1. Real Numbers

Exercise 1.1

1 A. Question

Using Euclid's division algorithm, find the HCF of
156 and 504

Answer

Given numbers are 156 and 504
Here, 504 > 156
So, we divide 504 by 156
By using Euclid's division lemma, we get
$504=156 \times 3+36$
Here, $\mathrm{r}=36 \neq 0$.
On taking 156 as dividend and 36 as the divisor and we apply Euclid's division lemma, we get
$156=36 \times 4+12$
Here, r = $12 \neq 0$
So, on taking 36 as dividend and 12 as the divisor and again we apply Euclid's division lemma, we get
$36=12 \times 3+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 12 , the HCF of 156 and 504 is $\mathbf{1 2}$.

1 B. Question

Using Euclid's division algorithm, find the HCF of
135 and 225

Answer

Given numbers are 135 and 225

Here, 225 > 135
So, we divide 225 by 135
By using Euclid's division lemma, we get
$225=135 \times 1+90$
Here, $\mathrm{r}=90 \neq 0$.
On taking 135 as dividend and 90 as the divisor and we apply Euclid's division lemma, we get
$135=90 \times 1+45$
Here, $r=45 \neq 0$
So, on taking 90 as dividend and 45 as the divisor and again we apply Euclid's division lemma, we get
$90=45 \times 2+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 45 , the HCF of $\mathbf{1 3 5}$ and 225 is 45.

1 C. Question

Using Euclid's division algorithm, find the HCF of
455 and 42

Answer

Given numbers are 455 and 42
Here, 455 > 42
So, we divide 455 by 42
By using Euclid's division lemma, we get
$455=42 \times 10+35$
Here, $\mathrm{r}=35 \neq 0$.
On taking 42 as dividend and 35 as the divisor and we apply Euclid's division lemma, we get
$42=35 \times 1+7$
Here, r = $7 \neq 0$

So, on taking 35 as dividend and 7 as the divisor and again we apply Euclid's division lemma, we get
$35=7 \times 5+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 7 , the HCF of 455 and 42 is 7.

1 D. Question

Using Euclid's division algorithm, find the HCF of
8840 and 23120

Answer

Given numbers are 8840 and 23120
Here, 23120 > 8840
So, we divide 23120 by 8840
By using Euclid's division lemma, we get
$23120=8840 \times 2+5440$
Here, $\mathrm{r}=5440 \neq 0$.
On taking 8840 as dividend and 5440 as the divisor and we apply Euclid's division lemma, we get
$8840=5440 \times 1+3400$
Here, r $=3400 \neq 0$
On taking 5440 as dividend and 3400 as the divisor and again we apply Euclid's division lemma, we get
$5440=3400 \times 1+2040$
Here, r = $2040 \neq 0$.
On taking 3400 as dividend and 2040 as the divisor and we apply Euclid's division lemma, we get
$3400=2040 \times 1+1360$
Here, $r=1360 \neq 0$
So, on taking 2040 as dividend and 1360 as the divisor and again we apply Euclid's division lemma, we get
$2040=1360 \times 1+680$

Here, $r=680 \neq 0$
So, on taking 1360 as dividend and 680 as the divisor and again we apply Euclid's division lemma, we get
$1360=680 \times 2+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 680, the HCF of 8840 and 23120 is $\mathbf{6 8 0}$.

1 E. Question

Using Euclid's division algorithm, find the HCF of
4052 and 12576

Answer

Given numbers are 4052 and 12576
Here, $12576>4052$
So, we divide 12576 by 4052
By using Euclid's division lemma, we get
$12576=4052 \times 3+420$
Here, $r=420 \neq 0$.
On taking 4052 as dividend and 420 as the divisor and we apply Euclid's division lemma, we get
$4052=420 \times 9+272$
Here, $r=272 \neq 0$
On taking 420 as dividend and 272 as the divisor and again we apply Euclid's division lemma, we get
$420=272 \times 1+148$
Here, $r=148 \neq 0$
On taking 272 as dividend and 148 as the divisor and again we apply Euclid's division lemma, we get
$272=148 \times 1+124$
Here, r = $124 \neq 0$.
On taking 148 as dividend and 124 as the divisor and we apply Euclid's division lemma, we get
$148=124 \times 1+24$
Here, $r=24 \neq 0$
So, on taking 124 as dividend and 24 as the divisor and again we apply Euclid's division lemma, we get
$124=24 \times 5+4$
Here, $r=4 \neq 0$
So, on taking 24 as dividend and 4 as the divisor and again we apply
Euclid's division lemma, we get
$24=4 \times 6+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 4, the HCF of 4052 and 12576 is 4.

1 F. Question

Using Euclid's division algorithm, find the HCF of
3318 and 4661
Answer
Given numbers are 3318 and 4661
Here, 4661 > 3318
So, we divide 4661 by 3318
By using Euclid's division lemma, we get
$4661=3318 \times 1+1343$
Here, $\mathrm{r}=1343 \neq 0$.
On taking 3318 as dividend and 1343 as the divisor and we apply Euclid's division lemma, we get
$3318=1343 \times 2+632$
Here, $r=632 \neq 0$
So, on taking 1343 as dividend and 632 as the divisor and again we apply Euclid's division lemma, we get
$1343=632 \times 2+79$
Here, $r=79 \neq 0$

So, on taking 632 as dividend and 79 as the divisor and again we apply Euclid's division lemma, we get
$632=79 \times 8+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 79, the HCF of 3318 and 4661 is 79.

1 G. Question

Using Euclid's division algorithm, find the HCF of
250, 175 and 425

Answer

Given numbers are 250, 175 and 425
$\therefore 425>250>175$
On applying Euclid's division lemma for 425 and 250, we get
$425=250 \times 1+175$
Here, $\mathrm{r}=175 \neq 0$.
So, again applying Euclid's division lemma with new dividend 250 and new divisor 175, we get
$250=175 \times 1+75$
Here, $r=75 \neq 0$
So, on taking 175 as dividend and 75 as the divisor and again we apply Euclid's division lemma, we get
$175=75 \times 2+25$
Here, $\mathrm{r}=25 \neq 0$.
So, again applying Euclid's division lemma with new dividend 75 and new divisor 25, we get
$75=25 \times 3+0$
Here, $\mathrm{r}=0$ and divisor is 25 .
So, HCF of 425 and 225 is 25 .
Now, applying Euclid's division lemma for 175 and 25, we get
$175=25 \times 7+0$

Here, remainder $=0$
So, HCF of 250, 175 and 425 is 25.

1 H. Question

Using Euclid's division algorithm, find the HCF of
4407, 2938 and 1469

Answer

Given numbers are 4407, 2938 and 1469
$\therefore 4407>2938>1469$
On applying Euclid's division lemma for 4407 and 2938, we get
$4407=2938 \times 1+1469$
Here, $\mathrm{r}=1469 \neq 0$.
So, again applying Euclid's division lemma with new dividend 2938 and new divisor 1469, we get
$2938=1469 \times 2+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this stage is 1469 , the HCF of 4407 and 2938 is 1469.

Now, applying Euclid's division lemma for 1469 and 1469, we get
$1469=1469 \times 1+0$
Here, remainder $=0$
So, HCF of 4407, 2938 and 1469 is 1469.

2. Question

Show that every positive even integer is of the form 2 q and that every positive odd integer is of the form $2 \mathrm{q}+1$, where q is some integer.

Answer

Let a and b be any two positive integers, such that $\mathrm{a}>\mathrm{b}$.
Then, $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b} \ldots$ (i) [by Euclid's division lemma]
On putting b = 2 in Eq. (i), we get
$\mathrm{a}=2 \mathrm{q}+\mathrm{r}, 0 \leq \mathrm{r}<2$
$\Rightarrow r=0$ or 1
When $r=0$, then from Eq. (ii), $a=2 q$, which is divisible by 2
When $r=1$, then from Eq. (ii), $a=2 q+1$, which is not divisible by 2 .
Thus, every positive integer is either of the form $2 q$ or $2 q+1$.
That means every positive integer is either even or odd. So, if a is a positive even integer, then a is of the form $2 q$ and if a, is a positive odd integer, then a is of the form $2 q+1$.

3. Question

Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.

Answer

Let a be any positive odd integer. We apply the division algorithm with a and $\mathrm{b}=4$.

Since $0 \leq r<4$, the possible remainders are $0,1,2$ and 3 .
i.e. a can be $4 q$, or $4 q+1$, or $4 q+2$, or $4 q+3$, where q is the quotient.

As we know a is odd, a can't be 4 q or $4 \mathrm{q}+2$ because they both are divisible by 2 .

Therefore, any positive odd integer is of the form $4 q+1$ or $4 q+3$.

4. Question

There are 250 and 425 liters of milk in two containers. What is the maximum capacity of the container which can measure completely the quantity of milk in the two containers?

Answer

Given the capacities of the two containers are 250 L and 425 L .
Here, 425 > 250
Now, we divide 425 by 250.
We used Euclid's division lemma.
$425=250 \times 1+175$
Here, remainder $\mathrm{r}=175 \neq 0$
So, the new dividend is 250 and the new divisor is 175, again we apply Euclid division algorithm.
$250=175 \times 1+75$
Here, remainder $r=75 \neq 0$
On taking the new dividend is 175 and the new divisor is 75 , we apply Euclid division algorithm.
$175=75 \times 2+25$
Here, remainder r $=25 \neq 0$
On taking new dividend is 75 and the new divisor is 25, again we apply Euclid division algorithm.
$75=25 \times 3+0$
Here, remainder is zero and divisor is 25 .
So, the HCF of 425 and 250 is 25 .
Hence, the maximum capacity of the required container is $\mathbf{2 5} \mathbf{L}$.

5. Question

A rectangular surface has length 4661 meters and breadth 3318 meters. On this area, square tiles are to be put. Find the maximum length of such tiles.

Answer

Given length and breadth are 4661 m and 3318 m respectively.
Here, 4661 > 3318
So, we divide 4661 by 3318
By using Euclid's division lemma, we get
$4661=3318 \times 1+1343$
Here, $\mathrm{r}=1343 \neq 0$.
On taking 3318 as dividend and 1343 as the divisor and we apply Euclid's division lemma, we get
$3318=1343 \times 2+632$
Here, $\mathrm{r}=632 \neq 0$
So, on taking 1343 as dividend and 632 as the divisor and again we apply Euclid's division lemma, we get

$$
1343=632 \times 2+79
$$

Here, $\mathrm{r}=79 \neq 0$
So, on taking 632 as dividend and 79 as the divisor and again we apply Euclid's division lemma, we get
$632=79 \times 8+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 79 , the HCF of 3318 and 4661 is 79.

Hence, the maximum length of such tiles is $\mathbf{7 9}$ meters.

6. Question

Find the least number of square tiles which can the floor of a rectangular shape having length and breadth 16 meters 58 centimeters and 8 meters 32 .

Answer

Firstly, we find the length of the largest tile so for that we have to find the HCF of 1658 and 832.

Here, 1658 > 832
So, we divide 1658 by 832
By using Euclid's division lemma, we get
$1658=832 \times 1+826$
Here, $r=826 \neq 0$.
On taking 832 as dividend and 826 as the divisor and we apply Euclid's division lemma, we get
$832=826 \times 1+6$
Here, $\mathrm{r}=6 \neq 0$
So, on taking 826 as dividend and 6 as the divisor and again we apply Euclid's division lemma, we get
$826=6 \times 137+4$
Here, $\mathrm{r}=4 \neq 0$
So, on taking 6 as dividend and 4 as the divisor and again we apply Euclid's division lemma, we get
$6=4 \times 1+2$
Here, $\mathrm{r}=2 \neq 0$

So, on taking 4 as dividend and 2 as the divisor and again we apply Euclid's division lemma, we get
$4=2 \times 2+0$
The remainder has now become 0 , so our procedure stops. Since the divisor at this last stage is 79 , the HCF of 1658 and 832 is 2 .

So, the length of the largest tile is 2 cm
Area of each tile $=2 \times 2=4 \mathrm{~cm}^{2}$
The required number of tiles $=\frac{\text { Area of floor }}{\text { Area of tiles }}$
$=\frac{1658 \times 832}{2 \times 2}$
$=344864$
Least number of square tiles are required are 344864

Exercise 1.2

1 A. Question

Express each of the following numbers as a product of its prime factors:
4320

Answer

Given number is 4320
Factorization of 4320 is

2	4320
2	2160
2	1080
2	540
2	270
3	135
3	45
3	15
5	5
	1

Hence, $4320=2^{5} \times 3^{3} \times 5$ (Product of its prime factors)

1 B. Question

Express each of the following numbers as a product of its prime factors:

Answer

Given number is 7560
Factorization of 7560 is

2	7560
2	3780
2	1890
3	945
3	315
3	105
5	35
7	7
	1

Hence, $7560=2^{3} \times 3^{3} \times 5 \times 7$ (Product of its prime factors)

1 C. Question

Express each of the following numbers as a product of its prime factors:
140
Answer
Given number is 140
Factorization of 140 is

2	140
2	70
5	35
7	7
	1

Hence, $140=2^{2} \times 5 \times 7$ (Product of its prime factors)

1 D. Question

Express each of the following numbers as a product of its prime factors:
5005

Answer

Given number is 5005
Factorization of 5005 is

5	5005
7	1001
11	143
13	13
	1

Hence, $5005=5 \times 7 \times 11 \times 13$ (Product of its prime factors)

1 E. Question

Express each of the following numbers as a product of its prime factors:
32760

Answer

Given number is 32760
Factorization of 32760 is

2	32760
2	16380
2	8190
3	4095
3	1365
5	455
7	91
13	13
	1

Hence, $32760=2^{3} \times 3^{2} \times 5 \times 7 \times 13$ (Product of its prime factors)

1 F. Question

Express each of the following numbers as a product of its prime factors:
156

Answer

Given number is 156
Factorization of 156 is

2	156
2	78
3	39
13	13
	1

Hence, $156=2^{2} \times 3 \times 13$ (Product of its prime factors)

1 G. Question

Express each of the following numbers as a product of its prime factors:
729

Answer

Given number is 729
Factorization of 729 is

3	729
3	243
3	81
3	27
3	9
3	3
	1

Hence, $729=3 \times 3 \times 3 \times 3 \times 3 \times 3=3^{6}$ (Product of its prime factors)

2. Question

Find the highest power of 5 in 23750.

Answer

To find the highest power of 5 in 23750 , we have to factorize 23570

2	23750
5	11875
5	2375
5	475
5	95
19	19
	1

Hence, $23750=2 \times 5^{4} \times 19$
So, the highest power of 5 in 23750 is 4.

3. Question

Find the highest power of 2 in 1440.

Answer

Given number is 1440

Factorization of 1440 is

2	1440
2	720
2	360
2	180
2	90
3	45
3	15
5	5
	1

Factors of $1440=2^{5} \times 3^{2} \times 5$
So, the highest power of 2 is 5 .
4. Question

If $6370=2^{\mathrm{m}} \cdot 5^{\mathrm{n}} \cdot 7^{\mathrm{k}} \cdot 13^{\mathrm{p}}$, then find $\mathrm{m}+\mathrm{n}+\mathrm{k}+\mathrm{p}$.

Answer

We have to factorize the 6370 to find the value of m, n, k and p
Factorization of 6370 is

2	6370
5	3185
7	637
7	91
13	13
	1

$6370=2 \times 5 \times 7^{2} \times 13$
On Comparing, we get
$6370=2^{\mathrm{m}} \cdot 5^{\mathrm{n}} \cdot 7^{\mathrm{k}} \cdot 13^{\mathrm{p}}=2^{1} \times 5^{1} \times 7^{2} \times 13^{1}$
$\mathrm{m}=\mathbf{1}$
$\mathrm{n}=\mathbf{1}$
$k=2$
$p=1$
So, $m+n+k+p=5$

5 A. Question

Which of the following is a pair of co-primes?
$(32,62)$

Answer

Given numbers are 32 and 62
For pairs to be co-primes there should be no common factor except 1
Factorization of 32 and 62 are

2	32
2	16
2	8
2	4
2	2
	1

Factors of $32=(2) \times 2 \times 2 \times 2 \times 2=2^{5}$

2	62
31	31
	1

Factors of $62=(2) \times 31$
Here, we can see that 2 is the common factor. So, $(32,62)$ is not co-prime.

5 B. Question

Which of the following is a pair of co-primes?
$(18,25)$

Answer

Given numbers are 18 and 25
For pairs to be co-primes there should be no common factor except 1
Factorization of 18 and 25 are

2	18
3	9
3	3
	1

5	25
5	5
	1

Factors of $62=5 \times 5$
Therefore, there is no common factor. So, $(18,25)$ is co-prime.

5 C. Question

Which of the following is a pair of co-primes?
$(31,93)$
Answer
Given numbers are 31 and 93
For pairs to be co-primes there should be no common factor except 1
Factorization of 31 and 93 are

3	93
31	31
2	1

Factors of $93=31 \times 3$

31	31
	1

Factors of $31=31 \times 1$
Here, we can see that 31 is the common factor. So, $(31,93)$ is not co-prime.

6 A. Question

Write down the missing numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{y}$ in the following factor tree :

Answer

Here, $\mathrm{a}=2520 ; \mathrm{b}=2 ; \mathrm{c}=315 ; \mathrm{d}=3 ; \mathrm{x}=3 ; \mathrm{y}=5$

6 B. Question

Write down the missing numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{y}$ in the following factor tree :

Answer

Here, $\mathrm{a}=15015 ; \mathrm{b}=5005 ; \mathrm{c}=5 ; \mathrm{d}=143 ; \mathrm{x}=13$

6 C. Question

Write down the missing numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{y}$ in the following factor tree :

Answer

Here, $\mathrm{a}=18380 ; \mathrm{b}=2 ; \mathrm{c}=1365 ; \mathrm{d}=3 ; \mathrm{x}=5 ; \mathrm{y}=13$

6 D. Question

Write down the missing numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{y}$ in the following factor tree :

Answer

Here, $\mathrm{a}=3 ; \mathrm{b}=147407 ; \mathrm{c}=11339 ; \mathrm{d}=667 ; \mathrm{x}=29$

7 A. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

96 and 404

Answer

Given numbers are 96 and 404.
The prime factorization of 96 and 404 gives:

2	96
2	48
2	24
2	12
2	6
3	3
	1

$$
96=2^{5} \times 3=2 \times 2 \times 2 \times 2 \times 2 \times 3
$$

2	404
2	202
101	101
	1

$$
404=2^{2} \times 101=2 \times 2 \times 101
$$

Here, 2^{2} is the smallest power of the common factor 2 .
Therefore, the H.C.F of these two integers is $2 \times 2=4$
$2^{5} \times 3^{1} \times 101^{1}$ are the greatest powers of the prime factors 2,3 and 101 respectively involved in the given numbers.

Now, L.C.M of 96 and 404 is $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 101=9696$

7 B. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

6 and 20

Answer

Given numbers are 6 and 20
The prime factorization of 6 and 20 gives:

2	6
3	3
	1

$6=2 \times 3$

2	20
2	10
5	5
	1

$20=(2) \times 2 \times 5$

Here, 2^{1} is the smallest power of the common factor 2 .
Therefore, the H.C.F of these two integers = 2
$2^{2} \times 3^{1} \times 5^{1}$ are the greatest powers of the prime factors 2,3 and 5 respectively involved in the given numbers.

Now, L.C.M of 6 and $20=2 \times 2 \times 3 \times 5=\mathbf{6 0}$

7 C. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

26 and 91

Answer

Given numbers are 26 and 91.
The prime factorization of 26 and 91 gives:

2	26
13	13
	1

$26=2 \times 13$

7	91
13	13
	1

$91=7 \times 13$
Here, 13^{1} is the smallest power of the common factor 13.
Therefore, the H.C.F of these two integers = $\mathbf{1 3}$
$2^{1} \times 7^{1} \times 13^{1}$ are the greatest powers of the prime factors 2,7 and 13 respectively involved in the given numbers.

Now, L.C.M of 6 and 21 is $2 \times 7 \times 13=\mathbf{1 8 2}$

7 D. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

87 and 145

Answer

Given numbers are 87 and 145.
The prime factorization of 87 and 145 gives:

3	87
29	29
	1

$87=3 \times 29$

5	145
29	29
	1

$145=5 \times 29$
Here, 29^{1} is the smallest power of the common factor 29.
Therefore, the H.C.F of these two integers = 29
$3^{1} \times 5^{1} \times 29^{1}$ are the greatest powers of the prime factors 3,5 and 29 respectively involved in the given numbers.

Now, L.C.M of 87 and $145=3 \times 5 \times 29=435$

7 E. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

1485 and 4356

Answer

Given numbers are 1485 and 4356.
The prime factorization of 1485 and 4356 gives:

3	1485
3	495
3	165
5	55
11	11
	1

$1485=3 \times 3 \times 3 \times 5 \times 11$

2	4356
2	2178
3	1089
3	363
11	121
11	11
	1
$4356=2 \times 2 \times 3 \times 3 \times 11 \times 11$	

Here, $3^{2} \times 11$ is the smallest power of the common factors 3 and 11 .
Therefore, the H.C.F of these two integers $=3 \times 3 \times 11=\mathbf{9 9}$
$2^{2} \times 3^{3} \times 5^{1} \times 11^{2}$ are the greatest powers of the prime factors 2,3 and 7 respectively involved in the given numbers.

Now, L.C.M of 1485 and $4356=2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 11 \times 11=\mathbf{6 5 4 3 0}$

7 F. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

1095 and 1168

Answer

Given numbers are 1095 and 1168.
The prime factorization of 1095 and 1168 gives:

3	1095
5	365
73	73
	1

$1485=3 \times 5 \times 73$

2	1168
2	584
2	292
2	146
73	73
	1

$4356=2 \times 2 \times 2 \times 2 \times 73$
Here, 73^{1} is the smallest power of the common factor 73.

Therefore, the H.C.F of these two integers = 73
$2^{4} \times 3^{1} \times 5^{1} \times 73^{1}$ are the greatest powers of the prime factors $2,3,5$ and 73 respectively involved in the given numbers.

Now, L.C.M of 1485 and $4356=2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 73=\mathbf{1 7 5 2 0}$

7 G. Question

Find the LCM and HCF of the following integers by applying the prime factorization method:

6 and 21

Answer

Given numbers are 6 and 21.
The prime factorization of 6 and 21 gives:

2	6
3	3
	1

$6=2 \times(3)$

3	21
7	7
	1

$21=(3) \times 7$
Here, 3^{1} is the smallest power of the common factor 3 .
Therefore, the H.C.F of these two integers = $\mathbf{3}$
$2^{1} \times 3^{1} \times 7^{1}$ are the greatest powers of the prime factors 2,3 and 7
respectively involved in the given numbers.
Now, L.C.M of 6 and 21 is $2 \times 3 \times 7=42$

8 A. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

96 and 404

Answer

Given numbers are 96 and 404

The prime factorization of 96 and 404 gives:
$96=2^{5} \times 3$ and $404=2^{2} \times 101$
Therefore, the H.C.F of these two integers $=2^{2}=\mathbf{4}$
Now, the L.C.M of 96 and $404=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 101=\mathbf{9 6 9 6}$
Now, we have to verify
L.C.M (a, b) \times H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
L.H.S $=$ L.C.M \times H.C. $F=9696 \times 4=38784$
R.H.S $=$ Product of two numbers $=96 \times 404=38784$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

8 B. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

852 and 1491

Answer

Given numbers are 852 and 1491
The prime factorization of 852 and 1491 gives:
$852=2 \times 2 \times 3 \times 71$ and $1491=3 \times 7 \times 71$
Therefore, the H.C.F of these two integers = $3 \times 71=\mathbf{2 1 3}$
Now, the L.C.M of 96 and $404=2 \times 2 \times 3 \times 7 \times 71=\mathbf{5 9 6 4}$
Now, we have to verify

L.C.M $(a, b) \times$ H.C.F $(a, b)=$ Product of two numbers $(a \times b)$

L.H.S $=$ L.C.M \times H.C.F $=5964 \times 213=1270332$
R.H.S $=$ Product of two numbers $=852 \times 1491=1270332$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

8 C. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

777 and 1147

Answer

Given numbers are 777 and 1147
The prime factorization of 777 and 1147 gives:
$777=3 \times 7 \times 37$ and $1147=31 \times 37$
Therefore, the H.C.F of these two integers = $\mathbf{3 7}$
Now, the L.C.M of 96 and $404=3 \times 7 \times 31 \times 37=\mathbf{2 4 0 8 7}$
Now, we have to verify
L.C.M (a, b) \times H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
L.H.S $=$ L.C.M \times H.C.F $=24087 \times 37=891219$
R.H.S $=$ Product of two numbers $=777 \times 1147=891219$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

8 D. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

36 and 64

Answer

Given numbers are 36 and 64
The prime factorization of 36 and 64 gives:
$36=2 \times 2 \times 3 \times 3$ and $64=2^{6}$
Therefore, the H.C.F of these two integers $=2 \times 2=\mathbf{4}$
Now, the L.C.M of 36 and $64=3 \times 3 \times 2^{6}=576$
Now, we have to verify
L.C.M (a, b) \times H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
L.H.S $=$ L.C.M \times H.C.F $=576 \times 4=2304$
R.H.S $=$ Product of two numbers $=36 \times 64=2304$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

8 E. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

32 and 80

Answer

Given numbers are 32 and 80
The prime factorization of 32 and 80 gives:
$32=2^{5}$ and $80=2^{4} \times 5$
Therefore, the H.C.F of these two integers $=2^{4}=\mathbf{1 6}$
Now, the L.C.M of 32 and $80=5 \times 2^{5}=\mathbf{1 6 0}$
Now, we have to verify
L.C.M (a, b) \times H.C.F $(\mathbf{a}, \mathrm{b})=$ Product of two numbers $(\mathbf{a} \times \mathrm{b})$
L.H.S $=$ L.C.M \times H.C.F $=160 \times 16=2560$
R.H.S $=$ Product of two numbers $=32 \times 80=2560$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

8 F. Question

Find the LCM and HCF of the following pair of integers and verify that LCM X HCF = Product of two numbers :

902 and 1517

Answer

Given numbers are 902 and 1517
The prime factorization of 902 and 1517 gives:
$902=2 \times 11 \times 41$ and $1517=37 \times 41$
Therefore, the H.C.F of these two integers = 41
Now, the L.C.M of 902 and $1517=2 \times$
$11 \times 37 \times 41=33374$
Now, we have to verify

L.C.M (a, b) \times H.C.F ($a, b)=$ Product of two numbers $(a \times b)$

L.H.S $=$ L.C.M \times H.C.F $=33374 \times 41=1368334$
R.H.S $=$ Product of two numbers $=902 \times 1517=1368334$

Hence, L.H.S = R.H.S
So, the product of two numbers is equal to the product of their HCF and LCM.

9 A. Question

Find LCM and HCF of the following integers by using prime factorization method:

6, 72 and 120

Answer

Given numbers are 6, 72 and 120
Factorization of 6, 72 and 120

2	6
3	3
	1

2	72
2	36
2	18
3	9
3	3
	1

2	120
2	60
2	30
3	15
5	5
	1

$\left.\begin{array}{ll}6 & = \\ 72 & =2 \times 2 \times(2) \times\left(\begin{array}{l}3 \\ 2 \\ 2 \\ 120 \\ 2\end{array}\right) \times 2 \times 2 \times 2^{1} \times 3^{1} \\ 3 \\ 3\end{array}\right) \times 5=2^{3} \times 3^{2}, 2^{3} \times 3^{1} \times 5^{1}$
Here, $2^{1} \times 3^{1}$ are the smallest powers of the common factors 2 and 3 , respectively.

So, $\operatorname{HCF}(6,72,120)=2 \times 3=6$
$2^{3} \times 3^{2} \times 5^{1}$ are the greatest powers of the prime factors 2,3 and 5 respectively involved in the given three numbers.

LCM of these three integers $=2 \times 2 \times 2 \times 3 \times 3 \times 5=\mathbf{3 6 0}$
9 B. Question
Find LCM and HCF of the following integers by using prime factorization method:

8,9 , and 25

Answer

Given numbers are 8, 9 and 25
Factorization of 8, 9 and 25

$\left.$| 2 | 8 |
| :--- | :--- |
| 2 | 4 |
| 2 | 2 |
| | 1 |\quad| 3 | 9 |
| :--- | :--- |
| 3 | 3 |
| | 1 |\quad| 5 |
| :--- |
| 5 | \right\rvert\, | 25 |
| :--- |

$8=2 \times 2 \times 2 \times 1=2^{3} \times 1$
$9=3 \times 3 \times 1=3^{2} \times 1$
$25=5 \times 5 \times 1=5^{2} \times 1$
Here, 1^{1} is the smallest power of the common factor 1 .
So, $\operatorname{HCF}(8,9,25)=1$
$2^{3} \times 3^{2} \times 5^{2}$ are the greatest powers of the prime factors 2,3 and 5 respectively involved in the given three numbers .

LCM of these three integers $=2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5=\mathbf{1 8 0 0}$

9 C. Question

Find LCM and HCF of the following integers by using prime factorization method:

12,15 , and 21

Answer

Given numbers are 12, 15 and 21
Factorization of 12, 15 and 21

2	12
2	6
3	3
	1

3	15
5	5
	1

3	21
7	7
	1

$$
\begin{array}{ll}
12=2 \times 2 \times(3) & =2^{2} \times 3^{1} \\
15=3 \times 5 & =3^{1} \times 5^{1} \\
21=3 \times 7 & =3^{1} \times 7^{1}
\end{array}
$$

Here, 3^{1} is the smallest power of the common factor 3.
So, HCF $(12,15,21)=3$
$2^{2} \times 3^{1} \times 5^{1} \times 7^{1}$ are the greatest powers of the prime factors $2,3,5$ and 7 respectively involved in the given three numbers .

LCM of these three integers $=2 \times 2 \times 3 \times 5 \times 7=\mathbf{4 2 0}$

9 D. Question

Find LCM and HCF of the following integers by using prime factorization method:

36,45 , and 72

Answer

Given numbers are 36,45 and 72
Factorization of 36,45 and 72

2	36
2	18
3	9
3	3
	1

3	45
3	15
5	5
	1

2	72
2	36
2	18
3	9
3	3
	1

$$
\begin{array}{ll}
36=2 \times 2 \times 3 \times 3 & =2^{2} \times 3^{2} \\
45=3 \times 3 \times 5 & =3^{2} \times 5^{1} \\
72=2 \times 2 \times 2 \times 3 \times 3 & =2^{3} \times 3^{2}
\end{array}
$$

Here, 3^{2} is the smallest power of the common factor 3 .
So, HCF $(36,45,72)=3 \times 3=9$
$2^{3} \times 3^{2} \times 5^{1}$ are the greatest powers of the prime factors 2,3 and 5 respectively involved in the given three numbers.

LCM of these three integers $=2 \times 2 \times 2 \times 3 \times 3 \times 5=\mathbf{3 6 0}$

9 E. Question

Find LCM and HCF of the following integers by using prime factorization method:

42, 63 and 140

Answer

Given numbers are 42, 63 and 140
Factorization of 42, 63 and 140

2	42	3	63	2	140
3	21	3	21	2	70
7	7	7	7	5	35
	1		1	7	7
					1
$42=2 \times 3 \times 7=2^{1} \times 3^{1} \times 7^{1}$					
$63=3 \times 3 \times 7$ (7) $3^{2} \times 7^{1}$					
$140=2 \times 2 \times 5 \times 7=2^{2} \times 5^{1} \times 7^{1}$					

Here, 7^{1} is the smallest power of the common factor 7.
So, HCF $(42,63,140)=7$
$2^{2} \times 3^{2} \times 5^{1} \times 7^{1}$ are the greatest powers of the prime factors $2,3,5$ and 7 respectively involved in the given three numbers.

LCM of these three integers $=2 \times 2 \times 3 \times 3 \times 5 \times 7=\mathbf{1 2 6 0}$

9 F. Question

Find LCM and HCF of the following integers by using prime factorization method:

48, 72 and 108

Answer

Given numbers are 48, 72 and 108
Factorization of 48, 72 and 108

2	48
2	24
2	12
2	6
3	3
	1

2	72
2	36
2	18
3	9
3	3
	1

2	108
2	54
3	27
3	9
3	3
	1

$48=2 \times 2 \times 2 \times 2 \times 3=2^{4} \times 3$
$72=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$
$108=2 \times 3 \times 3=2^{2} \times 3^{3}$

Here, $2^{2} \times 3^{1}$ are the smallest powers of the common factors 2 and 3 respectively.

So, $\operatorname{HCF}(48,72,108)=2 \times 2 \times 3=12$
$2^{4} \times 3^{3}$ are the greatest powers of the prime factors 2 and 3 respectively involved in the given three numbers.

LCM of these three integers $=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3=432$

10 A. Question

If $\operatorname{HCF}(96,404)$ and 4 , then, find $\operatorname{LCM}(96,404)$

Answer

Given: $\operatorname{HCF}(96,404)=4$
To Find: LCM $(96,404)$
We use the formula
L.C.M $(a, b) \times$ H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
$\operatorname{LCM}(96,404) \times \operatorname{HCF}(96,404)=96 \times 404$
$\Rightarrow \operatorname{LCM}(96,404) \times 4=96 \times 404[\because \operatorname{HCF}(96,404)=4]$
$\Rightarrow \operatorname{LCM}(96,404)=\frac{96 \times 404}{4}$
\Rightarrow LCM $(96,404)=9696$

10 B. Question

If LCM $(72,126)=504$, find $\operatorname{HCF}(72,126)$

Answer

Given: LCM $(72,126)=504$
To Find: $\operatorname{HCF}(72,126)$
We use the formula
L.C.M (a,b) \times H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
$\operatorname{LCM}(72,126) \times \operatorname{HCF}(72,126)=72 \times 126$
$\Rightarrow 504 \times \operatorname{HCF}(72,126)=72 \times 126[\because \operatorname{LCM}(72,126)=504]$
$\Rightarrow \operatorname{HCF}(72,126)=\frac{72 \times 126}{504}$
$\Rightarrow \operatorname{HCF}(72,126)=18$

10 C. Question

If $\operatorname{HCF}(18,504)=18$, find $\operatorname{LCM}(18,504)$

Answer

Given: $\operatorname{HCF}(18,504)=18$
To Find: LCM $(18,504)$
We use the formula
L.C.M $(a, b) \times$ H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
$\operatorname{LCM}(18,504) \times \operatorname{HCF}(18,504)=18 \times 504$
$\Rightarrow \operatorname{LCM}(18,504) \times 18=18 \times 504[\because \operatorname{HCF}(18,504)=18]$
$\Rightarrow \operatorname{LCM}(18,504)=\frac{18 \times 504}{18}$
\Rightarrow LCM (18, 504) $\mathbf{=} 504$
10 D. Question
If $\operatorname{LCM}(96,168)=672$, find $\operatorname{HCF}(96,168)$

Answer

Given: $\operatorname{LCM}(96,168)=672$
To Find: $\operatorname{HCF}(96,168)$
We use the formula
L.C.M $(a, b) \times$ H.C.F $(a, b)=$ Product of two numbers $(a \times b)$
$\operatorname{LCM}(96,168) \times \operatorname{HCF}(96,168)=96 \times 168$
$\Rightarrow 672 \times \operatorname{HCF}(96,168)=96 \times 168[\because \operatorname{LCM}(96,168)=672]$
$\Rightarrow \operatorname{HCF}(96,168)=\frac{96 \times 168}{672}$
$\Rightarrow \operatorname{HCF}(96,168)=24$
10 E. Question
If $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$

Answer

Given: $\operatorname{HCF}(306,657)=9$
To Find: LCM $(306,657)$
We use the formula
L.C.M (\mathbf{a}, \mathbf{b}) \times H.C.F $(\mathbf{a}, \mathbf{b})=$ Product of two numbers ($\mathbf{a} \times \mathbf{b}$)

LCM $(306,657) \times \operatorname{HCF}(306,657)=306 \times 657$
$\Rightarrow \operatorname{LCM}(306,657) \times 9=306 \times 657[\because \operatorname{HCF}(306,657)=9]$
$\Rightarrow \operatorname{LCM}(306,657)=\frac{306 \times 657}{9}$
\Rightarrow LCM $(306,657)=22338$
10 F. Question
If $\operatorname{HCF}(36,64)=4$, find $\operatorname{LCM}(36,64)$

Answer

Given: $\operatorname{HCF}(36,64)=4$
To Find: LCM $(36,64)$
We use the formula
L.C.M (a,b) \times H.C.F (\mathbf{a}, \mathbf{b}) $=$ Product of two numbers ($\mathbf{a \times b}$)
$\operatorname{LCM}(36,64) \times \operatorname{HCF}(36,64)=36 \times 64$
$\Rightarrow \operatorname{LCM}(36,64) \times 4=36 \times 64[\because \operatorname{HCF}(36,64)=4]$
$\Rightarrow \operatorname{LCM}(36,64)=\frac{36 \times 64}{4}$
$\Rightarrow \operatorname{LCM}(36,64)=576$

11 A. Question

Examine whether $(15)^{\mathrm{n}}$ can end with the digit 0 for any $\mathrm{n} \in \mathrm{N}$.

Answer

If $(15)^{\mathrm{n}}$ end with the digit 0 , then the number should be divisible by 2 and 5 .
As $2 \times 5=10$
\Rightarrow This means the prime factorization of 15^{n} should contain prime factors 2 and 5.

But $(15)^{\mathrm{n}}=(3 \times 5)^{\mathrm{n}}$ and it does not have the prime factor 2 but have 3 and 5 . $\because, 2$ is not present in the prime factorization, there is no natural number nor which 15^{n} ends with digit zero.

So, 15^{n} cannot end with digit zero.

11 B. Question

Examine whether $(24)^{n}$ can end with the digit 5 for any $n \in N$.

Answer

If $(24)^{\mathrm{n}}$ end with the digit 5 , then the number should be divisible by 5 .
\Rightarrow This means the prime factorization of 24^{n} should contain prime factors 5 .
But $(24)^{\mathrm{n}}=\left(2^{3} \times 3\right)^{\mathrm{n}}$ and it does not have the prime factor 5 but have 3 and 2 .
$\because, 5$ is not present in the prime factorization, there is no natural number nor which 24^{n} ends with digit 5 .

So, 24^{n} cannot end with digit 5 .

11 C. Question

Examine whether $(21)^{\mathrm{n}}$ can end with the digit 0 for any $\mathrm{n} \in \mathrm{N}$.

Answer

If $(21)^{\mathrm{n}}$ end with the digit 0 , then the number should be divisible by 2 and 5 .
As $2 \times 5=10$
\Rightarrow This means the prime factorization of 21^{n} should contain prime factors 2 and 5.

But $(21)^{\mathrm{n}}=(3 \times 7)^{\mathrm{n}}$ and it does not have the prime factor 2 and 5 but have 3 and 7.
$\because, 2$ and 5 is not present in the prime factorization, there is no natural number nor which 21^{n} ends with digit zero.

So, 21^{n} cannot end with digit zero.

11 D. Question

Examine whether (8) ${ }^{\mathrm{n}}$ can end with the digit 5 for any $\mathrm{n} \in \mathrm{N}$.

Answer

If $(8)^{\mathrm{n}}$ end with the digit 5 , then the number should be divisible by 5 .
\Rightarrow This means the prime factorization of 8^{n} should contain prime factor 5 .
But $(8)^{n}=\left(2^{3}\right)^{\mathrm{n}}$ and it does not have the prime factor 5 but have 2. So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 8^{n}.
$\because 5$ is not present in the prime factorization, there is no natural number nor which 8^{n} ends with digit 5 .

So, 8^{n} cannot end with digit 5 .

11 E. Question

Examine whether (4) ${ }^{\mathrm{n}}$ can end with the digit 0 for any $\mathrm{n} \in \mathrm{N}$.

Answer

If $(4)^{\mathrm{n}}$ end with the digit 0 , then the number should be divisible by 5 .
As $2 \times 5=10$
\Rightarrow This means the prime factorization of 4^{n} should contain prime factor 5.
This is not possible because $(4)^{n}=\left(2^{2 n}\right)$, so the only prime in the factorization of 4^{n} is 2 . So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 4^{n}.
$\because 5$ is not present in the prime factorization, there is no natural number nor which 4^{n} ends with digit zero.

So, 4^{n} cannot end with digit zero.

11 F. Question

Examine whether (7) ${ }^{\mathrm{n}}$ can end with the digit 5 for any $\mathrm{n} \in \mathrm{N}$.

Answer

If $(7)^{\mathrm{n}}$ end with the digit 5 , then the number should be divisible by 5 .
\Rightarrow This means the prime factorization of 7^{n} should contain prime factor 5 .

But (7) ${ }^{\mathrm{n}}$ does not have the prime factor 5 . So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorization of 7^{n}.
$\because, 5$ is not present in the prime factorization, there is no natural number nor which 7^{n} ends with digit 5 .

So, 7^{n} cannot end with digit 5 .

12 A. Question

Explain why $7 \times 11 \times 13 \times 17+17$ is a composite number.

Answer

Composite number: A whole number that can be divided exactly by numbers other than 1 or itself.

Given $7 \times 11 \times 13 \times 17+17 \Rightarrow 17(7 \times 11 \times 13 \times 17+1)$
$\Rightarrow 17(7 \times 11 \times 13 \times 17+1)$
$\Rightarrow 17(17017+1)$
$\Rightarrow 17$ (17018)
$\Rightarrow 17(2 \times 8509)$
$\Rightarrow 17 \times 2 \times 8509$
So, given number is the composite number because it is the product of more than one prime numbers.

12 B. Question

Explain why $5 \times 7 \times 13+5$ is a composite number.

Answer

Composite number: A whole number that can be divided exactly by numbers other than 1 or itself.
$5 \times 7 \times 13+5$
$\Rightarrow 5(1 \times 7 \times 13+1)$
$\Rightarrow 5(91+1)$
$\Rightarrow 5(92)$
$\Rightarrow 5\left(2^{2} \times 23\right)$
$\Rightarrow 5 \times 2 \times 2 \times 23$
So, given number is the composite number because it is the product of more than one prime numbers.

12 C. Question

Show that $5 \times 7 \times 11 \times 13+55$ is a composite number.

Answer

Composite number: A whole number that can be divided exactly by numbers other than 1 or itself.
$5 \times 7 \times 11 \times 13+55$
$\Rightarrow 5(1 \times 7 \times 11 \times 13+11)$
$\Rightarrow 5 \times 11(91+1)$
$\Rightarrow 5 \times 11(92)$
$\Rightarrow 5 \times 11\left(2^{2} \times 23\right)$
$\Rightarrow 5 \times 11 \times 2 \times 2 \times 23$

So, given number is the composite number because it is the product of more than one prime numbers.

13. Question

Three measuring rods $64 \mathrm{~cm}, 80 \mathrm{~cm}$ and 96 cm in length. Find the least length of cloth that can be measured exact number of times using anyone of the above rods.

Answer

Lengths of three measuring rods $=64 \mathrm{~cm}, 80 \mathrm{~cm}$ and 96 cm
Least Length of cloth that can be measured $=\operatorname{LCM}(64,80,96)$

2	64
2	32
2	16
2	8
2	4
2	2
	1

2	80
2	40
2	20
3	10
5	5
	1

2	96
2	48
2	24
2	12
2	6
3	3
	1

$64=2^{6}$
$80=2^{3} \times 3 \times 5$
$96=2^{5} \times 3$
So, $2^{6} \times 3 \times 5$ are the greatest powers of the prime factors 2,3 and 5
$\operatorname{LCM}(64,80,96)=2^{6} \times 3 \times 5=960$
Least Length of cloth that can be measured is 960 cm

14. Question

Three containers contain 27 litres, 36 litres and 72 litres of milk. What biggest measure can measure exactly the milk in the three containers?

Answer

Milk in three containers $=27 \mathrm{~L}, 36 \mathrm{~L}, 72 \mathrm{~L}$
Biggest measure which can exactly measure the milk $=\operatorname{HCF}(27,36,72)$

2	36
2	18
3	9
3	3
	1

2	72
2	36
2	18
3	9
3	3
	1

3	27
3	9
3	3
	1

$27=3^{3}$
$36=2^{2} \times 3^{2}$
$72=2^{3} \times 3^{2}$
Here, 3^{2} is the smallest power of the common factor of the prime 3
$\operatorname{HCF}(27,36,72)=9$
So, biggest measure which can exactly measure the milk $=9 \mathrm{~L}$

15. Question

Three different containers contain different quantities of mixtures of milk and water, whose measurements are $403 \mathrm{~kg}, 434 \mathrm{~kg}$ and 465 kg , what biggest measure can measure all the different quantities exactly.

Answer

Mixtures of milk and water in three containers $=403 \mathrm{~kg}, 434 \mathrm{~kg}$,
465kg
Biggest measure which can exactly measure different quantities $=$ HCF (403, 434, 465)
$\left.\begin{array}{l|l}13 & 403 \\ \hline 31 & 31 \\ \hline & 1\end{array} \quad \begin{array}{l|l}2 & 434 \\ \hline 7 & 217 \\ \hline 31 & 31 \\ & 1\end{array} \quad \begin{array}{l}3 \\ \hline\end{array} \quad \begin{array}{l}465 \\ \hline 31\end{array}\right)$
$403=13 \times 31$
$434=2 \times 7 \times 31$
$465=3 \times 5 \times(31)$
Here, 31^{1} is the smallest power of the common factor.
$\operatorname{HCF}(403,434,465)=31$
So, biggest measure which can exactly measure the milk $=31 \mathrm{~L}$

Exercise 1.3

1. Question

Prove that $\sqrt{2}$ is irrational.

Answer

Let us assume that $\sqrt{2}$ is rational. So, we can find integers p and $\mathrm{q}(\neq 0)$ such that $\sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}$.

Suppose p and q have a common factor other than 1.
Then, we divide by the common factor to get $\sqrt{2}=\frac{a}{b}$, where a and b are coprime.

So, $b \sqrt{2}=a$.
Squaring on both sides, we get
$2 b^{2}=a^{2}$

Therefore, 2 divides a^{2}.
Now, by Theorem which states that Let \mathbf{p} be a prime number. If \mathbf{p} divides a^{2}, then p divides a , where a is a positive integer,
$\Rightarrow 2$ divides a^{2}.

So, we can write $\mathrm{a}=2 \mathrm{c}$ for some integer c
Substituting for a, we get $2 b^{2}=4 c^{2}$,i.e. $b^{2}=2 c^{2}$.
This means that 2 divides b^{2}, and so 2 divides b (again using the above
Theorem with $\mathrm{p}=2$). Therefore, a and b have at least 2 as a common factor.
But this contradicts the fact that a and b have no common factors other than 1.

This contradiction has arisen because of our incorrect assumption that 2 is rational.

So, we conclude that $\sqrt{2}$ is irrational.

2. Question

Prove that $\sqrt{3}$ is irrational.

Answer

Let us assume that $\sqrt{3}$ is rational.
Hence, $\sqrt{ } 3$ can be written in the form $\frac{a}{b}$
where a and $\mathrm{b}(\neq 0)$ are co-prime (no common factor other than 1).
Hence, $\sqrt{3}=\frac{\mathrm{a}}{\mathrm{b}}$
So, $b \sqrt{3}=a$.
Squaring on both sides, we get
$3 b^{2}=a^{2}$
$\frac{a^{2}}{3}=b^{2}$
Hence, 3 divides a^{2}.
By theorem: Let \mathbf{p} is a prime number and \mathbf{p} divides $\mathbf{a}^{\mathbf{2}}$, then \mathbf{p} divides \mathbf{a}, where a is a positive integer,
$\Rightarrow 3$ divides a also

Hence, we can say $\mathrm{a}=3 \mathrm{c}$ for some integer c
Now, we know that $3 b^{2}=a^{2}$
Putting $\mathrm{a}=3 \mathrm{c}$
$3 b^{2}=(3 c)^{2}$
$3 b^{2}=9 c^{2}$
$b^{2}=3 c^{2}$
Hence, 3 divides b^{2}
By theorem: Let \mathbf{p} is a prime number and \mathbf{p} divides $\mathbf{a}^{\mathbf{2}}$, then \mathbf{p} divides \mathbf{a}, where a is a positive integer,

So, 3 divides b also
By (1) and (2)
3 divides both a and b
Hence, 3 is a factor of a and b
So, a and b have a factor 3
Therefore, a and b are not co-prime.
Hence, our assumption is wrong
Therefore, by contradiction $\sqrt{3}$ is irrational.

3. Question

Prove that $\frac{1}{\sqrt{5}}$ is irrational.

Answer

Let us assume that $\frac{1}{\sqrt{5}}$ be a rational number.
Then, it will be of the form $\frac{a}{b}$ where a and b are co-prime and $b \neq 0$.
Now, $\frac{a}{b}=\frac{1}{\sqrt{5}}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{1 \times \sqrt{5}}{\sqrt{5 \times \sqrt{5}}}$
$\Rightarrow \frac{5 a}{b}=\sqrt{5}$
Since, 5 a is an integer and b is also an integer
So, $\frac{5 \mathrm{a}}{\mathrm{b}}$ is a rational number
$\Rightarrow \sqrt{5}$ is a rational number
But this contradicts to the fact that $\sqrt{5}$ is an irrational number.
Therefore, our assumption is wrong.
Hence, $\frac{1}{\sqrt{5}}$ is an irrational number.

4 A. Question

Prove that following numbers are not rational :
$(6)^{1 / 3}$

Answer

Suppose $6^{1 / 3}$ is rational.
Then, $6^{1 / 3}=\frac{n}{m}$ for some integers n and m which are co-prime.
So, $6=\frac{\mathrm{n}^{3}}{\mathrm{~m}^{3}}$
$\Rightarrow 6 \mathrm{~m}^{3}=\mathrm{n}^{3}$

So, n^{3} must be divisible by 6
$\Rightarrow \mathrm{n}$ must be divisible by 6 .
Let $\mathrm{n}=6 \mathrm{p}$ for some integer p
This gives
$6=\frac{(6 \mathrm{p})^{3}}{\mathrm{~m}^{3}}$
$1=\frac{6^{2} \mathrm{p}^{3}}{\mathrm{~m}^{3}}$
$\Rightarrow \mathrm{m}^{3}$ is divisible by 6
Hence, m must be divisible by 6 .
But n and m where co-prime.

So, we have a contradiction.
Hence, (6) $)^{1 / 3}$ is irrational

4 B. Question

Prove that following numbers are not rational :
$3 \sqrt{3}$

Answer

Let us assume that $3 \sqrt{3}$ be a rational number.
Then, it will be of the form $\frac{a}{b}$ where a and b are co-prime and $b \neq 0$.
Now, $\frac{\mathrm{a}}{\mathrm{b}}=3 \sqrt{3}$
$\Rightarrow \frac{\mathrm{a}}{3 \mathrm{~b}}=\sqrt{3}$
Since, a is an integer and $3 b$ is also an integer $(3 b \neq 0)$
So, $\frac{\mathrm{a}}{3 \mathrm{~b}}$ is a rational number
$\Rightarrow \sqrt{3}$ is a rational number
But this contradicts to the fact that $\sqrt{3}$ is an irrational number.
Therefore, our assumption is wrong.
Hence, $3 \sqrt{3}$ is an irrational number.

4 C. Question

Prove that following numbers are not rational :
$5 \sqrt{3}$

Answer

Let us assume that $5 \sqrt{3}$ be a rational number.
Then, it will be of the form $\frac{a}{b}$ where a and b are co-prime and $b \neq 0$.
Now, $\frac{\mathrm{a}}{\mathrm{b}}=5 \sqrt{3}$
$\Rightarrow \frac{\mathrm{a}}{5 \mathrm{~b}}=\sqrt{3}$
Since, a is an integer and 3 b is also an integer $(5 \mathrm{~b} \neq 0)$

So, $\frac{a}{5 b}$ is a rational number
$\Rightarrow \sqrt{3}$ is a rational number
But this contradicts to the fact that $\sqrt{3}$ is an irrational number.
Therefore, our assumption is wrong.
Hence, $5 \sqrt{3}$ is an irrational number.

5 A. Question

Prove that following numbers are irrational :
$6+\sqrt{2}$

Answer

Let us assume $6+\sqrt{2}$ is rational
$\Rightarrow 6+\sqrt{2}$ can be written in the form $\frac{\mathrm{a}}{\mathrm{b}}$ where a and b are co-prime.
Hence, $6+\sqrt{2}=\frac{\mathrm{a}}{\mathrm{b}}$
$\sqrt{2}=\frac{a}{b}-6$
$\sqrt{2}=\frac{a-6 b}{b}$
$\sqrt{2}=\left(\frac{a-6 b}{b}\right)$

Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $6+\sqrt{2}$ is irrational.

5 B. Question

Prove that following numbers are irrational :
$5-\sqrt{3}$

Answer

Let us assume $5-\sqrt{3}$ is rational
$\Rightarrow 5-\sqrt{3}$ can be written in the form $\frac{a}{b}$ where a and b are co-prime.
Hence, $5-\sqrt{3}=\frac{a}{b}$
$-\sqrt{3}=\frac{a}{b}-5$
$-\sqrt{3}=\frac{a-5 b}{b}$
$\sqrt{3}=-\left(\frac{a-5 b}{b}\right)$

Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $5-\sqrt{3}$ is irrational.

5 C. Question

Prove that following numbers are irrational :
$2+\sqrt{2}$

Answer

Let us assume $2+\sqrt{2}$ is rational
$\Rightarrow 2+\sqrt{2}$ can be written in the form $\frac{\mathrm{a}}{\mathrm{b}}$ where a and b are co-prime.
Hence, $2+\sqrt{2}=\frac{a}{b}$
$\sqrt{2}=\frac{a}{b}-2$
$\sqrt{2}=\frac{a-2 b}{b}$
$\sqrt{2}=\left(\frac{a-2 b}{b}\right)$

Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $2+\sqrt{2}$ is irrational.

5 D. Question

Prove that following numbers are irrational :
$3+\sqrt{5}$

Answer

Let us assume $3+\sqrt{5}$ is rational
$\Rightarrow 3+\sqrt{5}$ can be written in the form $\frac{a}{b}$ where a and b are co-prime.
Hence, $3+\sqrt{5}=\frac{a}{b}$
$\sqrt{5}=\frac{a}{b}-3$
$\sqrt{5}=\frac{a-3 b}{b}$
$\sqrt{5}=\left(\frac{a-3 b}{b}\right)$

Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $3+\sqrt{5}$ is irrational.

5 E. Question

Prove that following numbers are irrational :
$\sqrt{3}-\sqrt{2}$

Answer

Let us assume $\sqrt{3}-\sqrt{2}$ is rational
Let, $\sqrt{3}-\sqrt{2}=\frac{a}{b}$
Squaring both sides, we get
$(\sqrt{3}-\sqrt{2})^{2}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$5-2 \sqrt{6}=\frac{a^{2}}{b^{2}}$
$2 \sqrt{6}=\frac{a^{2}}{b^{2}}-5$
$2 \sqrt{6}=\frac{a^{2}-5 b^{2}}{b^{2}}$
$\sqrt{6}=\left(\frac{a^{2}-5 b^{2}}{2 b^{2}}\right)$

Rational
Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $\sqrt{3}-\sqrt{2}$ is irrational.

5 F. Question

Prove that following numbers are irrational :
$\sqrt{7}-\sqrt{5}$

Answer

Let us assume $\sqrt{7}-\sqrt{5}$ is rational
Let, $\sqrt{7}-\sqrt{5}=\frac{a}{b}$

Squaring both sides, we get
$(\sqrt{7}-\sqrt{5})^{2}=\frac{a^{2}}{b^{2}}$
$12-2 \sqrt{35}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$2 \sqrt{35}=\frac{a^{2}}{b^{2}}-12$
$2 \sqrt{35}=\left(\frac{a^{2}-12 b^{2}}{b^{2}}\right)$
$\sqrt{35}=\left(\frac{a^{2}-12 b^{2}}{2 b^{2}}\right)$

Since, rational \neq irrational
This is a contradiction.
\therefore, Our assumption is incorrect.
Hence, $\sqrt{7}-\sqrt{5}$ is irrational.

Exercise 1.4

1 A. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{17}{8}$

Answer

Given rational number is $\frac{17}{8}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$17=17 \times 1$
$8=2 \times 2 \times 2$
$\Rightarrow 17$ and 8 have no common factors

Therefore, 17 and 8 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$8=2^{3}$
$=1 \times 2^{3}$
$=5^{0} \times 2^{3}$

So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=3$ and $\mathrm{m}=0$
Thus, $\frac{17}{8}$ is a terminating decimal.

1 B. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{3}{8}$

Answer

Given rational number is $\frac{3}{8}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$3=3 \times 1$
$8=2 \times 2 \times 2$
$\Rightarrow 3$ and 8 have no common factors
Therefore, 3 and 8 are co-prime.

Now, we have to check that q is in the form of $2^{n} 5^{m}$
$8=2^{3}$
$=1 \times 2^{3}$
$=5^{0} \times 2^{3}$
So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=3$ and $\mathrm{m}=0$
Thus, $\frac{3}{8}$ is a terminating decimal.

1 C. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{29}{343}$

Answer

Given rational number is $\frac{29}{343}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime

$29=29 \times 1$
$343=7 \times 7 \times 7$
$\Rightarrow 29$ and 343 have no common factors

Therefore, 29 and 343 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$343=7^{3}$
So, denominator is not of the form $2^{n} 5^{m}$
Thus, $\frac{29}{343}$ is a non-terminating repeating decimal.

1 D. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.

13
 125

Answer

Given rational number is $\frac{13}{125}$
$\frac{\mathrm{p}}{\mathrm{q}}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime

$13=13 \times 1$
$125=5 \times 5 \times 5$
$\Rightarrow 13$ and 125 have no common factors
Therefore, 13 and 125 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$125=5^{3}$
$=1 \times 2^{3}$
$=2^{0} \times 5^{3}$
So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=0$ and $\mathrm{m}=3$
Thus, $\frac{\mathbf{1 3}}{\mathbf{1 2 5}}$ is a terminating decimal.

1 E. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.

Answer

Given rational number is $\frac{27}{8}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime

$27=3 \times 3 \times 3$
$8=2 \times 2 \times 2$
$\Rightarrow 27$ and 8 have no common factors
Therefore, 27 and 8 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$8=2^{3}$
$=1 \times 2^{3}$
$=5^{0} \times 2^{3}$
So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=3$ and $\mathrm{m}=0$
Thus, $\frac{\mathbf{2 7}}{8}$ is a terminating decimal.

1 F. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{7}{80}$
Answer
Given rational number is $\frac{7}{80}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$7=7 \times 1$
$80=2 \times 2 \times 2 \times 2 \times 5$
$\Rightarrow 7$ and 80 have no common factors
Therefore, 7 and 80 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$80=2^{4} \times 5$
So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=4$ and $\mathrm{m}=1$
Thus, $\frac{\mathbf{7}}{80}$ is a terminating decimal.

1 G. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.

64
 455

Answer

Given rational number is $\frac{64}{455}$
${ }_{q}^{\frac{p}{q}}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime

$64=2^{6}$
$455=5 \times 7 \times 13$
$\Rightarrow 64$ and 455 have no common factors

Therefore, 64 and 455 are co-prime.

Now, we have to check that q is in the form of $2^{n} 5^{m}$
$455=5 \times 7 \times 13$
So, denominator is not of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$
Thus, $\frac{64}{455}$ is a non-terminating repeating decimal.

1 H. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{6}{15}$

Answer

Given rational number is $\frac{6}{15}$
$\frac{6}{15}=\frac{2}{5}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$\Rightarrow 2$ and 5 have no common factor
Therefore, 2 and 5 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$5=5^{1} \times 1$
$=5^{1} \times 2^{0}$
So, denominator is of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$ where $\mathrm{n}=0$ and $\mathrm{m}=1$
Thus, $\frac{6}{15}$ is a terminating decimal.

1 I. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.

$\frac{35}{50}$

Answer

Given rational number is $\frac{35}{50}$
$\frac{35}{50}=\frac{7}{10}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$7=1 \times 7$
$10=2 \times 5$
$\Rightarrow 7$ and 10 have no common factor

Therefore, 7 and 10 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$10=5^{1} \times 2^{1}$
So, denominator is of the form $2^{n} 5^{m}$ where $\mathrm{n}=1$ and $\mathrm{m}=1$
Thus, $\frac{\mathbf{3 5}}{\mathbf{5 0}}$ is a terminating decimal.

1 J. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{129}{2^{2} 5^{7} 7^{5}}$
Answer

Given rational number is $\frac{129}{2^{2} \times 5^{7} \times 7^{5}}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$129=3 \times 43$
Denominator $=2^{2} \times 5^{7} \times 7^{5}$
$\Rightarrow 129$ and $2^{2} \times 5^{7} \times 7^{5}$ have no common factors
Therefore, 129 and $2^{2} \times 5^{7} \times 7^{5}$ are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
Denominator $=2^{2} \times 5^{7} \times 7^{5}$
So, denominator is not of the form $2^{n} 5^{m}$
Thus, $\frac{129}{2^{2} \times 5^{7} \times 7^{5}}$ is a non-terminating repeating decimal.

1 K. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.
$\frac{2^{2} \times 7}{5^{4}}$

Answer
Given rational number is $\frac{2^{2} \times 7}{5^{4}}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{\mathrm{n}} 5^{\mathrm{m}}$ where n and m are non-negative integers.

Firstly, we check co-prime
$28=7 \times 2^{2}$
$625=5^{4}$
$\Rightarrow 28$ and 625 have no common factors
Therefore, 28 and 625 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$625=5^{4} \times 1$
$=5^{4} \times 2^{0}$
So, denominator is of the form $2^{n} 5^{m}$ where $\mathrm{n}=0$ and $\mathrm{m}=4$
Thus, $\frac{2^{2} \times 7}{5^{4}}$ is a terminating decimal.

1 L. Question

Without actually performing the long division, state whether the following rational numbers have terminating or non-terminating repeating (recurring) decimal expansion.

29
243
Answer
Given rational number is $\frac{29}{243}$
$\frac{p}{q}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly, we check co-prime
$29=29 \times 1$
$243=3^{5}$
$\Rightarrow 29$ and 243 have no common factors
Therefore, 29 and 243 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$

$$
243=3^{5}
$$

So, the denominator is not of the form $2^{n} 5^{m}$
Thus, $\frac{29}{243}$ is a non- terminating repeating decimal.

2 A. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.
$\frac{17}{8}$

Answer

We know, $\frac{17}{8}=\frac{17}{2^{3} \times 5^{0}}$
Multiplying and dividing by 5^{3}
$=\frac{17 \times 5^{3}}{2^{3} \times 5^{0} \times 5^{3}}$
$=\frac{17 \times 125}{2^{3} \times 1 \times 5^{3}}$
$=\frac{2125}{(2 \times 5)^{3}}$
$=\frac{2125}{(10)^{3}}$
$=\frac{2125}{1000}$
$=2.125$

2 B. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.
$\frac{3}{8}$

Answer

We know, $\frac{3}{8}=\frac{3}{2^{3} \times 5^{0}}$
Multiplying and dividing by 5^{3}
$=\frac{3 \times 5^{3}}{2^{3} \times 5^{0} \times 5^{3}}$
$=\frac{3 \times 125}{2^{3} \times 1 \times 5^{3}}$
$=\frac{375}{(2 \times 5)^{3}}$
$=\frac{375}{(10)^{3}}$
$=\frac{375}{1000}$
$=0.375$

2 C. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

29

343

Answer

We know, $\frac{29}{343}=\frac{29}{7^{3}}$
Given rational number is $\frac{29}{343}$
${ }_{q}^{p}$ is terminating if
a) p and q are co-prime \&
b) q is of the form of $2^{n} 5^{m}$ where n and m are non-negative integers.

Firstly we check co-prime

$29=29 \times 1$
$343=7 \times 7 \times 7$
$\Rightarrow 29$ and 343 have no common factors

Therefore, 29 and 343 are co-prime.
Now, we have to check that q is in the form of $2^{n} 5^{m}$
$343=7^{3}$

So, the denominator is not of the form $2^{n} 5^{m}$
Thus, $\frac{29}{343}$ is a non-terminating repeating decimal.

2 D. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

13
 125

Answer

We know, $\frac{13}{125}=\frac{13}{2^{0} \times 5^{3}}$
Multiplying and dividing by 2^{3}
$=\frac{13 \times 2^{3}}{2^{0} \times 5^{3} \times 2^{3}}$
$=\frac{13 \times 8}{1 \times 2^{3} \times 5^{3}}$
$=\frac{104}{(2 \times 5)^{3}}$
$=\frac{104}{(10)^{3}}$
$=\frac{104}{1000}$
$=0.104$

2 E. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.
$\frac{27}{8}$
Answer
We know, $\frac{27}{8}=\frac{3^{3}}{2^{3} \times 5^{0}}$
Multiplying and dividing by 5^{3}
$=\frac{27 \times 5^{3}}{2^{0} \times 2^{3} \times 5^{3}}$
$=\frac{27 \times 125}{1 \times 2^{3} \times 5^{3}}$
$=\frac{3375}{(2 \times 5)^{3}}$
$=\frac{3375}{(10)^{3}}$
$=\frac{3375}{1000}$
$=3.375$

2 F. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

$\frac{7}{80}$

Answer

We know, $\frac{7}{80}=\frac{7}{2^{4} \times 5^{1}}$
Multiplying and dividing by 5^{3}
$=\frac{7 \times 5^{3}}{2^{4} \times 5^{1} \times 5^{3}}$
$=\frac{7 \times 125}{2^{4} \times 5^{4}}$
$=\frac{875}{(2 \times 5)^{4}}$
$=\frac{875}{(10)^{4}}$
$=\frac{875}{10000}$
$=0.0875$

2 G. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

We know, $\frac{64}{455}=\frac{2^{6}}{5 \times 7 \times 13}$
Since the denominator is not of the form $2^{n} 5^{m}$
$\frac{64}{455}$ has a non-terminating repeating decimal expansion.

2 H. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.
$\frac{6}{15}$
Answer
We know, $\frac{6}{15}=\frac{2}{5}=\frac{2}{2^{\circ} \times 5}$
Multiplying and dividing by 2^{1}
$=\frac{2 \times 2}{2^{0} \times 5^{1} \times 2}$
$=\frac{4}{1 \times 10}$
$=\frac{4}{10}$
$=0.4$

2 I. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

$\frac{35}{50}$

Answer

We know, $\frac{35}{50}$
$=\frac{7}{10}$
$=\frac{7}{2 \times 5}$
$=\frac{7}{10}$

$$
=0.7
$$

2 J. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

$$
\frac{129}{2^{2} 5^{7} 7^{5}}
$$

Answer

Given rational number is $\frac{129}{2^{2} \times 5^{7} \times 7^{5}}$
Since the denominator is not of the form $2^{n} 5^{m}$
$\frac{129}{2^{2} \times 5^{7} \times 7^{5}}$ has a non-terminating repeating decimal expansion.

2 K. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.
$\frac{2^{2} \times 7}{5^{4}}$

Answer

We know, $\frac{2^{2} \times 7}{5^{4}}=\frac{2^{2} \times 7}{2^{0} \times 5^{4}}$
Multiplying and dividing by 2^{6}
$=\frac{2^{2} \times 7 \times 2^{6}}{2^{0} \times 5^{4} \times 2^{6}}$
$=\frac{2^{2} \times 7 \times 2^{6}}{1 \times 5^{4} \times 2^{6}}$
$=\frac{7 \times 2^{6}}{(2 \times 5)^{4}}$
$=\frac{448}{(10)^{4}}$
$=\frac{448}{10000}$
$=0.0448$

2 L. Question

Write down the decimal expansions of the following numbers which have terminating decimal expansions.

29
243

Answer

Given rational number is $\frac{29}{243}$
$\frac{29}{243}=\frac{29}{3^{5}}$
Since the denominator is not of the form $2^{\mathrm{n}} 5^{\mathrm{m}}$.
$\frac{29}{243}$ has a non-terminating repeating decimal expansion.

3. Question

The following real numbers have decimal expansions as given below. In each case examine whether they are rational or not. If they are a rational number of the form p / q, what can be said about q ?
(i) 7.2345
(ii) $5 . \overline{234}$
(iii) 23.245789
(iv) $7 . \overline{3427}$
(v) 0.120120012000120000...
(vi) 23.142857
(vii) $2.313313313331 \ldots$
(viii) 0.02002000220002...
(ix) 3.300030000300003...
(x) 1.7320508...
(xi) 2.645713
(xii) 2.8284271...

Answer

(i) 7.2345

Here, 7.2345 has terminating decimal expansion.
So, it represents a rational number.
i.e. $7.2345=\frac{7.2345}{10000}=\frac{p}{q}$

Thus, $\mathrm{q}=10^{4}$, those factors are $2^{3} \times 5^{3}$
(ii) $5 . \overline{234}$
$5 . \overline{234}$ is non-terminating but repeating.
So, it would be a rational number.
In a non-terminating repeating expansion of $\frac{p}{q}$,
q will have factors other than 2 or 5 .
(iii) 23.245789
23.245789 is terminating decimal expansion

So, it would be a rational number.
i.e. $23.245789=\frac{23.245789}{1000000}=\frac{p}{q}$

Thus, $\mathrm{q}=10^{6}$, those factors are $2^{5} \times 5^{5}$
In a terminating expansion of $\frac{p}{q}$, q is of the form $2^{n} 5^{m}$
So, prime factors of q will be either 2 or 5 or both.
(iv) $7 . \overline{3427}$
$7 . \overline{3427}$ is non-terminating but repeating.
So, it would be a rational number.
In a non-terminating repeating expansion of $\frac{p}{q}$,
q will have factors other than 2 or 5 .
(v) 0.120120012000120000...
$0.120120012000120000 \ldots$ is non-terminating and non-repeating.
So, it is not a rational number as we see in the chart.
(vi) 23.142857
23.142857 is terminating expansion.

So, it would be a rational number.
i.e. $23 \cdot 142857=\frac{23.142857}{1000000}=\frac{p}{q}$

Thus, $\mathrm{q}=10^{6}$, whose factors are $2^{5} \times 5^{5}$
In a terminating expansion of $\frac{p}{q}, q$ is of the form $2^{n} 5^{m}$
So, prime factors of q will be either 2 or 5 or both.
(vii) 2.313313313331...
2.313313313331... is non-terminating and non-repeating.

So, it is not a rational number as we see in the chart.
(viii) 0.02002000220002...
$0.02002000220002 \ldots$ is non-terminating and non-repeating.
So, it is not a rational number as we see in the chart.
(ix) 3.300030000300003...
$3.300030000300003 \ldots$ is non-terminating and non-repeating.
So, it is not a rational number as we see in the chart.
(x) 1.7320508...
$1.7320508 \ldots$ is non-terminating and non-repeating.
So, it is not a rational number as we see in the chart.
(xi) 2.645713
2.645713 is terminating expansion

So, it would be a rational number.
i.e. $2 \cdot 645713=\frac{2.645713}{1000000}=\frac{p}{q}$

Thus, $\mathrm{q}=10^{6}$, those factors are $2^{5} \times 5^{5}$
In a terminating expansion of $\frac{p}{q}$, q is of the form $2^{n} 5^{m}$
So, prime factors of q will be either 2 or 5 or both.
(xii) 2.8284271...
2.8284271... is non-terminating and non-repeating.

So, it is not a rational number as we see in the chart.

