3 B+5 C=0$ where $B=\left[\begin{array}{ccc}-2 & 2 & 0 \\ 3 & 1 & 4\end{array}\right]$ And C $=\left[\begin{array}{ccc}2 & 0 & -2 \\ 7 & 1 & 6\end{array}\right]$ OR Solve for x and y $x\left[\begin{array}{l} 2 \\ 1 \end{array}\right]+y\left[\begin{array}{l} 3 \\ 5 \end{array}\right]+\left[\begin{array}{c} -8 \\ 11 \end{array}\right]=0$	2
21.			If function f is defined as: $\mathrm{f}(\mathrm{x})=f(x)=\left\{\begin{array}{r}\frac{x^{2}-9}{x-3}, x \neq 3 \\ k,\end{array}\right.$ is continuous at $\mathrm{x}=3$. Find k	2
22.			the equation of tangent and normal to the curve $+9 y^{2}=145$ at $(2,3)$	2

23.	Evaluate $\int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x$ OR $\int_{0}^{a} \frac{d x}{1+4 x^{2}}=\frac{\pi}{8}$ Find the value of a	2
24.	Find the area bounded by a parabola $y^{2}=x$ and straight line $2 \mathrm{y}=\mathrm{x}$	2
25.	Find the particular solution of the diffrential equation $\frac{d y}{d x}+2 y \tan x=\sin x$ at $\mathrm{y}=0$ and $\mathrm{x}=\pi / 3$	2
26.	Using vector show $\mathrm{P}(2,-1,3), \mathrm{Q}(3,-5,1)$ and $\mathrm{R}(-1,11,9)$ are collinear	2
27.	Find the vector equation of plane that passes through the point $(1,0,0)$ and contains the line $\vec{r}-\lambda \hat{\jmath}$	2
28.	Given E, F are events such that $P(E)=0.8, P(F)=0.7, P(E \cap F)=0.6$. Find $\mathrm{P}(\bar{E} / \bar{F})$ OR If $\mathrm{P}(\mathrm{A} \cap B)=\frac{7}{10}, \mathrm{P}(\mathrm{B})=\frac{17}{20}$ find $\mathrm{P}\left(\frac{A}{B}\right)$	2
	SECTION IV 7 questions of 3 marks each	
29.	Show that function f in $A=R-\{2 / 3\}$ defined as function $f(x)=\frac{4 x+3}{6 x-4}$. is one-one and onto.	3
30.	Prove that curve $x=y^{2}$ and $x y=k$ cut at right angles if $8 k^{2}=1$ OR Differentiate $\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}, \quad-\frac{\pi}{4}<x<\frac{\pi}{4}$	3
31.	Using integration, find the area of region in the first quadrant enclosed by x axis, the line $\mathrm{y}=\mathrm{x}$ and circle $x^{2}+y^{2}=32$	3
32.	Find the interval in which the function $\mathrm{f}(\mathrm{x})=\frac{x^{4}}{4}-x^{3}-5 x^{2}+24 x+2$ is: a) Strictly increasing b) Strictly decreasing	3

QB365-Question Bank Software

33.	Solve $\int \frac{2 \cos x+1}{(1-\sin x)\left(1+\sin ^{2} x\right)} d x$ OR If $\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=\operatorname{alog}\left\|1+x^{2}\right\|+\operatorname{btan}^{-1} x+\frac{1}{5} \log \|x+2\|+\mathrm{C}$ Find the values of a and b	3
34.	Solve the differential equation $\mathrm{xdy}-\mathrm{ydx}=\sqrt{x^{2}+y^{2}} \mathrm{dx}$	3
35.	If $\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1}\left(\frac{y}{x}\right)$, show that $\frac{d y}{d x}=\frac{x+y}{x-y}$	3
	SECTION V 3 questions of 5 marks each	
36	Evaluate the product $A B$ where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right] B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$. Hence, solve the system of linear equation: $\begin{aligned} & x-y=3 \\ & 2 x+3 y+4 z=17 \\ & Y+2 z=7 \end{aligned}$ Solve the following system of equations $\left[\begin{array}{lll} 3 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 0 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 8 \\ 1 \\ 4 \end{array}\right]+\left[\begin{array}{c} 2 y \\ z \\ 3 y \end{array}\right]$	5
37	$\text { Maximize } Z=15 x+10 y$ Subject to $\begin{array}{r} 3 x+2 y \leq 80 \\ 2 x+3 y \leq 70 \\ x, y \geq 0 \end{array}$ OR Find the coordinates of foot of perpendicular drawn from origin to the plane $3 y+4 z-6=0$	5
38	Find the Cartesian equation of plane passing through points $(2,2,-1),(3,4,2),(7,0,6)$. Also find the vector equation of a plane passing through $(4,3,1)$ and parallel to the plane obtained above.	5

QB365-Question Bank Software

