3. Pair of Linear Equations in Two Variables

Exercise 3.1

1. Question

Sudha went to market with her friends. They wanted to eat `gol - gappa' as well as `dahi - bhalla'. The number of plates of gol - gappa taken by them is half that of dahi - bhalla. The cost of one plate of gol - gappa was Rs. 10 and cost of one plate of dahi - bhalla was Rs. 5. She spent Rs. 60. Represent the situation algebraically and graphically.

Answer

Let no. of plates of gol - gappa $=\mathrm{x}$
and no. of plates of dhai - bhalla $=y$
Cost of 1 plate gol - gappa = Rs. 10
Cost of 1 plate dhai - bhalla $=$ Rs. 5
Total money spent $=$ Rs. 20
According to the question,
$x=\frac{1}{2} y$
$10 x+5 y=60$
From eq ${ }^{\mathrm{n}}$ (1), we get
$2 x-y=0$
Now, table for $2 \mathrm{x}-\mathrm{y}=0$

x	-1	0	1	2
$y=2 x$	-2	0	2	4

Now, table for $10 \mathrm{x}+5 \mathrm{y}=60$

x	-1	0	6	1
$y=\frac{60-10 x}{5}$	14	12	0	10

On plotting points on a graph paper and join them to get a straight line representing $\mathrm{x}=\frac{1}{2} \mathrm{y}$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $10 \mathrm{x}+5 \mathrm{y}=60$.

Here, the lines representing Eq. (1) and Eq. (2) intersecting at point A i.e. (3,6).

2. Question

Romila went to a stationary shop and purchased 2 pencils and 3 erasers for Rs. 9. Her friend Sonali saw the new variety of pencils and erasers with Romila and she also bought 4 pencils and 6 erasers of the same kind for Rs. 18. Represent this situation algebraically and graphically.

Answer

Let the cost of one pencil = Rs x
and cost of one eraser $=$ Rs y
Romila spent $=$ Rs. 9
Sonali spent = Rs. 18
According to the question
$2 x+3 y=9 \ldots(1)$
$4 x+6 y=18 \ldots$...(2)
Now, table for $2 \mathrm{x}+3 \mathrm{y}=9$

x	0	4.5
$y=\frac{9-2 x}{3}$	3	0

Now, table for $4 x+6 y=18$

x	0	3
$y=\frac{18-4 x}{6}$	3	1

On plotting points on a graph paper and join them to get a straight line representing $2 \mathrm{x}+3 \mathrm{y}=9$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $4 \mathrm{x}+6 \mathrm{y}=18$.

Here, we can see that both the lines coincide. This is so, because, both the equations are equivalent, i.e. $2(2 x+3 y)=2 \times 9$ equation (2) is derived from the other.

3. Question

Present age of father is 30 years more than twice that of his son. After 10 years, the age of father will be thrice the age of his son. Represent this situation algebraically and geometrically.

Answer

Let the present age of son $=x$ year
and the age of his father = y year
According to the question
$y=2 x+30$
or, $2 \mathrm{x}-\mathrm{y}=-30 \ldots$ (1)
After 10 years,

Age of son $=(x+10) y e a r$
Age of father $=(y+10)$ year
So, According to the question
$y+10=3(x+10)$
$y+10=3 x+30$
$y=3 x+20$
or, $3 \mathrm{x}-\mathrm{y}=-20$...(2)
Now, table for $\mathrm{y}=2 \mathrm{x}+30$

x	0	-15	5
$y=2 x+30$	30	0	40

Now, table for $\mathrm{y}=3 \mathrm{x}+20$

x	0	5	10
$y=3 x+20$	20	35	50

On plotting points on a graph paper and join them to get a straight line representing $\mathrm{y}=2 \mathrm{x}+30$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $y=3 x+20$.

Here, the lines representing Eq. (1) and Eq. (2) intersecting at point A i.e. $(10,50)$.

So, the age of son is $10 y$ years and age of his father is 50 years.

4. Question

The path of a wheel of train A is given by the equation $x+2 y-4=0$ and the path of a wheel of another train B is given by the equation $2 x+4 y-12=0$. Represent this situation geometrically.

Answer

The given equation is
$x+2 y-4=0$
and
$2 x+4 y-12=0$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $x+2 y-4=0$ or $y=\frac{4-x}{2}$

x	0	4	2
$y=\frac{4-x}{2}$	2	0	1

Now, table for $2 x+4 y-12=0$ or $y=\frac{12-2 x}{4}$

x	0	6	2
$y=\frac{12-2 x}{4}$	3	0	2

From the graph, it is clear that lines represented by the equations $x+2 y-4=$ 0 and $2 x+4 y-12=0$ are parallel.

5. Question

The path of highway number 1 and 2 are given by the equations $x-y=1$ and $2 x+3 y=12$ respectively. Represent these equations geometrically.

Answer

The given equation is
$x-y=1$
and
$2 x+3 y=12$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{x}-\mathrm{y}=1$ or $\mathrm{y}=\mathrm{x}-1$

x	0	1	3	4
$y=x-1$	-1	0	2	3

Now, table for $2 \mathrm{x}+3 \mathrm{y}=12$ or $\mathrm{y}=\frac{12-2 \mathrm{x}}{3}$

x	0	6	3
$y=\frac{12-2 x}{3}$	4	0	2

From the graph, it is clear that lines represented by the equations $x-y=1$ and $2 x+3 y-12=0$ are intersecting at a point A i.e. $(3,2)$

6. Question

Person A walks along the path joining points $(0,3)$ and $(1,3)$ and person B walks along the path joining points $(0,4)$ and $(1,5)$. Represent this situation geometrically.

Answer

The given points are at which Person A walks $(0,3)$ and $(1,3)$
and the points at which person B walks $(0,4)$ and $(1,5)$
Now, we plot these points on a same graph as shown in the following figure.

7. Question

Examine which of the following pair of values of x and y is a solution of equation $4 x-3 y+24=0$.
(i) $x=0, y=8$ (ii) $x=-6, y=0$
(iii) $\mathrm{x}=1, \mathrm{y}=-2$ (iv) $\mathrm{x}=-3, \mathrm{y}=4$
(v) $x=1, y=-2(v i) x=-4, y=2$

Answer

Given equation is $4 x-3 y+24=0$
i) Justification

On substituting $x=0, y=8$ in LHS of given equation, we get
LHS $=4(0)-3(8)+24=0-24+24=0=$ RHS
Hence, $x=0, y=8$ is a solution of the equation $4 x-3 y+24=0$
ii) Justification

On substituting $x=-6, y=0$ in LHS of given equation, we get

LHS $=4(-6)-3(0)+24=-24+24=0=$ RHS
Hence, $x=-6, y=0$ is a solution of the equation $4 x-3 y+24=0$
iii) Justification

On substituting $x=1, y=-2$ in LHS of given equation, we get
LHS $=4(1)-3(-2)+24=4+6+24=34 \neq$ RHS
Hence, $x=1, y=-2$ is not a solution of the equation $4 x-3 y+24=0$
iv) Justification

On substituting $x=-3, y=4$ in LHS of given equation, we get
LHS $=4(-3)-3(4)+24=-12-12+24=0=$ RHS
Hence, $x=-3, y=4$ is a solution of the equation $4 x-3 y+24=0$
v) Justification

On substituting $x=1, y=-2$ in LHS of given equation, we get
LHS $=4(1)-3(-2)+24=4+6+24=34 \neq$ RHS
Hence, $x=1, y=-2$ is not a solution of the equation $4 x-3 y+24=0$
vi) Justification

On substituting $x=-4, y=2$ in LHS of given equation, we get
LHS $=4(-4)-3(2)+24=-16-6+24=-22+24=2 \neq$ RHS
Hence, $x=-4, y=2$ is not a solution of the equation $4 x-3 y+24=0$

8. Question

Examine which of the following points lie on the graph of the linear equation $5 x-3 y+30=0$.
(i) $\mathrm{A}(-6,0)(\mathrm{ii}) \mathrm{B}(0,10)$
(iii) C $(3,-5)$ (iv) D $(4,2)$
(v) $\mathrm{E}(-9,5)(v i) F(-3,5)$
(vii) $G(-9,-5)$

Answer

The given equation is $5 x-3 y+30=0$
(i) Given $A(-6,0)$. Here $x=-6$ and $y=0$

On substituting $x=-6, y=0$ in LHS of given equation, we get
LHS $=5(-6)-3(0)+30=-30+30=0=$ RHS
So, $x=-6, y=0$ is a solution of the equation $5 x-3 y+30=0$.
Hence, point A lies on the graph of the linear equation $5 x-3 y+30=0$.
(ii) Given $B(0,10)$. Here $x=0$ and $y=10$

On substituting $x=0, y=10$ in LHS of given equation, we get
LHS $=5(0)-3(10)+30=-30+30=0=$ RHS
So, $x=0, y=10$ is a solution of the equation $5 x-3 y+30=0$
Hence, point B lies on the graph of the linear equation $5 x-3 y+30=0$.
(iii) Given C $(3,-5)$. Here $x=3$ and $y=-5$

On substituting $x=3, y=-5$ in LHS of given equation, we get
LHS $=5(3)-3(-5)+30=15+15+30=60 \neq$ RHS
So, $x=3, y=-5$ is not a solution of the equation $5 x-3 y+30=0$
Hence, point C does not lie on the graph of the linear equation $5 x-3 y+30=$ 0.
(iv) Given $D(4,2)$. Here $x=4$ and $y=2$

On substituting $x=4, y=2$ in LHS of given equation, we get
LHS $=5(4)-3(2)+30=20-6+30=44 \neq$ RHS
So, $x=4, y=2$ is not a solution of the equation $5 x-3 y+30=0$
Hence, point D does not lie on the graph of the linear equation $5 x-3 y+30=$ 0.
(v) Given $E(-9,5)$. Here $x=-9$ and $y=5$

On substituting $x=-9, y=5$ in LHS of given equation, we get
LHS $=5(-9)-3(5)+30=-45-15+30=-30 \neq$ RHS
So, $x=-9, y=5$ is not a solution of the equation $5 x-3 y+30=0$
Hence, point E does not lie on the graph of the linear equation $5 x-3 y+30=$ 0.
(vi) Given $F(-3,5)$. Here $x=-3$ and $y=5$

On substituting $x=-3, y=5$ in LHS of given equation, we get

LHS $=5(-3)-3(5)+30=-15+15+30=0=$ RHS
So, $x=-3, y=5$ is a solution of the equation $5 x-3 y+30=0$
Hence, point F lies on the graph of the linear equation $5 x-3 y+30=0$.
(vii) Given G $(-9,-5)$. Here $x=3$ and $y=-5$

On substituting $x=-9, y=-5$ in LHS of given equation, we get
LHS $=5(-9)-3(-5)+30=-45+15+30=0=$ RHS
So, $x=-9, y=-5$ is a solution of the equation $5 x-3 y+30=0$
Hence, point G lies on the graph of the linear equation $5 x-3 y+30=0$.

Or Graphically

Here, we can see through the graph also that Point A, B, F and G lie on the graph of the linear equation $5 x-3 y+30=0$

9 A. Question

Solve graphically the following system of linear equations if it has unique solution:
$3 x+y=2$
$6 x+2 y=1$

Answer

The given pair of linear equations is
$3 x+y=2$ or $3 x+y-2=0$
and $6 x+2 y=1$ or $6 x+2 y-1=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=1$ and $\mathrm{c}_{1}=-2$
and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=-1$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{2}=1$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-2}{-1}=2$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
The lines representing the given pair of linear equations are parallel.

9 B. Question

Solve graphically the following system of linear equations if it has unique solution:
$2 x-3 y+13=0$
$3 x-2 y+12=0$

Answer

The given pair of linear equations is
$2 x-3 y+13=0$
and $3 \mathrm{x}-2 \mathrm{y}+12=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3$ and $\mathrm{c}_{1}=13$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-2$ and $\mathrm{c}_{2}=12$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-2}=\frac{3}{2}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{13}{12}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $2 x-3 y+13=0$ or $y=\frac{2 x+13}{3}$

x	-6.5	-2	0
$y=\frac{2 x+13}{3}$	0	3	$\frac{13}{3}$

Now, table for $3 x-2 y+12=0$ or $y=\frac{3 x+12}{2}$

x	0	4	-2
$y=\frac{3 x-12}{2}$	6	0	3

Here, the lines intersecting at point B i.e. ($-2,3$)
Hence, the unique solution is $\mathrm{x}=-2$ and $\mathrm{y}=3$.

9 C. Question

Solve graphically the following system of linear equations if it has unique solution:
$3 x+2 y=14$
$x-4 y=-14$
Answer
The given pair of linear equations is
$3 x+2 y=14$ or $3 x+2 y-14=0$
and $x-4 y=-14$ or $x-4 y+14=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=2$ and $\mathrm{c}_{1}=-14$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-4$ and $\mathrm{c}_{2}=14$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{1}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{-4}=-\frac{1}{2}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-14}{14}=-1$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
The lines representing the given pair of linear equations will intersect at a point.

Now, table for $3 \mathrm{x}+2 \mathrm{y}=14$ or $\mathrm{y}=\frac{14-3 \mathrm{x}}{2}$

x	0	2	4
$y=\frac{14-3 x}{2}$	7	4	1

Now, table for $x-4 y+14=0$ or $y=\frac{x+14}{4}$

x	-2	14	2
$y=\frac{x+14}{4}$	3	0	4

Here, the lines intersecting at point B i.e. $(2,4)$
Hence, the unique solution is $\mathrm{x}=2$ and $\mathrm{y}=4$.

9 D. Question

Solve graphically the following system of linear equations if it has unique solution:
$2 x-3 y=1$
$3 x-4 y=1$

Answer

The given pair of linear equations is
$2 \mathrm{x}-3 \mathrm{y}=1$ or $2 \mathrm{x}-3 \mathrm{y}-1=0$
and $3 \mathrm{x}-4 \mathrm{y}=1$ or $3 \mathrm{x}-4 \mathrm{y}-1=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3$ and $\mathrm{c}_{1}=-1$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-4$ and $\mathrm{c}_{2}=-1$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-4}=\frac{3}{4}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-1}{-1}=1$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $2 \mathrm{x}-3 \mathrm{y}=1$ or $\mathrm{y}=\frac{2 \mathrm{x}-1}{3}$

x	0.5	0	-1
$y=\frac{2 x-1}{3}$	0	-0.33	-1

Now, table for $3 \mathrm{x}-4 \mathrm{y}=1$ or $\mathrm{y}=\frac{3 \mathrm{x}-1}{4}$

x	0	0.33	-1
$y=\frac{3 x-1}{4}$	-0.25	0	-1

Here, the lines intersecting at point C i.e. $(-1,-1)$
Hence, the unique solution is $\mathrm{x}=-1$ and $\mathrm{y}=-1$.

9 E. Question

Solve graphically the following system of linear equations if it has unique solution:
$2 x-y=9$
$5 x+2 y=27$

Answer

The given pair of linear equations is
$2 \mathrm{x}-\mathrm{y}=9$ or $2 \mathrm{x}-\mathrm{y}-9=0$
and $5 \mathrm{x}+2 \mathrm{y}=27$ or $5 \mathrm{x}+2 \mathrm{y}-27=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-1$ and $\mathrm{c}_{1}=-9$
and $\mathrm{a}_{2}=5, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=-27$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{5}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-1}{2}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-9}{-27}=\frac{1}{3}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $2 \mathrm{x}-\mathrm{y}=9$ or $\mathrm{y}=2 \mathrm{x}-9$

x	0	4.5	5
$y=2 x-9$	-9	0	1

Now, table for $5 x+2 y=27$ or $y=\frac{27-5 x}{2}$

x	5.4	5	3
$y=\frac{27-5 x}{2}$	0	1	6

Here, the lines intersecting at point C i.e. $(5,1)$
Hence, the unique solution is $\mathrm{x}=5$ and $\mathrm{y}=1$.

9 F. Question

Solve graphically the following system of linear equations if it has unique solution:
$3 y=5-x$
$2 x=y+3$

Answer

The given pair of linear equations is
$x+3 y=5$ or $x+3 y-5=0$
and $2 \mathrm{x}-\mathrm{y}=3$ or $2 \mathrm{x}-\mathrm{y}-3=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=1, \mathrm{~b}_{1}=3$ and $\mathrm{c}_{1}=-5$
and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=-1$ and $\mathrm{c}_{2}=-3$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{3}{-1}=-3$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-5}{-3}=\frac{5}{3}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $x+3 y=5$ or $y=\frac{5-x}{3}$

x	5	-1	2
$y=\frac{5-x}{3}$	0	2	1

Now, table for $2 \mathrm{x}-\mathrm{y}=3$ or $\mathrm{y}=2 \mathrm{x}-3$

x	0	1.5	2
$y=2 x-3$	-3	0	1

Here, the lines intersecting at point C i.e. $(2,1)$
Hence, the unique solution is $\mathrm{x}=2$ and $\mathrm{y}=1$.

9 G. Question

Solve graphically the following system of linear equations if it has unique solution:
$3 x-5 y=-1$
$2 x-y=-3$

Answer

The given pair of linear equations is
$3 x-5 y=-1$ or $3 x-5 y+1=0$
and $2 \mathrm{x}-\mathrm{y}=-3$ or $2 \mathrm{x}-\mathrm{y}+3=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=-5$ and $\mathrm{c}_{1}=1$
and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=-1$ and $\mathrm{c}_{2}=3$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-5}{-1}=5$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{1}{3}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $3 x-5 y=-1$ or $y=\frac{3 x+1}{5}$

x	0	3	-2
$y=\frac{3 x+1}{5}$	0.2	2	-1

Now, table for $2 \mathrm{x}-\mathrm{y}=-3$ or $\mathrm{y}=2 \mathrm{x}+3$

x	0	-1.5	-2
$y=2 x+3$	3	0	-1

Here, the lines intersecting at point B i.e. $(-2,-1)$
Hence, the unique solution is $\mathrm{x}=-2$ and $\mathrm{y}=-1$.

9 H. Question

Solve graphically the following system of linear equations if it has unique solution:
$2 x-6 y+10=0$
$3 x-9 y+15=0$

Answer

The given pair of linear equations is
$2 x-6 y+10=0$
and $3 x-9 y+15=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$a_{1}=2, b_{1}=-6$ and $c_{1}=10$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-9$ and $\mathrm{c}_{2}=15$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-6}{-9}=\frac{2}{3}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{10}{15}=\frac{2}{3}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will coincide.

9 I. Question

Solve graphically the following system of linear equations if it has unique solution:
$3 x+y-11=0$
$x-y-1=0$

Answer

The given pair of linear equations is
$3 x+y-11=0$
and $\mathrm{x}-\mathrm{y}-1=0$
On comparing the given equations with standard form of pair of linear equations i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=1$ and $\mathrm{c}_{1}=-11$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-1$ and $\mathrm{c}_{2}=-1$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{1}=3, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{-1}=-1$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-11}{-1}=11$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The lines representing the given pair of linear equations will intersect at a point.

Now, table for $3 \mathrm{x}+\mathrm{y}-11=0$ or $\mathrm{y}=11-3 \mathrm{x}$

x	0	1	3
$y=11-3 x$	11	8	2

Now, table for $\mathrm{x}-\mathrm{y}-1=0$ or $\mathrm{y}=\mathrm{x}-1$

x	0	1	3
$y=x-1$	-1	0	2

Here, the lines intersecting at point B i.e. $(3,2)$
Hence, the unique solution is $\mathrm{x}=3$ and $\mathrm{y}=2$.

10. Question

Solve the following system of linear equations graphically:
$3 x-5 y=19,3 y-7 x+1=0$
Does the point $(4,9)$ lie on any of the lines? Write its equation.

Answer

The given equation is $3 x-5 y=19$
and $3 y-7 x+1=0$ or $7 x-3 y=1$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 x-5 y=19$ or $y=\frac{3 x-19}{5}$

x	0	6.33	-2
$y=\frac{3 x-19}{5}$	-3.8	0	-5

Now, table for $7 x-3 y=1$ or $y=\frac{7 x-1}{3}$

x	1	0	4
$y=\frac{7 x-1}{3}$	2	-0.33	9

From the graph, it is clear that lines represented by the equations $3 x-5 y=$ 19 and $7 \mathrm{x}-3 \mathrm{y}-1=0$ are intersecting at a point C i.e. $(-2,-5)$.

Yes, point $(4,9)$ lie on $3 y-7 x+1=0$.

11. Question

Solve the following system of linear equations graphically: $2 x-3 y=1,3 x-$ $4 y=1$ Does the point $(3,2)$ lie on any of the lines? Write its equation.

Answer

The given equation is
$2 x-3 y=1$
and $3 x-4 y=1$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}-3 \mathrm{y}=1$ or $\mathrm{y}=\frac{2 \mathrm{x}-1}{3}$

x	0.5	0	3
$y=\frac{2 x-1}{3}$	0	-0.33	2

Now, table for $3 x-4 y=1$ or $y=\frac{3 x-1}{4}$

x	0	0.33	-1
$y=\frac{3 x-1}{4}$	-0.25	0	-1

Here, the lines intersecting at point F i.e. $(-1,-1)$

Yes, point $(3,2)$ lie on the line $3 x-4 y=1$

12 A. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$x-2 y=-3$
$2 x+y=4$

Answer

The given equation is
$x-2 y=-3$
and $2 \mathrm{x}+\mathrm{y}=4$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $x-2 y=-3$ or $y=\frac{x+3}{2}$

x	0	-3	1
$y=\frac{x+3}{2}$	1.5	0	2

Now, table for $2 \mathrm{x}+\mathrm{y}=4$ or $\mathrm{y}=4-2 \mathrm{x}$

x	2	0	1
$y=4-2 x$	0	4	2

Here, the lines intersecting at point C i.e. $(1,2)$
The points which intersect the x axis are $B(-3,0)$ and $E(2,0)$

12 B. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$2 x+3 y=8$
$x-2 y=-3$

Answer

The given equation is
$2 x+3 y=8$
and $x-2 y=-3$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 x+3 y=8$ or $y=\frac{8-2 x}{3}$

x	0	4	1
$y=\frac{x+3}{2}$	$\frac{8}{3}$	0	2

Now, table for $x-2 y=-3$ or $y=\frac{x+3}{2}$

x	-1	-3	1
$y=4-2 x$	-1	0	2

Here, the lines intersecting at point C i.e. (1,2)
The points which intersect at x axis are $\mathrm{B}(4,0)$ and $\mathrm{E}(-3,0)$.

12 C. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$x+2 y=5$
$2 x-3 y=-4$

Answer

The given equation is
$x+2 y=5$
and $2 \mathrm{x}-3 \mathrm{y}=-4$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $x+2 y=5$ or $y=\frac{5-x}{2}$

x	0	5	1
$y=\frac{5-x}{2}$	$\frac{5}{2}$	0	2

Now, table for $2 x-3 y=-4$ or $y=\frac{2 x+4}{3}$

x	0	-2	1
$y=\frac{2 x+4}{3}$	$\frac{4}{3}$	0	2

Here, the lines intersecting at point C i.e. (1,2)
The points which intersect the x axis are $\mathrm{B}(5,0)$ and $\mathrm{E}(-2,0)$

12 D. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$x-y+1=0$
$4 x+3 y=24$
Answer
The given equation is
$x-y+1=0$
and $4 x+3 y=24$ or $x+\frac{3}{4} y=6$

Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $x-y+1=0$ or $y=x+1$

x	0	-1	3
$y=x+1$	1	0	4

Now, table for $4 \mathrm{x}+3 \mathrm{y}=24$ or $\mathrm{y}=\frac{4 \mathrm{x}-24}{3}$

x	0	6	3
$y=\frac{4 x-24}{3}$	8	0	4

Here, the lines intersecting at point C i.e. (3,4)
The points which intersect the x axis are $B(-1,0)$ and $E(6,0)$

12 E. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$x+2 y=1$
$x-2 y=7$

Answer

The given equation is
$x+2 y=1$
and $x-2 y=7$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{x}+2 \mathrm{y}=1$ or $\mathrm{y}=\frac{1-\mathrm{x}}{2}$

x	0	1	4
$y=\frac{1-x}{2}$	$\frac{1}{2}$	0	$\frac{-3}{2}$

Now, table for $x-2 y=7$ or $y=\frac{x-7}{2}$

x	0	7	4
$y=\frac{x-7}{2}$	$\frac{-7}{2}$	0	$\frac{-3}{2}$

Here, the lines intersecting at point B i.e. (4, - 1.5)
The points which intersect the x axis are $\mathrm{B}(1,0)$ and $\mathrm{E}(7,0)$

12 F. Question

Solve the following system of equations graphically. Also find the points where the lines intersect x - axis.
$x+2 y=1$
$x-2 y=-7$

Answer

The given equation is
$x+2 y=1$
and $x-2 y=-7$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{x}+2 \mathrm{y}=1$ or $\mathrm{y}=\frac{1-\mathrm{x}}{2}$

x	0	1	-3
$y=\frac{1-x}{2}$	$\frac{1}{2}$	0	2

Now, table for $x-2 y=-7$ or $y=\frac{x+7}{2}$

x	0	-7	-3
$y=\frac{x+7}{2}$	$\frac{7}{2}$	0	2

Here, the lines intersecting at point B i.e. ($-3,2$)
The points which intersect the x axis are $\mathrm{B}(1,0)$ and $\mathrm{E}(-7,0)$

13 A. Question

Solve the following system of equations graphically. Also find the points where the lines meet the y - axis.
$2 x-y=4$
$3 y-x=3$

Answer

The given equation is
$2 x-y=4$
and $3 y-x=3$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}-\mathrm{y}=4$ or $\mathrm{y}=2 \mathrm{x}-4$

x	0	2	3
$y=2 x-4$	-4	0	2

Now, table for $3 y-x=3$ or $y=\frac{x+3}{3}$

x	0	-3	3
$y=\frac{x+3}{3}$	1	0	2

Here, the lines intersecting at point C, i.e. $(3,2)$
The point which intersects at y axis are $A(0,-4)$ and $D(0,1)$

13 B. Question

Solve the following system of equations graphically. Also find the points where the lines meet the y - axis.
$2 x+3 y-12=0$
$2 x-y-4=0$

Answer

The given equation is
$2 x+3 y=12$
and $2 \mathrm{x}-\mathrm{y}-4=0$

Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 x+3 y=12$ or $y=\frac{12-x}{3}$

x	0	6	3
$y=\frac{12-x}{3}$	4	0	2

Now, table for $2 \mathrm{x}-\mathrm{y}-4=0$ or $\mathrm{y}=2 \mathrm{x}-4$

x	0	2	3
$y=2 x-4$	-4	0	2

Here, the lines intersecting at point C, i.e. $(3,2)$
The points which intersects at y axis is $A(0,4)$ and $D(0,-4)$

13 C. Question

Solve the following system of equations graphically. Also find the points where the lines meet the y - axis.
$2 x-y-5=0$
$x-y-3=0$

Answer

The given equation is
$2 x-y=5$
and $\mathrm{x}-\mathrm{y}=3$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}-\mathrm{y}=5$ or $\mathrm{y}=2 \mathrm{x}-5$

x	0	$5 / 2$	2
$y=2 x-5$	-5	0	-1

Now, table for $\mathrm{x}-\mathrm{y}=3$ or $\mathrm{y}=\mathrm{x}-3$

x	0	3	2
$y=x-3$	-3	0	-1

Here, the lines intersecting at point C, i.e. $(2,-1)$
The point which intersects at y axis are $A(0,-5)$ and $D(0,-3)$

13 D. Question

Solve the following system of equations graphically. Also find the points where the lines meet the y - axis.
$2 x-y-4=0$
$x+y+1=0$

Answer

The given equation is
$2 x-y=4$
and $x+y+1=0$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}-\mathrm{y}=4$ or $\mathrm{y}=2 \mathrm{x}-4$

x	0	2	1
$y=2 x-4$	-4	0	-2

Now, table for $\mathrm{x}+\mathrm{y}+1=0$ or $\mathrm{y}=-(\mathrm{x}+1)$

x	0	-1	1
$y=-(x+1)$	-1	0	-2

Here, the lines intersecting at point C, i.e. $(1,-2)$
The point which intersects at y axis are $A(0,-4)$ and $D(0,-1)$

13 E. Question

Solve the following system of equations graphically. Also find the points where the lines meet the y - axis.
$3 x+y-5=0$
$2 x-y-5=0$

Answer

The given equation is
$3 x+y=5$
and $2 \mathrm{x}-\mathrm{y}=5$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 \mathrm{x}+\mathrm{y}=5$ or $\mathrm{y}=5-3 \mathrm{x}$

x	0	1	2
$y=5-3 x$	5	2	-1

Now, table for $2 \mathrm{x}-\mathrm{y}=5$ or $\mathrm{y}=2 \mathrm{x}+5$

x	0	1	2
$y=2 x+5$	-5	-3	-1

Here, the lines intersecting at point C i.e. $(2,-1)$
The point which is intersect at y axis are $A(0,5)$ and $D(0,-5)$

14 A. Question

Solve the following system of linear equations graphically.
$3 x+2 y-4=0$
$2 x-3 y-7=0$
Shade the region bounded by the lines and the x - axis.

Answer

The given equation is
$3 x+2 y=4$
and $2 x-3 y=7$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 x+2 y=4$ or $y=\frac{4-3 x}{2}$

x	0	$\frac{4}{3}=1.33$	2
$\mathrm{y}=\frac{4-3 \mathrm{x}}{2}$	2	0	-1

Now, table for $2 \mathrm{x}-3 \mathrm{y}=7$ or $\mathrm{y}=\frac{2 \mathrm{x}-7}{3}$

x	0	$\frac{7}{2}$	2
$y=\frac{2 x-7}{3}$	$\frac{-7}{3}$	0	-1

Here, the lines intersecting at a point C i.e. $(2,-1)$.
14 B. Question

Solve the following system of linear equations graphically.
$3 x-2 y-1=0$
$2 x-3 y+6=0$
Shade the region bounded by the lines and the x - axis.

Answer

The given equation is
$3 x-2 y=1$
and $2 x-3 y=-6$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 x-2 y=1$ or $y=\frac{3 x-1}{2}$

x	0	$\frac{1}{3}=0.33$	3
$\mathrm{y}=\frac{3 \mathrm{x}-1}{2}$	-0.5	0	4

Now, table for $2 x-3 y=-6$ or $y=\frac{2 x+6}{3}$

x	0	-3	3
$y=\frac{2 x+6}{3}$	2	0	4

Here, the lines intersecting at a point C, i.e. $(3,4)$.

15 A1. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and x - axis; also find the area of the shaded region.
$2 x+y=6$
$2 x-y=0$

Answer

The given equation is
$2 x+y=6$
and $2 \mathrm{x}-\mathrm{y}=0$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}+\mathrm{y}=6$ or $\mathrm{y}=2 \mathrm{x}-6$

x	0	3	1.5
$y=2 x-6$	6	0	3

Now, table for $2 \mathrm{x}-\mathrm{y}=0$ or $\mathrm{y}=2 \mathrm{x}$

x	1	2	1.5
$y=2 x$	2	4	3

Here, the lines are intersecting at a point $C\left(\frac{3}{2}, 3\right)$.
The coordinates of the vertices of $\Delta \mathrm{COB}$ are $\mathrm{C}\left(\frac{3}{2}, 3\right), \mathrm{O}(0,0)$ and $\mathrm{B}(3,0)$.
Area $=A=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 3 \times 3=\frac{9}{2}=4.5$ sq. units

15 A2. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and x - axis; also find the area of the shaded region.
$2 x+3 y=-5$
$3 x-2 y=12$
Answer

The given equation is
$2 x+3 y=-5$
and $3 x-2 y=12$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 x+3 y=-5$ or $y=\frac{-(2 x+5)}{3}$

x	-1	$-\frac{1}{2}$	2
$y=\frac{-(2 x+5)}{3}$	-1	0	-3

Now, table for $3 \mathrm{x}-2 \mathrm{y}=12$ or $\mathrm{y}=\frac{3 \mathrm{x}-12}{2}$

x	4	0	2
$y=\frac{3 x-12}{2}$	0	-6	-3

Here, the lines are intersecting at a point $C(2,-3)$.

The coordinates of the vertices of $\triangle \mathrm{CBD}$ are $\mathrm{C}(2,-3), \mathrm{B}\left(-\frac{5}{2}, 0\right)$ and $\mathrm{D}(4,0)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times \frac{13}{2} \times 3\left(\because\right.$, base $\left.=\left(4-\left(\frac{5}{2}\right)\right)=\frac{13}{2}\right)$
$=\frac{39}{4}$ sq. units

15 A3. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and x - axis; also find the area of the shaded region.
$4 x-3 y+4=0$
$4 x+3 y-20=0$

Answer

The given equation is
$4 x-3 y=-4$
and $4 x+3 y=20$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $4 x-3 y=-4$ or $y=\frac{4 x+4}{3}$

x	-1	0	2
$y=\frac{4 x+4}{3}$	0	$\frac{4}{3}$	4

Now, table for $4 x+3 y=20$ or $y=\frac{20-4 x}{3}$

x	5	0	2
$y=\frac{20-4 x}{3}$	0	$\frac{20}{3}$	4

Here, the lines are intersecting at a point $C(2,4)$.
The coordinates of the vertices of $\Delta C A D$ are $C(2,4), A(-1,0)$ and $D(5,0)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 6 \times 4(\because$, base $=(5-(-1))=6)$
$=12$ sq.units

15 A4. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and x - axis; also find the area of the shaded region.
$2 x+y=6$
$2 x-y+2=0$

Answer

The given equation is
$2 x+y=6$
and $2 \mathrm{x}-\mathrm{y}=-2$

Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $2 \mathrm{x}+\mathrm{y}=6$ or $\mathrm{y}=2 \mathrm{x}-6$

x	3	0	4
$y=2 x-6$	0	6	-1.5

Now, table for $2 \mathrm{x}-\mathrm{y}=-2$ or $\mathrm{y}=2 \mathrm{x}+2$

x	-1	0	1
$y=2 x+2$	0	2	4

Here, the lines are intersecting at a point $C(1,4)$.
The coordinates of the vertices of $\Delta \mathrm{CAD}$ are $\mathrm{C}(1,4), \mathrm{A}(3,0)$ and $\mathrm{D}(-1,0)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 4 \times 4(\because$, base $=(3-(-1))=4)$
$=8$ sq.units

15 B1. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and y - axis. Also find the area of the shaded region.
$x-y=1$
$2 x+y=8$

Answer

The given equation is
$x-y=1$
and $2 x+y=8$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{x}-\mathrm{y}=1$ or $\mathrm{y}=\mathrm{x}-1$

x	1	0	3
$y=x-1$	0	-1	2

Now, table for $2 \mathrm{x}+\mathrm{y}=8$ or $\mathrm{y}=2 \mathrm{x}-8$

x	4	0	3
$y=2 x-8$	0	8	2

Here, the lines are intersecting at a point $C(3,2)$.
The coordinates of the vertices of $\Delta \mathrm{CBE}$ are $\mathrm{C}(3,2), \mathrm{B}(0,-1)$ and $\mathrm{E}(0,8)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 9 \times 3(\because$ base $=(8-(-1))=9)$
$=\frac{27}{2}$ sq. units

15 B2. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and y - axis. Also find the area of the shaded region.
$3 x+y-11=0$
$x-y-1=0$

Answer

The given equation is
$3 x+y=11$
and $\mathrm{x}-\mathrm{y}=1$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 \mathrm{x}+\mathrm{y}=11$ or $\mathrm{y}=3 \mathrm{x}-11$

x	$\frac{11}{3}$	0	3
$\mathrm{y}=\frac{1-\mathrm{x}}{2}$	0	11	2

Now, table for $\mathrm{x}-\mathrm{y}=1$ or $\mathrm{y}=\mathrm{x}-1$

x	1	0	3
$y=x-1$	0	-1	2

Here, the lines are intersecting at a point $\mathrm{C}(3,2)$.
The coordinates of the vertices of $\Delta \mathrm{CBE}$ are $\mathrm{C}(3,2), \mathrm{B}(0,11)$ and $\mathrm{E}(0,-1)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 12 \times 3(\because$, base $=(11-(-1))=12)$
$=18$ sq.units

15 B3. Question

Solve the following pair of linear equations graphically and shade the region bounded by these lines and y - axis. Also find the area of the shaded region.
$x+2 y-7=0$
$2 x-y-4=0$

Answer

The given equation is
$x+2 y=7$
and $2 x-y=4$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $x+2 y=7$ or $y=\frac{7-x}{2}$

x	7	0	4
$y=\frac{7-x}{2}$	0	$\frac{7}{2}$	$\frac{-3}{2}$

Now, table for $2 \mathrm{x}-\mathrm{y}=4$ or $\mathrm{y}=2 \mathrm{x}-4$

x	2	0	3
$y=2 x-4$	0	-4	2

Here, the lines are intersecting at a point $C(3,2)$.
The coordinates of the vertices of $\Delta C B D$ are $C(3,2), B\left(0, \frac{7}{2}\right)$ and $E(0,-4)$
Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times \frac{15}{2} \times 3\left(\because\right.$, base $\left.=\left(\left(\frac{7}{2}\right)-(-4)\right)=\frac{15}{2}\right)$
$=\frac{45}{4}$ sq. units

16 A. Question

Solve the following system of linear equations graphically. Also shade the region bounded by the lines and y - axis.
$4 x-y=4$
$3 x+2 y=14$

Answer

The given equation is
$4 x-y=4$
and $3 x+2 y=14$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $4 \mathrm{x}-\mathrm{y}=4$ or $\mathrm{y}=4 \mathrm{x}-4$

x	0	1	2
$y=4 x-4$	-4	0	4

Now, table for $3 \mathrm{x}+2 \mathrm{y}=14$ or $\mathrm{y}=\frac{14-3 \mathrm{x}}{2}$

x	0	$\frac{14}{3}$	2
$y=\frac{14-3 x}{2}$	7	0	4

Here, the lines are intersecting at point $\mathrm{C}(2,4)$.

16 B. Question

Solve the following system of linear equations graphically. Also shade the region bounded by the lines and y - axis.
$x-y=1$
$2 x+y=8$

Answer

The given equation is
$x-y=1$
and $2 \mathrm{x}+\mathrm{y}=8$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{x}-\mathrm{y}=1$ or $\mathrm{y}=\mathrm{x}-1$

x	1	0	3
$y=x-1$	0	-1	2

Now, table for $2 \mathrm{x}+\mathrm{y}=8$ or $\mathrm{y}=8-2 \mathrm{x}$

x	4	0	3
$y=8-2 x$	0	8	2

Here, the lines are intersecting at point $\mathrm{C}(3,2)$.
17. Question

Solve the following system of linear equations graphically:
$5 x-6 y+30=0 ; 5 x+4 y-20=0$
Also find the vertices of the triangle formed by the two lines and x - axis.

Answer

The given equation is
$5 x-6 y=-30$
and $5 x+4 y=20$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $5 x-6 y=-3$ or $y=\frac{5 x+3}{6}$

x	-6	6	0
$y=\frac{5 x+3}{6}$	0	10	5

Now, table for $5 \mathrm{x}+4 \mathrm{y}=20$ or $\mathrm{y}=\frac{20-5 \mathrm{x}}{4}$

x	4	-4	0
$y=\frac{20-5 x}{4}$	0	10	5

Here, the lines are intersecting at point $\mathrm{C}(0,5)$.
The coordinates of the vertices of $\triangle A C D$ are $A(-6,0), C(0,5)$ and $D(4,0)$

18. Question

Draw the graphs of the equations $3 x-y+9=0$ and $3 x+4 y-6=0$.
Also determine the vertices of the triangle formed by the lines and the $\mathrm{x}-$ axis.

Answer

The given equation is
$3 x-y=-9$
and $3 x+4 y=6$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 \mathrm{x}-\mathrm{y}=-9$ or $\mathrm{y}=3 \mathrm{x}+9$

x	-3	0	-2
$y=3 x+9$	0	9	3

Now, table for $3 x+4 y=6$ or $y=\frac{6-3 x}{4}$

x	0	2	-2
$y=\frac{6-3 x}{4}$	$\frac{3}{2}$	0	3

Here, the lines are intersecting at point $C(-2,3)$.
The coordinates of the vertices of $\triangle A C E$ are $A(-3,0), C(-2,3)$ and $E(2,0)$

19. Question

Draw the graphs of the following equations $3 x-4 y+6=0 ; 3 x+y-9=0$.
Also, determine the coordinates of the vertices of the triangle formed by these lines and the x - axis.

Answer

The given equation is
$3 x-4 y=-9$
and $3 x+y=9$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $3 x-4 y=-9$ or $y=\frac{3 x+9}{4}$

x	-2	0	4
$y=\frac{3 x+9}{4}$	0	1.5	3

Now, table for $3 \mathrm{x}+\mathrm{y}=9$ or $\mathrm{y}=9-3 \mathrm{x}$

x	3	0	2
$y=9-3 x$	0	9	3

Here, the lines are intersecting at point C $(2,3)$.
The coordinates of the vertices of $\triangle A C D$ are $A(-2,0), C(2,3)$ and $D(3,0)$

20 A. Question

Use a single graph paper and draw the graph of the following equations.
Obtain the vertices of the triangle so formed:
$2 y-x=8$
$5 y-x=14$
$y-2 x=1$

Answer

The given equation is
$-x+2 y=8$
$-x+5 y=14$
and $-2 \mathrm{x}+\mathrm{y}=1$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $-x+2 y=8$ or $y=\frac{8+x}{2}$

x	0	-8
$\mathrm{y}=\frac{3 \mathrm{x}+9}{4}$	4	0

Now, table for $-x+5 y=14$ or $y=\frac{14+x}{5}$

x	0	-14
$y=\frac{14+x}{5}$	$\frac{14}{5}$	0

Now, table for $-2 \mathrm{x}+\mathrm{y}=1$ or $\mathrm{y}=1+2 \mathrm{x}$

x	0	$\frac{-1}{2}$
$\mathrm{y}=1+2 \mathrm{x}$	1	0

The coordinates of the vertices of $\Delta P Q R$ are $P(-4,2), Q(2,5)$ and $R(1,3)$

20 B. Question

Use a single graph paper and draw the graph of the following equations. Obtain the vertices of the triangle so formed:
$y=x$
$\mathrm{Y}=2 \mathrm{x}$
$x+y=6$

Answer

The given equation is
$y=x$
$y=2 x$
and $x+y=6$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{y}=\mathrm{x}$

x	1	-1
$y=x$	1	-1

Now, table for $\mathrm{y}=2 \mathrm{x}$

x	1	-1
$y=9-3 x$	2	-2

Now, table for $\mathrm{x}+\mathrm{y}=6$ or $\mathrm{y}=6-\mathrm{x}$

x	0	6
$y=6-x$	6	0

The coordinates of the vertices of $\triangle P Q R$ are $P(0,0), Q(2,4)$ and $R(3,3)$

20 C. Question

Use a single graph paper and draw the graph of the following equations.
Obtain the vertices of the triangle so formed:
$y=x$
$3 y=x$
$x+y=8$

Answer

The given equation is
$y=x$
$3 y=x$
and $\mathrm{x}+\mathrm{y}=8$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $\mathrm{y}=\mathrm{x}$

x	1	-1
$y=x$	1	-1

Now, table for $3 \mathrm{y}=\mathrm{x}$

x	3	-3
$y=\frac{x}{3}$	1	-1

Now, table for $\mathrm{x}+\mathrm{y}=8$ or $\mathrm{y}=8-\mathrm{x}$

x	0	8
$y=8-x$	8	0

The coordinates of the vertices of $\Delta P Q R$ are $P(0,0), Q(4,4)$ and $R(6,2)$

11 A. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$2 x+3 y=7,(a+b) x+(2 a-b) y=3(a+b+1)$

Answer

Given, pair of equations
$2 x+3 y=7$
and $(a+b) x+(2 a-b) y=3(a+b+1)$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3$ and $\mathrm{c}_{1}=-7$
and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}), \mathrm{b}_{2}=(2 \mathrm{a}-\mathrm{b})$ and $\mathrm{c}_{2}=-(\mathrm{a}+\mathrm{b}+1)$
For infinitely many solutions,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \text { Here, } \frac{a_{1}}{a_{2}}=\frac{2}{a+b}, \frac{b_{1}}{b_{2}}=\frac{3}{2 a-b} \text { and } \frac{c_{1}}{c_{2}}=\frac{-7}{-3(a+b+1)} \\
& \therefore \frac{2}{a+b}=\frac{3}{2 a-b}=\frac{-7}{-3(a+b+1)} \\
& I \quad \text { II }
\end{aligned}
$$

On taking I and II terms, we get

$$
\begin{align*}
& \frac{2}{a+b}=\frac{3}{2 a-b} \\
& \Rightarrow 2(2 a-b)=3(a+b) \\
& \Rightarrow 4 a-2 b=3 a+3 b \\
& \Rightarrow 4 a-3 a-3 b-2 b=0 \\
& \Rightarrow a-5 b=0 \ldots(1) \tag{1}
\end{align*}
$$

On taking I and III terms, we get

$$
\begin{align*}
& \Rightarrow \frac{2}{a+b}=\frac{7}{3(a+b+1)} \\
& \Rightarrow 6(a+b+1)=7(a+b) \\
& \Rightarrow 6 a+6 b+6=7 a+7 b \\
& \Rightarrow 6 a-7 a+6 b-7 b=-6 \\
& \Rightarrow-a-b=-6 \\
& \Rightarrow a+b=6 \ldots(2) \tag{2}
\end{align*}
$$

Solving eq ${ }^{\mathrm{n}}$ (1) and (2), we get

$$
\begin{aligned}
& a-5 b=0 \\
& a+b=6 \\
& --- \\
& \hline-6 b=-6 \\
& \Rightarrow b=1
\end{aligned}
$$

Now, substituting the value of b in eq^{n} (2), we get
$\Rightarrow \mathrm{a}+\mathrm{b}=6$
$\Rightarrow \mathrm{a}+1=6$
$\Rightarrow \mathbf{a}=5$

21 B. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$(2 a-1) x-3 y=5,3 x+(b-2) y=3$

Answer

Given, pair of equations
$(2 a-1) x-3 y=5$
and $3 x+(b-2) y=3$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$, we get
$a_{1}=(2 a-1), b_{1}=-3$ and $c_{1}=-5$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{b}-2$ and $\mathrm{c}_{2}=3$
For infinitely many solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{2 a-1}{3}, \frac{b_{1}}{b_{2}}=\frac{-3}{b-2}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-3}=\frac{5}{3}$
$\therefore \frac{2 \mathrm{a}-1}{3}=\frac{-3}{\mathrm{~b}-2}=\frac{5}{3}$
I II III
On taking I and III terms, we get
$\frac{2 a-1}{3}=\frac{5}{3}$
$\Rightarrow 3(2 \mathrm{a}-1)=15$
$\Rightarrow 6 \mathrm{a}-3=15$
$\Rightarrow 6 \mathrm{a}=15+3$
$\Rightarrow \mathbf{a}=\frac{18}{6}=\mathbf{3}$
On taking II and III terms, we get
$\Rightarrow \frac{-3}{\mathrm{~b}-2}=\frac{5}{3}$
$\Rightarrow-9=5(b-2)$
$\Rightarrow 5 b-10=-9$
$\Rightarrow 5 \mathrm{~b}=-9+10$
$\Rightarrow \mathrm{b}=\frac{\mathbf{1}}{\mathbf{5}}$

21 C. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$k x+3 y-(k-3)=0,12 x+k y-k=0$

Answer

Given, pair of equations
$k x+3 y-(k-3)=0$
and $12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3$ and $\mathrm{c}_{1}=-(\mathrm{k}-3)$
and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=-\mathrm{k}$
For infinitely many solutions,

$$
\begin{align*}
& \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \\
& \text { Here, } \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{k}}{12}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{3}{\mathrm{k}} \text { and } \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-(\mathrm{k}-3)}{-\mathrm{k}}=\frac{(\mathrm{k}-3)}{\mathrm{k}} \\
& \therefore \frac{k}{12}=\frac{3}{k}=\frac{(k-3)}{k} \ldots(1) \tag{1}\\
& \text { I II III }
\end{align*}
$$

On taking I and II terms, we get
$\frac{\mathrm{k}}{12}=\frac{3}{\mathrm{k}}$
$\Rightarrow \mathrm{k}^{2}=36$
$\Rightarrow \mathrm{k}=\sqrt{ } 36$
$\Rightarrow \mathrm{k}= \pm 6$
But $k=-6$ not satisfies the last two terms of $e q^{n}(1)$
On taking II and III terms, we get
$\frac{3}{\mathrm{k}}=\frac{(\mathrm{k}-3)}{\mathrm{k}}$
$\Rightarrow 3 \mathrm{k}=\mathrm{k}(\mathrm{k}-3)$
$\Rightarrow 3 \mathrm{k}=\mathrm{k}^{2-3 \mathrm{k}}$
$\Rightarrow \mathrm{k}^{2}-3 \mathrm{k}-3 \mathrm{k}=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-6)=0$
$\Rightarrow \mathrm{k}=0$ and 6
Which satisfies the last two terms of eq ${ }^{\mathrm{n}}$ (1)
Hence, the required value of $k=0,6$

21 D. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$3 x+4 y=12,(a+b) x+2(a-b) y=5 a-1$

Answer

Given, pair of equations
$3 x+4 y=12$
and $(a+b) x+2(a-b) y=5 a-1$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=4$ and $\mathrm{c}_{1}=-12$
and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}), \mathrm{b}_{2}=2(\mathrm{a}-\mathrm{b})$ and $\mathrm{c}_{2}=-(5 \mathrm{a}-1)=1+5 \mathrm{a}$
$\mathrm{a}_{1}=3, \quad \mathrm{~b}_{1}=4, \mathrm{c}_{1}=-12$
and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}), \mathrm{b}_{2}=2(\mathrm{a}-\mathrm{b}), \mathrm{c}_{2}=-(5 \mathrm{a}-1)=1+5 \mathrm{a}$
For infinitely many solutions,

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \text { Here, } \frac{a_{1}}{a_{2}}=\frac{3}{a+b}, \frac{b_{1}}{b_{2}}=\frac{4}{2(a-b)} \text { and } \frac{c_{1}}{c_{2}}=\frac{-12}{-(5 a-1)}=\frac{12}{(5 a-1)} \\
& \therefore \frac{3}{a+b}=\frac{4}{2(a-b)}=\frac{-12}{-(5 a-1)} \\
& \text { I II } \quad \text { III }
\end{aligned}
$$

On taking I and II terms, we get

$$
\begin{align*}
& \frac{3}{a+b}=\frac{4}{2(a-b)} \\
& \Rightarrow 6(a-b)=4(a+b) \\
& \Rightarrow 6 a-6 b=4 a+4 b \\
& \Rightarrow 6 a-4 a-6 b-4 b=0 \\
& \Rightarrow 2 a-10 b=0 \\
& \Rightarrow a-5 b=0 \ldots(1) \tag{1}
\end{align*}
$$

On taking I and III terms, we get

$$
\begin{align*}
& \Rightarrow \frac{3}{a+b}=\frac{12}{5 a-1} \\
& \Rightarrow 3(5 a-1)=12(a+b) \\
& \Rightarrow 15 a-3=12 a+12 b \\
& \Rightarrow 15 a-12 a-12 b=3 \\
& \Rightarrow 3 a-12 b=3 \\
& \Rightarrow a-4 b=1 \ldots(2) \tag{2}
\end{align*}
$$

Solving eq ${ }^{\mathrm{n}}$ (1) and (2), we get

```
\(a-5 b=0\)
    \(a-4 b=1\)
    \(-\quad+\quad-\)
    \(-b=-1\)
\(\Rightarrow \mathbf{b}=\mathbf{1}\)
```

Now, substituting the value of b in $e q^{n}(2)$, we get
$\Rightarrow \mathrm{a}-4 \mathrm{~b}=1$
$\Rightarrow \mathrm{a}-4=1$
$\Rightarrow \mathbf{a}=1+4$
$\Rightarrow \mathbf{a}=5$

21 E. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$(a-1) x+3 y=2,6 x+(1-2 b) y=6$

Answer

Given, pair of equations
$(a-1) x+3 y=2$
and $6 x+(1-2 b) y=6$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=(\mathrm{a}-1), \mathrm{b}_{1}=3$ and $\mathrm{c}_{1}=-2$
and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=1-2 \mathrm{~b}$ and $\mathrm{c}_{2}=-6$
For infinitely many solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{a-1}{6}, \frac{b_{1}}{b_{2}}=\frac{3}{1-2 b}$ and $\frac{c_{1}}{c_{2}}=\frac{-2}{-6}=\frac{1}{3}$
$\therefore \frac{\mathrm{a}-1}{6}=\frac{3}{1-2 \mathrm{~b}}=\frac{1}{3}$
I II III

On taking I and III terms, we get
$\frac{a-1}{6}=\frac{1}{3}$
$\Rightarrow 3(a-1)=6$
$\Rightarrow 3 \mathrm{a}-3=6$
$\Rightarrow 3 \mathrm{a}=6+3$
$\Rightarrow \mathbf{a}=\frac{9}{3}=\mathbf{3}$
On taking II and III terms, we get
$\Rightarrow \frac{3}{1-2 b}=\frac{1}{3}$
$\Rightarrow 9=1-2 b$
$\Rightarrow-2 \mathrm{~b}=9-1$
$\Rightarrow-2 \mathrm{~b}=8$
$\Rightarrow \mathrm{b}=-4$

21 F. Question

Find the values of a and b for which the following system of linear equations has infinitely many solutions:
$2 x+3 y=7,(a+b+1) x+(a+2 b+2) y=4(a+b)+1$

Answer

Given, pair of equations
$2 x+3 y=7$
and $(a+b+1) x+(a+2 b+2) y=4(a+b)+1$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3$ and $\mathrm{c}_{1}=-7$
and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}+1), \mathrm{b}_{2}=(\mathrm{a}+2 \mathrm{~b}+2)$ and $\mathrm{c}_{2}=-\{4(\mathrm{a}+\mathrm{b})+1\}$
For infinitely many solutions,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Here, $\frac{a_{1}}{a_{2}}=\frac{2}{a+b+1}, \frac{b_{1}}{b_{2}}=\frac{3}{a+2 b+2}$ and $\frac{c_{1}}{c_{2}}=\frac{-7}{-\{4(a+b)+1\}}$
$\therefore \frac{2}{a+b+1}=\frac{3}{a+2 b+2}=\frac{7}{\{4(a+b)+1\}}$
I
II
III

On taking I and II terms, we get

$$
\begin{aligned}
& \frac{2}{a+b+1}=\frac{3}{a+2 b+2} \\
& \Rightarrow 2(a+2 b+2)=3(a+b+1) \\
& \Rightarrow 2 a+4 b+4=3 a+3 b+3 \\
& \Rightarrow 2 a-3 a-3 b+4 b=3-4 \\
& \Rightarrow-a+b=-1 \\
& \Rightarrow a-b=1 \ldots(1)
\end{aligned}
$$

On taking I and III terms, we get

$$
\begin{align*}
& \Rightarrow \frac{2}{a+b+1}=\frac{7}{\{4(a+b)+1\}} \\
& \Rightarrow 2\{4(a+b)+1)\}=7(a+b+1) \\
& \Rightarrow 2(4 a+4 b+1)=7 a+7 b+7 \\
& \Rightarrow 8 a-7 a+8 b-7 b=-2+7 \\
& \Rightarrow a+b=5 \ldots(2) \tag{2}
\end{align*}
$$

Solving eq ${ }^{\mathrm{n}}$ (1) and (2), we get
$a-b=1$
$a+b=5$
$2 a=6$
$\Rightarrow \mathbf{a}=3$
Now, substituting the value of a in eq^{n} (1), we get
$\Rightarrow \mathrm{a}-\mathrm{b}=1$
$\Rightarrow 3-\mathrm{b}=1$
$\Rightarrow \mathrm{b}=2$

22 A. Question

For what value of a, the following system of linear equations has no solutions:
$a x+3 y=a-2,12 x+a y=a$

Answer

Given, pair of equations
$a x+3 y=a-2$
and $12 \mathrm{x}+\mathrm{ay}=\mathrm{a}$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=3$ and $\mathrm{c}_{1}=-(\mathrm{a}-2)$
and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{a}$ and $\mathrm{c}_{2}=-\mathrm{a}$
For no solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\therefore \frac{\mathrm{a}}{12}=\frac{3}{\mathrm{a}} \neq \frac{-(\mathrm{a}-2)}{-\mathrm{a}}$

I II III

On taking I and II terms, we get
$\frac{\mathrm{a}}{12}=\frac{3}{\mathrm{a}}$
$\Rightarrow \mathrm{a}^{2}=36$
$\Rightarrow \mathrm{a}=\sqrt{ } 36$
$\Rightarrow \mathrm{a}= \pm 6$

22 B. Question

For what value of a, the following system of linear equations has no solutions:
$x+2 y=5,3 x+a y+15=0$

Answer

Given, pair of equations
$x+2 y=5$
and $3 x+a y+15=0$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2$ and $\mathrm{c}_{1}=-5$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{a}$ and $\mathrm{c}_{2}=15$
For no solutions,

$$
\begin{array}{r}
\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \\
\therefore \quad \frac{1}{3}=\frac{2}{\mathrm{a}} \neq \frac{-5}{15} \\
\text { I II } \quad \text { III }
\end{array}
$$

On taking I and II terms, we get
$\frac{1}{3}=\frac{2}{a}$
$\Rightarrow \mathrm{a}=6$

22 C. Question

For what value of a, the following system of linear equations has no solutions:
$3 x+y=1,(2 a-1) x+(a-1) y=2 a+1$
Answer
Given, pair of equations
$3 x+y=1$
and $(2 a-1) x+(a-1) y=2 a+1$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$
and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=1$ and $\mathrm{c}_{1}=-1$
and $\mathrm{a}_{2}=(2 \mathrm{a}-1), \mathrm{b}_{2}=(\mathrm{a}-1)$ and $\mathrm{c}_{2}=-(2 \mathrm{a}+1)$
For no solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\therefore \frac{3}{2 a-1}=\frac{1}{a-1} \neq \frac{-1}{-(2 a+1)}$

I II
 III

On taking I and II terms, we get

$$
\begin{aligned}
& \frac{3}{2 a-1}=\frac{1}{a-1} \\
& \Rightarrow 3(a-1)=2 a-1 \\
& \Rightarrow 3 a-3=2 a-1 \\
& \Rightarrow 3 a-2 a=-1+3 \\
& \Rightarrow \mathbf{a}=2
\end{aligned}
$$

22 D. Question

For what value of a, the following system of linear equations has no solutions:
$(3 a+1) x+3 y-2=0,\left(a^{2}+1\right) x+(a-2) y-5=0$

Answer

Given, pair of equations
$(3 a+1) x+3 y-2=0$
and $\left(a^{2}+1\right) x+(a-2) y-5=0$
On comparing the given equation with standard form i.e. $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3 \mathrm{a}+1, \mathrm{~b}_{1}=3$ and $\mathrm{c}_{1}=-2$
and $\mathrm{a}_{2}=\mathrm{a}^{2}+1, \mathrm{~b}_{2}=\mathrm{a}-2$ and $\mathrm{c}_{2}=-5$
For no solutions,

$$
\begin{aligned}
& \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \\
& \therefore \quad \frac{3 a+1}{\left(a^{2}+1\right)}=\frac{3}{a-2} \neq \frac{-2}{-5} \\
& \mathrm{I} \quad \text { II } \quad \text { III }
\end{aligned}
$$

On taking I and II terms, we get

$$
\begin{aligned}
& \frac{3 a+1}{\left(a^{2}+1\right)}=\frac{3}{a-2} \\
& \Rightarrow(3 a+1)(a-2)=3\left(a^{2}+1\right) \\
& \Rightarrow 3 a^{2}-6 a+a-2=3 a^{2}+3 \\
& \Rightarrow-5 a=2+3 \\
& \Rightarrow \mathbf{a}=-\mathbf{1}
\end{aligned}
$$

23 A. Question

For what value of c , the following system of linear equations has infinite number of solutions:
$c x+3 y-(c-3)=0,12 x+c y-c=0$

Answer

Given, pair of equations
$c x+3 y-(c-3)=0$
and $12 \mathrm{x}+\mathrm{cy}-\mathrm{c}=0$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=\mathrm{c}, \mathrm{b}_{1}=3$ and $\mathrm{c}_{1}=-(\mathrm{c}-3)$
and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{c}$ and $\mathrm{c}_{2}=-\mathrm{c}$
For infinitely many solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{c}{12}, \frac{b_{1}}{b_{2}}=\frac{3}{c}$ and $\frac{c_{1}}{c_{2}}=\frac{-(c-3)}{-c}=\frac{c-3}{c}$
$\therefore \frac{c}{12}=\frac{3}{c}=\frac{c-3}{c}$
I II III
On taking I and III terms, we get
$\frac{\mathrm{c}}{12}=\frac{3}{\mathrm{c}}$
$\Rightarrow c^{2}=36$
$\Rightarrow c=\sqrt{36}$
$\Rightarrow \mathrm{c}= \pm 6$
But $c=-6$ not satisfies the eq ${ }^{n}(1)$
Hence, the required value of $c=6$.
23 B. Question
For what value of c , the following system of linear equations has infinite number of solutions:
$2 x+3 y=2,(c+2) x+(2 c+1) y=2(c-1)$

Answer

Given, pair of equations
$2 x+3 y=2$
and $(c+2) x+(2 c+1) y=2(c-1)$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3$ and $\mathrm{c}_{1}=-2$
and $\mathrm{a}_{2}=\mathrm{c}+2, \mathrm{~b}_{2}=2 \mathrm{c}+1$ and $\mathrm{c}_{2}=-2(\mathrm{c}-1)$
For infinitely many solutions,

$$
\begin{align*}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \text { Here, } \frac{a_{1}}{a_{2}}=\frac{2}{c+2}, \frac{b_{1}}{b_{2}}=\frac{3}{2 c+1} \text { and } \frac{c_{1}}{c_{2}}=\frac{-2}{-2(c-1)}=\frac{1}{c-1} \\
& \frac{2}{c+2}=\frac{3}{2 c+1}=\frac{1}{c-1} \ldots \text { (1) } \tag{1}\\
& \text { I II III }
\end{align*}
$$

On taking I and III terms, we get

$$
\begin{aligned}
& \frac{2}{c+2}=\frac{3}{2 c+1} \\
& \Rightarrow 2(2 c+1)=3(c+2) \\
& \Rightarrow 4 c+2=3 c+6 \\
& \Rightarrow 4 c-3 c=6-2
\end{aligned}
$$

$\Rightarrow \mathbf{c}=4$
Hence, the required value of $c=4$.

23 C. Question

For what value of c , the following system of linear equations has infinite number of solutions:
$x+(c+1) y=5,(c+1) x+9 y=8 c-1$

Answer

The pair of equations are:
$x+(c+1) y=5$
$(c+1) x+9 y=8 c-1$
These equations can be written as:
$x+(c+1) y-5=0$
$(c+1) x+9 y-(8 c-1)=0$
On comparing the given equation with standard form i.e.
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$a_{1}=1, b_{1}=c+1, c_{1}=-5$
$a_{2}=c+1, b_{2}=9, c_{2}=-(8 c-1)$
For infinitely many solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
So,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{\mathrm{c}+1}, \quad \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}+1}{9}, \quad \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-5}{-8 \mathrm{c}+1}$
So,
$\frac{1}{c+1}=\frac{c+1}{9}=\frac{-5}{-8 c+1}$
(I) (II)
(III)
\Rightarrow From (I) and (II)

$$
\begin{aligned}
& \frac{1}{c+1}=\frac{c+1}{9} \\
& \Rightarrow 9=(c+1)^{2} \\
& \Rightarrow 9=c^{2}+1+2 c \\
& \Rightarrow 9-1=c^{2}+2 c \\
& \Rightarrow 8=c^{2}+2 c \\
& \Rightarrow c^{2}+2 c-8=0
\end{aligned}
$$

Factorize by splitting the middle term,

$$
\begin{aligned}
& c^{2}+4 c-2 c-8=0 \\
& \Rightarrow c(c+4)-2(c+4)=0 \\
& \Rightarrow(c+4)(c-2)=0 \\
& \Rightarrow c=-4, c=2
\end{aligned}
$$

From (II) and (III)

$$
\begin{aligned}
& \frac{\mathrm{c}+1}{9}=\frac{-5}{-8 \mathrm{c}+1} \\
& \Rightarrow(\mathrm{c}+1)(-8 \mathrm{c}=1)=-5 \times 9 \\
& \Rightarrow-8 \mathrm{c}^{2}+\mathrm{c}-8 \mathrm{c}+1=-45 \\
& \Rightarrow-8 \mathrm{c}^{2}+\mathrm{c}-8 \mathrm{c}+1+45=0 \\
& \Rightarrow-8 \mathrm{c}^{2}-7 \mathrm{c}+46=0 \\
& \Rightarrow 8 \mathrm{c}^{2}+7 \mathrm{c}-46=0 \\
& \Rightarrow 8 \mathrm{c}^{2}-16 \mathrm{c}+23 \mathrm{c}-46=0 \\
& \Rightarrow 8 \mathrm{c}(\mathrm{c}-2)+23(\mathrm{c}-2)=0 \\
& \Rightarrow(8 \mathrm{c}+23)(\mathrm{c}-2)=0 \\
& \Rightarrow \mathrm{c}=-23 / 8 \text { and } \mathrm{c}=2
\end{aligned}
$$

From (I) and (III)

$$
\begin{aligned}
& \frac{1}{c+1}=\frac{-5}{-8 c+1} \\
& \Rightarrow-8 c+1=-5(c+1)
\end{aligned}
$$

$\Rightarrow-8 c+1=-5 c-5$
$\Rightarrow-8 c+5 c=-5-1$
$\Rightarrow-3 \mathrm{c}=-6$
$\Rightarrow \mathrm{c}=2$
So the value of $\mathrm{c}=2$.

23 D. Question

For what value of c, the following system of linear equations has infinite number of solutions:
$(c-1) x-y=5,(c+1) x+(1-c) y=3 c+1$

Answer

The pair of equations are:
$(c-1) x-y=5$
$(c+1) x+(1-c) y=3 c+1$
These equations can be written as:
$(c-1) x-y-5=0$
$(c+1) x+(1-c) y-(3 c+1)$
On comparing the given equation with standard form i.e.
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=\mathrm{c}-1, \mathrm{~b}_{1}=-1, \mathrm{c}_{1}=-5$
$\mathrm{a}_{2}=\mathrm{c}+1, \mathrm{~b}_{2}=1-\mathrm{c}, \mathrm{c}_{2}=-(3 \mathrm{c}+1)$
For infinitely many solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
So,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{c}-1}{\mathrm{c}+1}, \quad \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-1}{1-\mathrm{c}}, \quad \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-5}{-3 \mathrm{c}-1}$
So,

$$
\frac{c-1}{c+1}=\frac{-1}{1-c}=\frac{-5}{-3 c-1}
$$

(I) (II) (III)

From (I) and (II)

$$
\begin{aligned}
& \frac{\mathrm{c}-1}{\mathrm{c}+1}=\frac{-1}{1-\mathrm{c}} \\
& \Rightarrow(\mathrm{c}-1)(1-\mathrm{c})=-(\mathrm{c}+1) \\
& \Rightarrow \mathrm{c}-\mathrm{c}^{2}-1+\mathrm{c}=-\mathrm{c}-1 \\
& \Rightarrow \mathrm{c}-\mathrm{c}^{2}-1+\mathrm{c}+\mathrm{c}+1=0 \\
& \Rightarrow 3 \mathrm{c}-\mathrm{c}^{2}=0 \\
& \Rightarrow \mathrm{c}(3-\mathrm{c})=0 \\
& \Rightarrow \mathrm{c}=0, \mathrm{c}=3
\end{aligned}
$$

From (II) and (III)

$$
\begin{aligned}
& \frac{-1}{1-c}=\frac{-5}{-3 c-1} \\
& \Rightarrow-(-3 c-1)=-5(1-c) \\
& \Rightarrow 3 c+1=-5+5 c \\
& \Rightarrow 3 c+1+5-5 c=0 \\
& \Rightarrow 6-2 c=0 \\
& \Rightarrow 6=2 c \\
& \Rightarrow c=3
\end{aligned}
$$

From (I) and (III)

$$
\begin{aligned}
& \frac{c-1}{c+1}=\frac{-5}{-3 c-1} \\
& \Rightarrow(c-1)(-3 c-1)=-5(c+1) \\
& \Rightarrow-3 c^{2}-c+3 c+1=-5 c-5 \\
& \Rightarrow-3 c^{2}-c+3 c+1+5 c+5=0 \\
& \Rightarrow-3 c^{2}+7 c+6=0 \\
& \Rightarrow 3 c^{2}-7 c-6=0
\end{aligned}
$$

$\Rightarrow 3 c^{2}-9 c+2 c-6=0$
$\Rightarrow 3 \mathrm{c}(\mathrm{c}-3)+2(\mathrm{c}-3)=0$
$\Rightarrow(3 c+2)(c-3)=0$
$\Rightarrow c=-2 / 3$ and $c=3$
Hence the value of c is 3 .

24. Question

Solve the following system of equations graphically. Also determine the vertices of the triangle formed by the lines and y - axis.
$4 x-5 y-20=0,3 x+5 y-15=0$

Answer

The given equation is
$4 x-5 y=20$
and $3 x+5 y=15$
Now, let us find atleast two solutions of each of the above equations, as shown in the following tables.

Table for $4 x-5 y=20$ or $y=\frac{4 x-20}{5}$

x	0	5
$y=\frac{4 x-20}{5}$	-4	0

Now, table for $3 x+5 y=15$ or $y=\frac{15-3 x}{5}$

x	0	5
$y=\frac{15-3 x}{5}$	3	0

Here, the lines are intersecting at point $C(5,0)$.
The coordinates of the vertices of $\Delta \mathrm{ABC}$ are $\mathrm{A}(0,-4), \mathrm{B}(0,3)$ and $\mathrm{C}(5,0)$

25 A. Question

Find the value of a for which the following system of equations has unique solution:
$a x+2 y=5,3 x+y=1$

Answer

Given, pair of equations
$a x+2 y=5$
and $3 x+y=1$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=2$ and $\mathrm{c}_{1}=-5$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=1$ and $\mathrm{c}_{2}=-1$
For unique solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$

Here, $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{1}$
$\therefore \frac{a}{3} \neq \frac{2}{1}$ I II
On taking I and II terms, we get
$\frac{a}{3} \neq \frac{2}{1}$
$\Rightarrow \mathrm{a} \neq 6$
Thus, given lines have a unique solution for all real values of \mathbf{a}, except 6 .

25 B. Question

Find the value of a for which the following system of equations has unique solution:
$9 x+p y-1=0,3 x+4 y-2=0$

Answer

Given, pair of equations
$9 x+p y-1=0$
and $3 x+4 y-2=0$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$a_{1}=9, b_{1}=p$ and $c_{1}=-1$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=4$ and $\mathrm{c}_{2}=-2$
For unique solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{9}{3}=3, \frac{b_{1}}{b_{2}}=\frac{p}{4}$
$\therefore 3 \neq \mathrm{p} / 4 \quad$ I \quad II
On taking I and II terms, we get
$\mathrm{p} \neq 12$
Thus, given lines have a unique solution for all real values of \mathbf{p}, except 12 .

25 C. Question

Find the value of a for which the following system of equations has unique solution:
$3 x+2 y=4, a x-y=3$

Answer

Given, pair of equations
$3 x+2 y=4$
and $\mathrm{ax}-\mathrm{y}=3$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=-2$ and $\mathrm{c}_{1}=-4$
and $\mathrm{a}_{2}=\mathrm{a}, \mathrm{b}_{2}=-1$ and $\mathrm{c}_{2}=-3$
For unique solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{3}{a}, \frac{b_{1}}{b_{2}}=-\frac{2}{1}$
$\therefore \begin{gathered}\frac{3}{a} \neq \frac{2}{-1} \\ \text { I }\end{gathered}$
On taking I and II terms, we get
$\frac{3}{a} \neq \frac{2}{-1}$
$\Rightarrow \mathrm{a} \neq-\frac{3}{2}$
Thus, given lines have a unique solution for all real values of \mathbf{a}, except $-\frac{3}{2}$.

25 D. Question

Find the value of a for which the following system of equations has unique solution:
$4 \mathrm{x}+\mathrm{py}+8=0,2 \mathrm{x}+2 \mathrm{y}+2=0$
Answer

Given, pair of equations
$4 x+p y+8=0$
and $2 x+2 y+2=0$
On comparing the given equation with standard form i.e. $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, we get
$\mathrm{a}_{1}=4, \mathrm{~b}_{1}=\mathrm{p}$ and $\mathrm{c}_{1}=8$
and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=2$
For unique solutions,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
Here, $\frac{a_{1}}{a_{2}}=\frac{4}{2}=2, \frac{b_{1}}{b_{2}}=\frac{p}{2}$
$\therefore \begin{gathered}2 \neq \frac{\mathrm{p}}{2} \\ \mathrm{I}\end{gathered}$

On taking I and II terms, we get
$2 \neq \frac{p}{2}$
$\Rightarrow \mathrm{p} \neq 4$
Thus, given lines have a unique solution for all real values of \mathbf{p}, except 4 .

26. Question

10 students of class X took part in mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Answer

Let the number of boys $=x$
and the number of girls $=y$
Now, table for $\mathrm{x}+\mathrm{y}-10=0$

x	0	10
$y=10-x$	10	0

Now, table for $\mathrm{x}-\mathrm{y}+4=0$

x	0	-4
y	4	0

On plotting points on a graph paper and join them to get a straight line representing $\mathrm{x}+\mathrm{y}-10=0$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $x-y+4=0$.

$\therefore \mathrm{x}=3, \mathrm{y}=7$ is the solution of the pair of linear equations.
Hence, the required number of boys is 3 and girls is 7 .

27. Question

Form the pair of linear equations in the following problems and find their solutions graphically. Two years ago, a father was five times as old as his son. Two years later, his age will be 8 more than three times the age of the son.

Answer

Let the present age of father $=x$ year
and the present age of his son = y year
Two years ago,

Father's age $=(x-2)$ year
His son's age $=(y-2)$ year
According to the question,
$\Rightarrow(\mathrm{x}-2)=5(\mathrm{y}-2)$
$\Rightarrow \mathrm{x}-2=5 \mathrm{y}-10$
$\Rightarrow x-5 y+8=0$
After two years,
Father's age $=(x+2)$ year
His son's age $=(y+2)$ year
According to the question,
$\Rightarrow(\mathrm{x}+2)=3(\mathrm{y}+2)+8$
$\Rightarrow x+2=3 y+6+8$
$\Rightarrow \mathrm{x}-3 \mathrm{y}-12=0$
Now, table for $\mathrm{x}-5 \mathrm{y}+8=0$

x	2	-8
$y=\frac{x+8}{5}$	2	0

Now, table for $\mathrm{x}-3 \mathrm{y}-12=0$

x	0	12
$y=\frac{x-12}{3}$	-4	0

On plotting points on a graph paper and join them to get a straight line representing $x-5 y+8=0$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $x-3 y-12=0$.

$\therefore \mathrm{x}=42, \mathrm{y}=10$ is the solution of the pair of linear equations.
Hence, the age of father is 42years and age of his son is 10 years.

28. Question

Champa went to a 'sale' to purchase some pants and skirts. When her friends asked her how many of each she had bought, she answered, "The number of skirts is two less than twice the number of pants purchased. Also the number of skirts is four less than tbur times the number of pants purchased". Find how many pants and skirts Champa bought?

Answer

Let the number of pants $=x$
and the number of skirts $=y$
According to the question
Number of skirts $=2$ (Number of pants) -2
$y=2 x-2 \ldots(i)$
Also, Number of skirts $=4$ (Number of pants) -4
$y=4 x-4 \ldots(i i)$
Substituting the value of $y=4 x-4$ in $^{2} q^{n}$ (i),we get
$4 \mathrm{x}-4=2 \mathrm{x}-2$
$\Rightarrow 4 \mathrm{x}-2 \mathrm{x}-4+2=0$
$\Rightarrow 2 \mathrm{x}=2$
$\Rightarrow \mathrm{x}=\mathbf{1}$

Now, substitute the value of x in eq^{n} (ii), we get
$\mathbf{y}=4(1)-4=\mathbf{0}$
$\therefore \mathrm{x}=1, \mathrm{y}=0$ is the solution of the pair of linear equations.
We can solve this problem through graphically also

Hence, the number of pants she purchased is 1 and the number of skirts, she purchased is zero i.e., she didn't buy any skirt.

29. Question

Priyanka purchased 2 pencils and 3 erasers for Rs. 9 . Sayeeda purchased 1 pencil and two erasers for Rs. 5. Find the cost of one pencil and one eraser.

Answer

Let the cost of one pencil = Rs x
and the cost of one eraser = Rs y
According to the question
$2 x+3 y=9 \ldots$ (i)
$x+2 y=5$
Now, table for $2 \mathrm{x}+3 \mathrm{y}=9$

x	0	4.5
$y=\frac{9-2 x}{3}$	3	0

Now, table for $\mathrm{x}+2 \mathrm{y}=5$

x	0	5
$y=\frac{5-x}{2}$	2.5	0

On plotting points on a graph paper and join them to get a straight line representing $2 x+3 y=9$.

Similarly, on plotting the points on the same graph paper and join them to get a straight line representing $x+2 y=5$.

$\therefore \mathrm{x}=3, \mathrm{y}=1$ is the solution of the pair of linear equations.
Hence, the cost of one pencil is Rs 3 and cost of one eraser is Rs 1 .

Exercise 3.2

1 A. Question

Solve the following pair of linear equations by substitution method:
$7 x-15 y=2$
$x+2 y=3$

Answer

Given equations are
$7 x-15 y=2 \ldots$ (i)
$x+2 y=3 \ldots$..(ii)
From eq ${ }^{\mathrm{n}}$ (ii), $\mathrm{x}=3-2 \mathrm{y} . . .(\mathrm{iii})$
On substituting $x=3-2 y$ in eq n (i), we get
$\Rightarrow 7(3-2 y)-15 y=2$
$\Rightarrow 21-14 y-15 y=2$
$\Rightarrow 21-29 y=2$
$\Rightarrow-29 y=-19$
$\Rightarrow \mathrm{y}=\frac{19}{29}$
Now, on putting $y=\frac{19}{29}$ in eq $^{\mathrm{n}}$ (iii), we get
$\Rightarrow \mathrm{x}=3-2\left(\frac{19}{29}\right)$
$\Rightarrow x=3-\frac{38}{29}$
$\Rightarrow \mathrm{x}=\frac{87-38}{29}$
$\Rightarrow x=\frac{49}{29}$
Thus, $\mathrm{x}=\frac{49}{29}$ and $\mathrm{y}=\frac{19}{29}$ is the required solution.

1 B. Question

Solve the following pair of linear equations by substitution method:
$x+y=14$
$x-y=4$

Answer

Given equations are
$x+y=14 \ldots$...(i)
$x-y=4$
From eq ${ }^{n}$ (ii), $x=4+y \ldots$ (iii)
On substituting $x=4+y$ in $e q^{n}$ (i), we get
$\Rightarrow 4+y+y=14$
$\Rightarrow 4+2 y=14$
$\Rightarrow 2 y=14-4$
$\Rightarrow 2 \mathrm{y}=10$
$\Rightarrow y=\frac{10}{2}=5$
Now, on putting $y=5$ in $^{\mathrm{eq}}{ }^{\mathrm{n}}$ (iii), we get
$\Rightarrow x=4+5$
$\Rightarrow \mathrm{x}=9$
Thus, $x=9$ and $y=5$ is the required solution.

1. Question

Solve the following pair of linear equations by substitution method:
$3 x-y=3$
$9 x-3 y=9$

Answer

Given equations are
$3 x-y=3 \ldots$...(i)
$9 x-3 y=9$
From eq^{n} (i), $\mathrm{y}=3 \mathrm{x}-3$
On substituting $y=3 x-3$ in eq^{n} (ii), we get
$\Rightarrow 9 \mathrm{x}-3(3 \mathrm{x}-3)=9$
$\Rightarrow 9 x-9 x+9=9$
$\Rightarrow 9=9$
This equality is true for all values of x, therefore given pair of equations have infinitely many solutions.

1 C. Question

Solve the following pair of linear equations by substitution method:
$0.5 x+0.8 y=3.4$
$0.6 x-0.3 y=0.3$

Answer

Given equations are
$0.5 x+0.8 y=3.4 \ldots$ (i)
$0.6 x-0.3 y=0.3$
From eq ${ }^{n}$ (ii), $2 \mathrm{x}-\mathrm{y}=1$
$y=2 x-1$.
On substituting $y=0.2 x-1$ in $^{\text {eq }}{ }^{n}$ (i), we get
$\Rightarrow 0.5 \mathrm{x}+0.8(2 \mathrm{x}-1)=3.4$
$\Rightarrow 0.5 \mathrm{x}+1.6 \mathrm{x}-0.8=3.4$
$\Rightarrow 2.1 \mathrm{x}=3.4+0.8$
$\Rightarrow 2.1 \mathrm{x}=4.2$
$\Rightarrow \mathrm{x}=\frac{4.2}{2.1}=2$
Now, on putting $x=2$ in eq^{n} (iii), we get
$\Rightarrow \mathrm{y}=2(2)-1$
$\Rightarrow y=4-1$
$\Rightarrow \mathrm{y}=3$
Thus, $x=2$ and $y=3$ is the required solution.

2 A. Question

Solve the following pair of linear equations by substitution method:
$x+y=a-b$
$a x-b y=a^{2}+b^{2}$

Answer

Given equations are
$x+y=a-b \ldots$.. i)
$a x-b y=a^{2}+b^{2}$
From eq ${ }^{\mathrm{n}}$ (i), $\mathrm{x}=\mathrm{a}-\mathrm{b}-\mathrm{y} \ldots$...iii)
On substituting $\mathrm{x}=\mathrm{a}-\mathrm{b}-\mathrm{y}$ in eq^{n} (ii), we get
$\Rightarrow \mathrm{a}(\mathrm{a}-\mathrm{b}-\mathrm{y})-\mathrm{by}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow \mathrm{a}^{2}-\mathrm{ab}-\mathrm{ay}-\mathrm{by}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow-a b-y(a+b)=b^{2}$
$\Rightarrow-y(a+b)=b^{2}+a b$
$\Rightarrow \mathrm{y}=\frac{\mathrm{b}^{2}+\mathrm{ab}}{-(\mathbf{a}+\mathbf{b})}$
$\Rightarrow \mathbf{y}=\frac{\mathbf{b}(\mathbf{b}+\mathbf{a})}{-(\mathbf{a}+\mathbf{b})}=-\mathbf{b}$
Now, on putting $\mathbf{y}=-\mathbf{b}$ in eq ${ }^{\mathrm{n}}$ (iii), we get
$\Rightarrow \mathrm{x}=\mathrm{a}-\mathrm{b}-(\mathrm{b})$
$\Rightarrow \mathbf{x}=\mathbf{a}$
Thus, $\mathbf{x}=\mathbf{a}$ and $\mathbf{y}=\mathbf{-} \mathbf{b}$ is the required solution.

2 B. Question

Solve the following pair of linear equations by substitution method:
$x+y=2 m$
$m x-n y=m^{2}+n^{2}$

Answer

Given equations are
$x+y=2 m \ldots(i)$
$m x-n y=m^{2}+n^{2}$
From eq ${ }^{\mathrm{n}}$ (i), $\mathrm{x}=2 \mathrm{~m}-\mathrm{y} \ldots$ (iii)
On substituting $x=2 m-y$ in $e q^{n}$ (ii), we get

$$
\begin{aligned}
& \Rightarrow m(2 m-y)-n y=m^{2}+n^{2} \\
& \Rightarrow 2 m^{2}-m y-n y=m^{2}+n^{2} \\
& \Rightarrow-y(m+n)=m^{2}-2 m^{2}+n^{2} \\
& \Rightarrow-y(m+n)=-m^{2}+n^{2} \\
& \Rightarrow y=\frac{n^{2}-m^{2}}{-(a+b)}\left(\because,\left(a^{2}-b^{2}\right)=(a-b)(a+b)\right)
\end{aligned}
$$

$\Rightarrow \mathrm{y}=\frac{(\mathrm{n}-\mathrm{m})(\mathrm{n}+\mathrm{m})}{-(\mathrm{n}+\mathrm{m})}$
$\Rightarrow \mathrm{y}=-(\mathrm{n}-\mathrm{m})=\mathrm{m}-\mathrm{n}$
Now, on putting $\mathbf{y}=\mathbf{m}-\mathbf{n}$ in eq ${ }^{\mathrm{n}}$ (iii), we get
$\Rightarrow \mathrm{x}=2 \mathrm{~m}-(\mathrm{m}-\mathrm{n})$
$\Rightarrow \mathrm{x}=2 \mathrm{~m}-\mathrm{m}+\mathrm{n}$
$\Rightarrow \mathbf{x}=\mathbf{m}+\mathbf{n}$
Thus, $\mathbf{x}=\mathbf{m}+\mathbf{n}$ and $\mathbf{y}=\mathbf{m} \mathbf{-} \mathbf{n}$ is the required solution.

3 A. Question

Solve the following system of equations by substitution method:
$\frac{x}{2}+y=0.8$
$x+\frac{y}{2}=\frac{7}{10}$

Answer

Given equations are
$\frac{x}{2}+y=0.8$
$\mathrm{x}+\frac{\mathrm{y}}{2}=\frac{7}{10} \ldots$
eq^{n} (i) can be re - written as,
$\Rightarrow \frac{\mathrm{x}}{2}+\mathrm{y}=0.8$
$\Rightarrow\left(\frac{x+2 y}{2}\right)=0.8 \Rightarrow x+2 y=0.8 \times 2$
$\Rightarrow x+2 y=1.6$...(iii)
On substituting $x=1.6-2 y$ in eq^{n} (ii), we get

$$
\begin{aligned}
& \Rightarrow 1.6-2 y+\frac{y}{2}=\frac{7}{10} \\
& \Rightarrow \frac{3.2-4 y+y}{2}=\frac{7}{10}
\end{aligned}
$$

$\Rightarrow 3.2-3 y=\frac{7}{10} \times 2$
$\Rightarrow-3 y=\frac{7}{10} \times 2-3.2$
$\Rightarrow-3 y=\frac{14}{10}-\frac{32}{10}$
$\Rightarrow-3 y=-\frac{18}{10}$
$\Rightarrow \mathrm{y}=\frac{18}{10} \times \frac{1}{3}$
$\Rightarrow y=\frac{6}{10}=0.6$
Now, putting the $\mathrm{y}=0.6$ in $^{\mathrm{eq}}{ }^{\mathrm{n}}$ (iii), we get
$\Rightarrow x+2 y=1.6$
$\Rightarrow \mathrm{x}+2(0.6)=1.6$
$\Rightarrow \mathrm{x}+1.2=1.6$
$\Rightarrow \mathrm{x}=0.4$
Thus, $\mathbf{x}=\mathbf{0 . 4}$ and $\mathbf{y}=\mathbf{0 . 6}$ is the required solution.

3 B. Question

Solve the following system of equations by substitution method:
$s-t=3$
$\frac{s}{3}+\frac{t}{2}=6$

Answer

Given equations are
$s-t=3$
$\frac{s}{3}+\frac{\mathrm{t}}{2}=6 \ldots(\mathrm{ii})$
From eq ${ }^{\mathrm{n}}$ (i), we get
$\Rightarrow \mathrm{s}=3+\mathrm{t} . .$. (iii)

On substituting $s=3+$ tin $^{\text {eq }}{ }^{\mathrm{n}}$ (ii), we get
$\Rightarrow \frac{3+\mathrm{t}}{3}+\frac{\mathrm{t}}{2}=6$
$\Rightarrow \frac{2(3+t)+3 t}{6}=6$
$\Rightarrow 6+2 t+3 t=6 \times 6$
$\Rightarrow 5 \mathrm{t}=36-6$
$\Rightarrow t=\frac{30}{5}=6$
Now, putting the $\mathrm{t}=6$ in eq^{n} (iii), we get
$\Rightarrow s=3+6$
$\Rightarrow \mathbf{s}=\mathbf{9}$
Thus, $\mathbf{s}=\mathbf{9}$ and $\mathbf{t}=\mathbf{6}$ is the required solution.

3 C. Question

Solve the following system of equations by substitution method:
$\frac{x}{a}+\frac{y}{b}=2, a \neq 0, b \neq 0$
$a x-b y=a^{2}-b^{2}$

Answer

Given equations are
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=2 \ldots$ (i)
$a x-b y=a^{2}-b^{2}$
eq^{n} (i) can be re - written as,
$\Rightarrow \frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=2$
$\Rightarrow\left(\frac{b x+a y}{a b}\right)=2$
$\Rightarrow b x+a y=a b \times 2$
$\Rightarrow \mathrm{bx}+\mathrm{ay}=2 \mathrm{ab}$
$\Rightarrow x=\frac{2 a b-a y}{b}$.
On substituting $x=\frac{2 a b-a y}{b}$ in $_{\mathrm{eq}}{ }^{\mathrm{n}}$ (ii), we get
$\Rightarrow a\left(\frac{2 a b-a y}{b}\right)-b y=a^{2}-b^{2}$
$\Rightarrow \frac{2 a^{2} b-a^{2} y}{b}-b y=a^{2}-b^{2}$
$\Rightarrow \frac{2 a^{2} b-a^{2} y-b^{2} y}{b}=a^{2}-b^{2}$
$\Rightarrow 2 a^{2} b-a^{2} y-b^{2} y=b\left(a^{2}-b^{2}\right)$
$\Rightarrow 2 \mathrm{a}^{2} \mathrm{~b}-\mathrm{y}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=\mathrm{a}^{2} \mathrm{~b}-\mathrm{b}^{3}$
$\Rightarrow-y\left(a^{2}+b^{2}\right)=a^{2} b-b^{3}-2 a^{2} b$
$\Rightarrow-y\left(a^{2}+b^{2}\right)=-a^{2} b-b^{3}$
$\Rightarrow-y\left(a^{2}+b^{2}\right)=-b\left(a^{2}+b^{2}\right)$
$\Rightarrow \mathbf{y}=\frac{-\mathrm{b}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}=\mathbf{b}$

Now, on putting $\mathbf{y}=\mathbf{b}$ in eq^{n} (iii), we get
$\Rightarrow x=\frac{2 a b-a b}{b}$
$\Rightarrow \mathbf{x}=\mathbf{a}$

Thus, $\mathbf{x}=\mathbf{a}$ and $\mathbf{y}=\mathbf{b}$ is the required solution.

3 D. Question

Solve the following system of equations by substitution method:
$\frac{b x}{a}+\frac{a y}{b}=a^{2}+b^{2}$
$x+y=2 a b$

Answer

Given equations are
$\frac{b x}{a}+\frac{a y}{b}=a^{2}+b^{2}$
$x+y=2 a b$
$e q^{n}$ (i) can be re - written as,
$\Rightarrow \frac{b x}{a}+\frac{a y}{b}=a^{2}+b^{2}$
$\Rightarrow\left(\frac{b^{2} x+a^{2} y}{a b}\right)=a^{2}+b^{2}$
$\Rightarrow b^{2} x+a^{2} y=a b \times\left(a^{2}+b^{2}\right)$
$\Rightarrow \mathrm{X}=\frac{\mathrm{ab} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)-\mathrm{a}^{2} \mathrm{y}}{\mathrm{b}^{2}} \ldots$ (iii)
Now, from $e q^{n}$ (ii), $y=2 a b-x$...(iv)
On substituting $y=2 a b-x$ in $e q^{n}$ (iii), we get

$$
\begin{aligned}
& \Rightarrow x=\frac{a b \times\left(a^{2}+b^{2}\right)-a^{2}(2 a b-x)}{b^{2}} \\
& \Rightarrow x=\frac{a^{3} b+b^{3} a-2 a^{3} b+a^{2} x}{b^{2}} \\
& \Rightarrow b^{2} x=b^{3} a-a^{3} b+a^{2} x \\
& \Rightarrow b^{2} x-a^{2} x=b^{3} a-a^{3} b \\
& \Rightarrow\left(b^{2}-a^{2}\right) x=a b\left(b^{2}-a^{2}\right) \\
& \Rightarrow x=a b
\end{aligned}
$$

Now, on putting $\mathbf{x}=\mathbf{a b}$ in eq^{n} (iv), we get
$\Rightarrow \mathrm{y}=2 \mathrm{ab}-\mathrm{ab}$
$\Rightarrow \mathbf{y}=\mathbf{a b}$
Thus, $\mathbf{x}=\mathbf{a b}$ and $\mathbf{y}=\mathbf{a b}$ is the required solution.

Exercise 3.3

1 A. Question

Solve the following system of equations by elimination method:
$3 x-5 y-4=0$
$9 x=2 y+7$

Answer

Given pair of linear equations is
$3 x-5 y-4=0$
And $9 x=2 y+7$
On multiplying Eq. (i) by 3 to make the coefficients of x equal, we get the equation as
$9 x-15 y-12=0$
On subtracting Eq. (ii) from Eq. (iii), we get
$9 x-15 y-12-9 x=0-2 y-7$
$\Rightarrow-15 y+2 y=-7+12$
$\Rightarrow-13 y=5$
$\Rightarrow y=-\frac{5}{13}$
On putting y $=-\frac{5}{13}$ in Eq. (ii), we get
$9 x=2\left(-\frac{5}{13}\right)+7$
$\Rightarrow 9 x=-\frac{10}{13}+7$
$\Rightarrow 9 x=\frac{-10+91}{13}$
$\Rightarrow 9 x=\frac{81}{13}$
$\Rightarrow x=\frac{81}{13 \times 9}$
$\Rightarrow \mathrm{x}=\frac{9}{13}$
Hence, $x=\frac{9}{13}$ and $=-\frac{5}{13}$, which is the required solution.

1 B. Question

Solve the following system of equations by elimination method:
$3 x+4 y=10$
$2 x-2 y=2$

Answer

Given pair of linear equations is
$3 x+4 y=10 \ldots(i)$
And $2 \mathrm{x}-2 \mathrm{y}=2$
On multiplying Eq. (i) by 2 and Eq. (ii) by 3 to make the coefficients of x equal, we get the equation as
$6 x+8 y=20 \ldots$ (iii)
$6 x-6 y=6$
On subtracting Eq. (iii) from Eq. (iv), we get
$6 x-6 y-6 x-8 y=6-20$
$\Rightarrow-14 y=-14$
$\Rightarrow \mathrm{y}=1$
On putting y = 1 in Eq. (ii), we get
$2 x-2(1)=2$
$\Rightarrow 2 \mathrm{x}-2=2$
$\Rightarrow \mathrm{x}=2$
Hence, $x=2$ and $y=1$, which is the required solution.

1 C. Question

Solve the following system of equations by elimination method:
$x+y=5$
$2 x-3 y=4$

Answer

Given pair of linear equations is
$x+y=5$
And $2 \mathrm{x}-3 \mathrm{y}=4$...(ii)

On multiplying Eq. (i) by 2 to make the coefficients of x equal, we get the equation as
$2 x+2 y=10 \ldots$ (iii)
On subtracting Eq. (ii) from Eq. (iii), we get
$2 x+2 y-2 x+3 y=10-4$
$\Rightarrow 5 y=6$
$\Rightarrow y=\frac{6}{5}$
On putting $y=\frac{6}{5}$ in Eq. (i), we get
$x+y=5$
$\Rightarrow x+\frac{6}{5}=5$
$\Rightarrow \mathrm{x}=\frac{25-6}{5}$
$\Rightarrow x=\frac{19}{5}$
Hence, $x=\frac{19}{5}$ and $=\frac{6}{5}$, which is the required solution.

1 D. Question

Solve the following system of equations by elimination method:
$2 x+3 y=8$
$4 x+6 y=7$

Answer

Given pair of linear equations is
$2 x+3 y=8$
And $4 \mathrm{x}+6 \mathrm{y}=7$...(ii)
On multiplying Eq. (i) by 2 to make the coefficients of x equal, we get the equation as
$4 x+6 y=16$
On subtracting Eq. (ii) from Eq. (iii), we get
$4 x+6 y-4 x-6 y=16-7$
$\Rightarrow 0=9$
Which is a false equation involving no variable.
So, the given pair of linear equations has no solution i.e. this pair of linear equations is inconsistent.

1 E. Question

Solve the following system of equations by elimination method:
$8 x+5 y=9$
$3 x+2 y=4$

Answer

Given pair of linear equations is
$8 x+5 y=9$
And $3 x+2 y=4$...(ii)
On multiplying Eq. (i) by 2 and Eq. (ii) by 5 to make the coefficients of y equal, we get the equation as
$16 x+10 y=18 \ldots(i i i)$
$15 x+10 y=20 \ldots$ (iv)
On subtracting Eq. (iii) from Eq. (iv), we get
$15 x+10 y-16 x-10 y=20-18$
$\Rightarrow-\mathrm{x}=2$
$\Rightarrow \mathrm{x}=-2$
On putting $x=-2$ in Eq. (ii), we get
$3 x+2 y=4$
$\Rightarrow 3(-2)+2 y=4$
$\Rightarrow-6+2 y=4$
$\Rightarrow 2 y=4+6$
$\Rightarrow 2 \mathrm{y}=10$
$\Rightarrow \mathrm{y}=\frac{10}{2}=5$

Hence, $x=-2$ and $=5$, which is the required solution.

1 F. Question

Solve the following system of equations by elimination method:
$2 x+3 y=46$
$3 x+5 y=74$

Answer

Given pair of linear equations is
$2 x+3 y=46$
And $3 x+5 y=74 \ldots$ (ii)
On multiplying Eq. (i) by 3 and Eq. (ii) by 2 to make the coefficients of x equal, we get the equation as
$6 x+9 y=138 \ldots$
$6 x+10 y=148$
On subtracting Eq. (iii) from Eq. (iv), we get
$6 x+10 y-6 x-9 y=148-138$
$\Rightarrow \mathrm{y}=10$
On putting y = 10 in Eq. (ii), we get
$3 x+5 y=74$
$\Rightarrow 3 \mathrm{x}+5(10)=74$
$\Rightarrow 3 \mathrm{x}+50=74$
$\Rightarrow 3 \mathrm{x}=74-50$
$\Rightarrow 3 \mathrm{x}=24$
$\Rightarrow \mathrm{x}=8$
Hence, $x=8$ and $y=10$, which is the required solution.

1 G. Question

Solve the following system of equations by elimination method:
$0.4 x-1.5 y=6.5$
$0.3 x+0.2 y=0.9$

Answer

Given pair of linear equations is
$0.4 x-1.5 y=6.5$
And $0.3 \mathrm{x}+0.2 \mathrm{y}=0.9$
On multiplying Eq. (i) by 3 and Eq. (ii) by 4 to make the coefficients of x equal, we get the equation as
$1.2 x-4.5 y=19.5$.
$1.2 x+0.8 y=3.6$
On subtracting Eq. (iii) from Eq. (iv), we get
$1.2 x+0.8 y-1.2 x+4.5 y=3.6-19.5$
$\Rightarrow 5.3 \mathrm{y}=-15.9$
$\Rightarrow y=-\frac{15.9}{5.3}$
$\Rightarrow \mathrm{y}=-3$
On putting $y=-3$ in Eq. (ii), we get
$0.3 x+0.2 y=0.9$
$\Rightarrow 0.3 \mathrm{x}+0.2(-3)=0.9$
$\Rightarrow 0.3 \mathrm{x}-0.6=0.9$
$\Rightarrow 0.3 \mathrm{x}=1.5$
$\Rightarrow \mathrm{x}=1.5 / 0.3$
$\Rightarrow \mathrm{x}=5$
Hence, $x=5$ and $y=-3$, which is the required solution.

1 H. Question

Solve the following system of equations by elimination method:

$$
\begin{aligned}
& \sqrt{2} x-\sqrt{3} y=0 \\
& \sqrt{ } 5 x+\sqrt{ } 2 y=0
\end{aligned}
$$

Answer

Given pair of linear equations is
$\sqrt{2} x-\sqrt{3} y=0$
And $\sqrt{5} x+\sqrt{2} y=0$
On multiplying Eq. (i) by $\sqrt{2}$ and Eq. (ii) by $\sqrt{3}$ to make the coefficients of y equal, we get the equation as
$2 x-\sqrt{6} y=0$
$\sqrt{ } 15 x+\sqrt{6} y=0$
On adding Eq. (iii) and (iv), we get
$2 x-\sqrt{6} y+\sqrt{ } 15 x+\sqrt{6} y=0$
$\Rightarrow 2 \mathrm{x}+\sqrt{ } 15 \mathrm{x}=0$
$\Rightarrow \mathrm{x}(2+\sqrt{15})=0$
$\Rightarrow \mathrm{x}=0$
On putting $x=0$ in Eq. (i), we get
$\sqrt{2} x-\sqrt{3} y=0$
$\Rightarrow \sqrt{2}(0)-\sqrt{3} y=0$
$\Rightarrow-\sqrt{3} y=0$
$\Rightarrow \mathrm{y}=0$
Hence, $\mathrm{x}=0$ and $\mathrm{y}=0$, which is the required solution.

1 I. Question

Solve the following system of equations by elimination method:
$2 x+5 y=1$
$2 x+3 y=3$

Answer

Given pair of linear equations is
$2 x+5 y=1 \ldots(i)$
And $2 x+3 y=3$
On subtracting Eq. (ii) from Eq. (i), we get
$2 x+3 y-2 x-5 y=3-1$
$\Rightarrow-2 y=2$
$\Rightarrow \mathrm{y}=-1$
On putting y = - 1 in Eq. (ii), we get
$2 x+3(-1)=3$
$\Rightarrow 2 \mathrm{x}-3=3$
$\Rightarrow 2 \mathrm{x}=6$
$\Rightarrow x=6 / 2$
$\Rightarrow \mathrm{x}=3$
Hence, $x=3$ and $y=-1$, which is the required solution.

2 A. Question

Solve the following system of equations by elimination method:
$3 x-\frac{8}{y}=5$
$x-\frac{y}{3}=3$

Answer

Given pair of linear equations is
$\frac{x}{2}+\frac{2 \mathrm{y}}{3}=-1 \ldots$ (i)
And $x-\frac{y}{3}=3$
On multiplying Eq. (ii) by 2 to make the coefficients of y equal, we get the equation as
$2 \mathrm{x}-\frac{2 \mathrm{y}}{3}=6 \ldots$ (iii)
On adding Eq. (i) and Eq. (ii), we get
$\frac{x}{2}+\frac{2 y}{3}+x-\frac{2 y}{3}=-1+6$
$\Rightarrow \frac{x}{2}+2 \mathrm{x}=5$
$\Rightarrow \frac{x+4 x}{2}=5$
$\Rightarrow \frac{5 x}{2}=5$
$\Rightarrow \mathrm{x}=2$
On putting $\mathrm{x}=2$ in Eq. (ii), we get
$x-\frac{y}{3}=3$
$\Rightarrow 2-\frac{y}{3}=3$
$\Rightarrow-\frac{y}{3}=3-2$
$\Rightarrow-\frac{y}{3}=1$
$\Rightarrow \mathrm{y}=-3$
Hence, $x=2$ and $y=-3$, which is the required solution.

2 B. Question

Solve the following system of equations by elimination method:
$\frac{x}{6}+\frac{y}{15}=4$
$\frac{x}{3}-\frac{y}{12}=\frac{19}{4}$

Answer

Given pair of linear equations is
$\frac{x}{6}+\frac{y}{15}=4$
And $\frac{x}{3}-\frac{y}{12}=\frac{19}{4} \ldots$ (ii)
On multiplying Eq. (ii) by $\frac{1}{2}$ to make the coefficients of x equal, we get the equation as
$\frac{x}{6}-\frac{y}{24}=\frac{19}{8}$.
On subtracting Eq. (ii) from Eq. (iii), we get
$\frac{x}{6}-\frac{y}{24}-\frac{x}{6}-\frac{y}{15}=\frac{19}{8}-4$
$\Rightarrow-\frac{y}{24}-\frac{y}{15}=\frac{19-32}{8}$
$\Rightarrow \frac{-5 y-8 y}{120}=\frac{19-32}{8}$
$\Rightarrow \frac{-13 y}{120}=\frac{-13}{8}$
$\Rightarrow \mathrm{y}=\frac{13}{8} \times \frac{120}{13}$
$\Rightarrow \mathrm{y}=15$
On putting y = 15 in Eq. (ii), we get
$\frac{x}{6}+\frac{y}{15}=4$
$\Rightarrow \frac{x}{6}+\frac{15}{15}=4$
$\Rightarrow \frac{x}{6}=4-1$
$\Rightarrow \frac{x}{6}=3$
$\Rightarrow \mathrm{x}=18$
Hence, $x=18$ and $y=15$, which is the required solution.

2 C. Question

Solve the following system of equations by elimination method:

$$
x+\frac{6}{y}=6
$$

$$
3 x-\frac{8}{y}=5
$$

Answer

Given pair of linear equations is
$x+\frac{6}{y}=6$...

And $3 x-\frac{8}{y}=5$
On multiplying Eq. (i) by 3 to make the coefficients of x equal, we get the equation as
$3 x+\frac{18}{y}=18$
On subtracting Eq. (ii) from Eq. (iii), we get
$3 x+\frac{18}{y}-3 x+\frac{8}{y}=18-5$
$\Rightarrow \frac{26}{y}=13$
$\Rightarrow \mathrm{y}=2$
On putting y $=2$ in Eq. (i), we get
$x+\frac{6}{y}=6$
$\Rightarrow x+\frac{6}{2}=6$
$\Rightarrow \mathrm{x}=3$

Hence, $x=3$ and $y=2$, which is the required solution.

3 A. Question

Solve the following equations by elimination method:
$37 x+43 y=123$
$43 x+37 y=117$

Answer

Given pair of linear equations is
$37 x+43 y=123$
And $43 x+37 y=117$...(ii)
On multiplying Eq. (i) by 43 and Eq. (ii) by 37 to make the coefficients of x equal, we get the equation as
$1591 x+1849 y=5289$
$1591 x+1369 y=4329 \ldots$ (iv)
On subtracting Eq. (iii) from Eq. (iv), we get
$\Rightarrow 1591 \mathrm{x}+1369 \mathrm{y}-1591 \mathrm{x}-1849 \mathrm{y}=4329-5289$
$\Rightarrow-480 y=-960$
$\Rightarrow \mathrm{y}=\frac{960}{480}$
$\Rightarrow \mathrm{y}=2$
On putting y $=2$ in Eq. (ii), we get
$\Rightarrow 43 x+37(2)=117 \Rightarrow 43 x+74=117$
$\Rightarrow 43 \mathrm{x}=117-74$
$\Rightarrow 43 x=43$
$\Rightarrow \mathrm{x}=1$
Hence, $x=1$ and $y=2$, which is the required solution.

3 B. Question

Solve the following equations by elimination method:
$217 x+131 y=913$
$131 x+217 y=827$

Answer

Given pair of linear equations is
$217 x+131 y=913$
And 131x $+217 y=827$...(ii)
On multiplying Eq. (i) by 131 and Eq. (ii) by 217 to make the coefficients of x equal, we get the equation as
$28427 x+17161 y=119603$
$28427 x+47089 y=179459$
On subtracting Eq. (iii) from Eq. (iv), we get
$\Rightarrow 28427 \mathrm{x}+47089 \mathrm{y}-28427 \mathrm{x}-17161 \mathrm{y}=179459-119603$
$\Rightarrow 47089 \mathrm{y}-17161 \mathrm{y}=179459-119603$
$\Rightarrow 29928 y=59856$
$\Rightarrow \mathrm{y}=\frac{59856}{29928}$
$\Rightarrow \mathrm{y}=2$
On putting y $=2$ in Eq. (ii), we get
$\Rightarrow 131 \mathrm{x}+217(2)=827 \Rightarrow 131 \mathrm{x}+434=827$
$\Rightarrow 131 \mathrm{x}=393$
$\Rightarrow \mathrm{x}=\frac{393}{131}$
$\Rightarrow \mathrm{x}=3$
Hence, $x=3$ and $y=2$, which is the required solution.

3 C. Question

Solve the following equations by elimination method:
$99 x+101 y=499$
$101 x+99 y=501$

Answer

Given pair of linear equations is
$99 x+101 y=499 \ldots$ (i)
And 101x $+99 y=501$
On multiplying Eq. (i) by 101 and Eq. (ii) by 99 to make the coefficients of x equal, we get the equation as
$9999 x+10201 y=50399$
$9999 x+9801 y=49599$
On subtracting Eq. (iii) from Eq. (iv), we get
$\Rightarrow 9999 x+9801 y-9999 x-10201 y=49599-50399$
$\Rightarrow 9801 y-10201 y=49599-50399$
$\Rightarrow-400 y=-800$
$\Rightarrow \mathrm{y}=\frac{800}{400}$
$\Rightarrow \mathrm{y}=2$
On putting y = 2 in Eq. (i), we get
$\Rightarrow 99 x+101(2)=499 \Rightarrow 99 x+202=499$
$\Rightarrow 99 x=297$
$\Rightarrow x=297 / 99$
$\Rightarrow \mathrm{x}=3$
Hence, $x=3$ and $y=2$, which is the required solution.

3 D. Question

Solve the following equations by elimination method:
$29 x-23 y=110$
$23 x-29 y=98$

Answer

Given pair of linear equations is
$29 x-23 y=110 \ldots(i)$
And $23 x-29 y=98$
On multiplying Eq. (i) by 23 and Eq. (ii) by 29 to make the coefficients of x equal, we get the equation as
$667 x-529 y=2530 \ldots$ (iii)
$667 x-841 y=2842$
On subtracting Eq. (iii) from Eq. (iv), we get
$\Rightarrow 667 \mathrm{x}-841 \mathrm{y}-667 \mathrm{x}+529 \mathrm{y}=2842-2530$
$\Rightarrow-312 y=312$
$\Rightarrow \mathrm{y}=-1$
On putting y $=2$ in Eq. (ii), we get
$\Rightarrow 29 x-23(-1)=110 \Rightarrow 29 x+23=110$
$\Rightarrow 29 \mathrm{x}=110-23$
$\Rightarrow 29 x=87$
$\Rightarrow \mathrm{x}=3$

Hence, $x=3$ and $y=-1$, which is the required solution.

4 A. Question

Solve the following system of equations by elimination method:
$\frac{1}{x}-\frac{1}{y}=1$
$\frac{1}{x}+\frac{1}{y}=7, x \neq 0, y \neq 0$

Answer

Given pair of linear equations is

$$
\begin{align*}
& \frac{1}{x}-\frac{1}{y}=1 \ldots(\mathrm{i}) \\
& \text { And } \frac{1}{x}+\frac{1}{y}=7 \tag{ii}
\end{align*}
$$

Adding Eq. (i) and Eq. (ii), we get

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{y}+\frac{1}{x}+\frac{1}{y}=1+7 \\
& \Rightarrow \frac{1}{x}+\frac{1}{x}=8 \\
& \Rightarrow \frac{2}{x}=8 \\
& \Rightarrow \frac{2}{8}=x \\
& \Rightarrow x=\frac{1}{4}
\end{aligned}
$$

On putting $\mathrm{x}=\frac{1}{4}$ in Eq. (ii), we get

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{y}=7 \\
& \Rightarrow \frac{1}{\frac{1}{4}}+\frac{1}{y}=7
\end{aligned}
$$

$\Rightarrow 4+\frac{1}{y}=7 \Rightarrow \frac{1}{y}=7-4=3$
$\Rightarrow y=\frac{1}{3}$
Hence, $x=\frac{1}{4}$ and $=\frac{1}{3}$, which is the required solution.

4 B. Question

Solve the following system of equations by elimination method:
$\frac{2}{x}+\frac{3}{y}=13$
$\frac{5}{x}-\frac{4}{y}=-2, x \neq 0, y \neq 0$

Answer

Given pair of linear equations is

$$
\begin{align*}
& \frac{2}{x}+\frac{3}{y}=13 \ldots \text { (i) } \\
& \text { And } \frac{5}{x}-\frac{4}{y}=-2 . . \tag{ii}
\end{align*}
$$

On multiplying Eq. (i) by 5 and Eq. (ii) by 2 to make the coefficients of x equal, we get the equation as

$$
\begin{align*}
& \frac{10}{x}+\frac{15}{y}=65 \ldots(\mathrm{ii} \tag{iii}\\
& \frac{10}{x}-\frac{8}{y}=-4 \ldots \text { (iv) }
\end{align*}
$$

On subtracting Eq. (iii) from Eq. (iv), we get

$$
\begin{aligned}
& \frac{10}{x}-\frac{8}{y}-\frac{10}{x}-\frac{15}{y}=-4-65 \\
& \Rightarrow-\frac{8}{y}-\frac{15}{y}=-69 \\
& \Rightarrow-\frac{23}{y}=-69
\end{aligned}
$$

$\Rightarrow \frac{23}{69}=y$
$\Rightarrow \mathrm{y}=\frac{1}{2}$
On putting $y=\frac{1}{2}$ in Eq. (ii), we get
$\frac{5}{x}-\frac{4}{y}=-2$
$\Rightarrow \frac{5}{x}-\frac{4}{\frac{1}{2}}=7$
$\Rightarrow \frac{5}{x}-8=7 \Rightarrow \frac{5}{x}=15$
$\Rightarrow \mathrm{x}=\frac{1}{3}$
Hence, $\mathrm{x}=\frac{1}{3}$ and $=\frac{1}{2}$, which is the required solution.

4 C. Question

Solve the following system of equations by elimination method:
$\frac{3 \mathrm{a}}{\mathrm{x}}-\frac{2 \mathrm{~b}}{\mathrm{y}}+5=0, \frac{\mathrm{a}}{\mathrm{x}}+\frac{3 \mathrm{~b}}{\mathrm{y}}-2=0,(\mathrm{x} \neq 0, \mathrm{y} \neq 0)$

Answer

Given pair of linear equations is

$$
\begin{align*}
& \frac{4}{x}+\frac{7}{y}=11 \ldots \text { (i) } \\
& \text { And } \frac{3}{x}-\frac{5}{y}=-2 \ldots \tag{ii}
\end{align*}
$$

On multiplying Eq. (i) by 3 and Eq. (ii) by 4 to make the coefficients of x equal, we get the equation as

$$
\begin{align*}
& \frac{12}{x}+\frac{21}{y}=33 . \tag{iii}\\
& \frac{12}{x}-\frac{20}{y}=-8 . .
\end{align*}
$$

On subtracting Eq. (iii) from Eq. (iv), we get
$\frac{12}{\mathrm{x}}-\frac{20}{\mathrm{y}}-\frac{12}{\mathrm{x}}-\frac{21}{\mathrm{y}}=-8-33$
$\Rightarrow-\frac{20}{y}-\frac{21}{y}=-41$
$\Rightarrow-\frac{41}{\mathrm{y}}=-41$
$\Rightarrow \frac{41}{41}=\mathrm{y}$
$\Rightarrow \mathrm{y}=1$
On putting y $=1$ in Eq. (ii), we get

$$
\begin{aligned}
& \frac{3}{x}-\frac{5}{y}=-2 \\
& \Rightarrow \frac{3}{x}-5=-2 \\
& \Rightarrow \frac{3}{x}=-2+5 \Rightarrow \frac{3}{x}=3 \\
& \Rightarrow x=1
\end{aligned}
$$

Hence, $\mathrm{x}=\frac{1}{3}$ and $=\frac{1}{2}$, which is the required solution.

4 D. Question

Solve the following system of equations by elimination method:

$$
\frac{3 \mathrm{a}}{\mathrm{x}}-\frac{2 \mathrm{~b}}{\mathrm{y}}+5=0, \frac{\mathrm{a}}{\mathrm{x}}+\frac{3 \mathrm{~b}}{\mathrm{y}}-2=0,(\mathrm{x} \neq 0, \mathrm{y} \neq 0)
$$

Answer

Given pair of linear equations is

$$
\begin{align*}
& \frac{3 a}{x}-\frac{2 b}{y}=-5 \ldots \tag{i}\\
& \text { And } \frac{a}{x}+\frac{3 b}{y}=2 . \tag{ii}
\end{align*}
$$

On multiplying Eq. (ii) by 3 to make the coefficients of x equal, we get the equation as
$\frac{3 a}{x}+\frac{9 b}{y}=6$
On subtracting Eq. (i) from Eq. (iii), we get
$\frac{3 a}{x}+\frac{9 b}{y}-\frac{3 a}{x}+\frac{2 b}{y}=6-(-5)$
$\Rightarrow \frac{9 b}{y}+\frac{2 b}{y}=11$
$\Rightarrow \frac{11 \mathrm{~b}}{\mathrm{y}}=11$
$\Rightarrow \mathrm{y}=\mathrm{b}$
On putting $\mathrm{y}=\mathrm{b}$ in Eq. (ii), we get
$\frac{a}{x}+\frac{3 b}{y}=2$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{x}}+\frac{3 \mathrm{~b}}{\mathrm{~b}}=2$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{x}}=2-3 \Rightarrow \frac{\mathrm{a}}{\mathrm{x}}=-1$
$\Rightarrow \mathrm{x}=-\mathrm{a}$
Hence, $x=-\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$, which is the required solution.

5 A. Question

Solve the following system of equations by elimination method:
$\frac{2 x+5 y}{x y}=6, \frac{4 x-5 y}{x y}=-3$, where $x \neq 0$ and $y \neq 0$

Answer

Given pair of linear equations is
$\frac{2 x+5 y}{x y}=6$
Or $2 x+5 y=6 x y$
And $\frac{4 x-5 y}{x y}=-3$
Or $4 x-5 y=-3 x y$...(ii)

On adding Eq. (i) and Eq. (ii), we get
$2 x+5 y+4 x-5 y=6 x y-3 x y$
$\Rightarrow 6 x=3 x y$
$\Rightarrow \frac{6 x}{3 x}=y$
$\Rightarrow \mathrm{y}=2$ and $\mathrm{x}=0$
On putting $y=2$ in Eq. (ii), we get
$2 x+5(2)=6 x y$
$\Rightarrow 2 \mathrm{x}+10=6 \mathrm{x}(2)$
$\Rightarrow 2 \mathrm{x}+10=12 \mathrm{x} \Rightarrow 2 \mathrm{x}-12 \mathrm{x}=-10$
$\Rightarrow-10 x=-10$
$\Rightarrow \mathrm{x}=1$
On putting $\mathrm{x}=0$, we get $\mathrm{y}=0$
Hence, $x=0,1$ and $y=0,2$, which is the required solution.

5 B. Question

Solve the following system of equations by elimination method:
$x+y=2 x y$
$x-y=6 x y$

Answer

Given pair of linear equations is
$x+y=2 x y$
And $x-y=6 x y$
On adding Eq. (i) and Eq. (ii), we get

$$
\begin{aligned}
& x+y+x-y=2 x y+6 x y \\
& \Rightarrow 2 x=8 x y \\
& \Rightarrow \frac{2 x}{8 x}=y
\end{aligned}
$$

$\Rightarrow y=\frac{1}{4}$ and $x=0$
On putting $y=\frac{1}{4}$ in Eq. (ii), we get
$x-\frac{1}{4}=6 x y$
$\Rightarrow \frac{4 x-1}{4}=6 x\left(\frac{1}{4}\right)$
$\Rightarrow 4 \mathrm{x}-1=6 \mathrm{x} \Rightarrow-1=6 \mathrm{x}-4 \mathrm{x}$
$\Rightarrow-1=2 x$
$\Rightarrow \mathrm{x}=-\frac{1}{2}$
On putting $\mathrm{x}=0$, we get $\mathrm{y}=0$
Hence, $\mathrm{x}=-\frac{1}{2}, 0$ and $=\frac{1}{4}, 0$, which is the required solution.

5 C. Question

Solve the following system of equations by elimination method:
$5 x+3 y=19 x y$
$7 x-2 y=8 x y$

Answer

Given pair of linear equations is
$5 x+3 y=19 x y . . .(i)$
And $7 \mathrm{x}-2 \mathrm{y}=8 \mathrm{xy} . .$. (ii)
On multiplying Eq. (i) by 2 and Eq. (ii) by 3 to make the coefficients of y equal, we get the equation as
$10 x+6 y=38 x y$
And $21 \mathrm{x}-6 \mathrm{y}=24 \mathrm{xy} . .$. (iv)
On adding Eq. (i) and Eq. (ii), we get
$10 x+6 y+21 x-6 y=38 x y+24 x y$
$\Rightarrow 31 x=62 x y$
$\Rightarrow \frac{31 x}{62 x}=y$
$\Rightarrow y=\frac{1}{2}$ and $x=0$
On putting $y=\frac{1}{2}$ in Eq. (ii), we get
$7 x-2 y=8 x y$
$\Rightarrow 7 x-2\left(\frac{1}{2}\right)=8 x\left(\frac{1}{2}\right)$
$\Rightarrow 7 \mathrm{x}-1=4 \mathrm{x} \Rightarrow-1=4 \mathrm{x}-7 \mathrm{x}$
$\Rightarrow-1=-3 x$
$\Rightarrow \mathrm{x}=\frac{1}{3}$
On putting $\mathrm{x}=0$, we get $\mathrm{y}=0$
Hence, $\mathrm{x}=\frac{1}{3}, 0$ and $=\frac{1}{2}, 0$, which is the required solution.

5 D. Question

Solve the following system of equations by elimination method:
$x+y=7 x y$
$2 x-3 y=-x y$

Answer

Given pair of linear equations is
$x+y=7 x y \ldots$ (i)
And $2 \mathrm{x}-3 \mathrm{y}=-\mathrm{xy} . . .(\mathrm{ii})$
On multiplying Eq. (i) by 2 to make the coefficients of x equal, we get the equation as
$2 x+2 y=14 x y \ldots(i i i)$
On subtracting Eq. (ii) and Eq. (iii), we get
$2 x+2 y-2 x+3 y=14 x y+x y$
$\Rightarrow 2 y+3 y=15 x y$
$\Rightarrow 5 y=15 x y$
$\Rightarrow \frac{5 y}{15 y}=x$
$\Rightarrow \mathrm{x}=\frac{1}{3}$ and $\mathrm{y}=0$
On putting $\mathrm{x}=\frac{1}{3}$ in Eq. (ii), we get
$2 x-3 y=-x y$
$\Rightarrow 2\left(\frac{1}{3}\right)-3 y=6\left(\frac{1}{3}\right) y$
$\Rightarrow\left(\frac{2}{3}\right)-3 y=2 y \Rightarrow\left(\frac{2}{3}\right)=5 y$
$\Rightarrow \mathrm{y}=\frac{2}{15}$
On putting $x=0$, we get $x=0$
Hence, $\mathrm{x}=\frac{1}{3}, 0$ and $=\frac{2}{15}, 0$, which is the required solution.

6 A. Question

Solve for x and y the following system of equations:

$$
\frac{1}{2(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{1}{2}, \frac{7}{(2 x+3 y)}+\frac{4}{(3 x-2 y)}=2
$$

Where $(2 x+3 y) \neq 0$ and $(3 x-2 y) \neq 0$

Answer

Given pair of linear equations is

$$
\begin{align*}
& \frac{1}{2(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{1}{2} \ldots(\mathrm{i}) \\
& \text { And } \frac{7}{(2 x+3 y)}+\frac{4}{(3 x-2 y)}=2 \ldots \tag{ii}
\end{align*}
$$

On multiplying Eq. (i) by 7 and Eq. (ii) by $\frac{1}{2}$ to make the coefficients equal of first term, we get the equation as

$$
\begin{aligned}
& \frac{7}{2(2 x+3 y)}+\frac{7 \times 12}{7(3 x-2 y)}=\frac{7}{2} \\
& \Rightarrow \frac{7}{2(2 x+3 y)}+\frac{12}{(3 x-2 y)}=\frac{7}{2} \ldots(\mathrm{iii})
\end{aligned}
$$

$\frac{7}{2(2 x+3 y)}+\frac{4}{2(3 x-2 y)}=\frac{2}{2}$
$\Rightarrow \frac{7}{2(2 x+3 y)}+\frac{2}{(3 x-2 y)}=1 \ldots$ (iv)
On substracting Eq. (iii) from Eq. (iv), we get

$$
\begin{align*}
& \frac{7}{2(2 x+3 y)}+\frac{2}{(3 x-2 y)}-\frac{7}{2(2 x+3 y)}-\frac{12}{(3 x-2 y)}=1-\frac{7}{2} \\
& \Rightarrow \frac{2}{(3 x-2 y)}-\frac{12}{(3 x-2 y)}=1-\frac{7}{2} \\
& \Rightarrow \frac{-10}{(3 x-2 y)}=\frac{2-7}{2} \\
& \Rightarrow \frac{-10}{(3 x-2 y)}=\frac{-5}{2} \\
& \Rightarrow \frac{1}{(3 x-2 y)}=\frac{5}{2 \times 10} \\
& \Rightarrow 3 x-2 y=4 \\
& \Rightarrow 3 x=4+2 y \\
& \Rightarrow x=\frac{4+2 y}{3} \ldots \text { (a) } \tag{a}
\end{align*}
$$

On multiplying Eq. (ii) by $\frac{3}{7}$ to make the coefficients equal of second term, we get the equation as

$$
\begin{aligned}
& \frac{7 \times 3}{7(2 x+3 y)}+\frac{4 \times 3}{7(3 x-2 y)}=\frac{2 \times 3}{7} \\
& \Rightarrow \frac{3}{(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{6}{7} \ldots(v)
\end{aligned}
$$

On substracting Eq. (i) from Eq. (iv), we get

$$
\begin{aligned}
& \frac{3}{(2 x+3 y)}+\frac{12}{7(3 x-2 y)}-\frac{1}{2(2 x+3 y)}-\frac{12}{7(3 x-2 y)}=\frac{6}{7}-\frac{1}{2} \\
& \Rightarrow \frac{3}{(2 x+3 y)}-\frac{1}{2(2 x+3 y)}=\frac{6}{7}-\frac{1}{2} \\
& \Rightarrow \frac{6-1}{2(2 x+3 y)}=\frac{12-7}{14}
\end{aligned}
$$

$\Rightarrow \frac{5}{2(2 x+3 y)}=\frac{5}{14}$
$\Rightarrow \frac{1}{(2 x+3 y)}=\frac{2}{14}$
$\Rightarrow 2 x+3 y=7$
$\Rightarrow \mathrm{x}=\frac{7-3 \mathrm{y}}{2}$.
From Eq. (a) and (b), we get

$$
\begin{aligned}
& \frac{4+2 y}{3}=\frac{7-3 y}{2} \\
& \Rightarrow 2(4+2 y)=3(7-3 y) \\
& \Rightarrow 8+4 y=21-9 y \\
& \Rightarrow 4 y+9 y=21-8 \\
& \Rightarrow 13 y=13 \\
& \Rightarrow y=1
\end{aligned}
$$

On putting the value of $y=1$ in Eq. (b), we get
$\Rightarrow x=\frac{7-3(1)}{2}$
$\Rightarrow x=\frac{4}{2}=2$
Hence, $x=2$ and $y=1$, which is the required solution.

6 B. Question

Solve for x and y the following system of equations:

$$
\begin{aligned}
& \frac{6}{x-1}-\frac{3}{y-2}=1, x \neq 1, y \neq 1 \\
& \frac{3}{x-1}+\frac{2}{y+1}=\frac{13}{6}, x \neq 1, y \neq 1
\end{aligned}
$$

Answer

Given pair of linear equations is
$\frac{2}{x-1}+\frac{3}{y+1}=2$
And $\frac{3}{x-1}+\frac{2}{y+1}=\frac{13}{6}$.
On multiplying Eq. (i) by 3 and Eq. (ii) by 2 to make the coefficients equal of first term, we get the equation as
$\frac{6}{x-1}+\frac{9}{y+1}=6$
$\frac{6}{x-1}+\frac{4}{y+1}=\frac{13}{3} \ldots$ (iv)
On substracting Eq. (iii) from Eq. (iv), we get

$$
\begin{aligned}
& \frac{6}{x-1}+\frac{4}{y+1}-\frac{6}{x-1}-\frac{9}{y+1}=\frac{13}{3}-6 \\
& \Rightarrow \frac{4}{y+1}-\frac{9}{y+1}=\frac{13}{3}-6 \\
& \Rightarrow \frac{-5}{y+1}=\frac{13-18}{3} \\
& \Rightarrow \frac{-5}{y+1}=\frac{-5}{3} \\
& \Rightarrow \frac{1}{y+1}=\frac{1}{3} \\
& \Rightarrow y+1=3 \\
& \Rightarrow y=3-1 \\
& \Rightarrow y=2
\end{aligned}
$$

On putting the value of $y=2$ in Eq. (ii), we get

$$
\begin{aligned}
& \frac{6}{x-1}+\frac{4}{2+1}=\frac{13}{3} \\
& \Rightarrow \frac{6}{x-1}+\frac{4}{3}=\frac{13}{3} \\
& \Rightarrow \frac{6}{x-1}=\frac{13}{3}-\frac{4}{3} \\
& \Rightarrow \frac{6}{x-1}=\frac{9}{3}
\end{aligned}
$$

$\Rightarrow \frac{1}{x-1}=\frac{9}{3 \times 6}$
$\Rightarrow \mathrm{x}-1=2$
$\Rightarrow \mathrm{x}=3$
Hence, $x=3$ and $y=2$, which is the required solution.

6 C. Question

Solve for x and y the following system of equations:
$\frac{44}{x+y}+\frac{30}{x-y}=10$
$\frac{55}{x+y}+\frac{40}{x-y}=13, x+y \neq 0, x-y \neq 0$

Answer

Given pair of linear equations is
$\frac{44}{x+y}+\frac{30}{x-y}=10 \ldots$ (i)
And $\frac{55}{x+y}+\frac{40}{x-y}=13$.
On multiplying Eq. (i) by 4 and Eq. (ii) by 3 to make the coefficients equal of second term, we get the equation as
$\frac{176}{x+y}+\frac{120}{x-y}=40$
$\frac{165}{x+y}+\frac{120}{x-y}=39$
On substracting Eq. (iii) from Eq. (iv), we get

$$
\begin{aligned}
& \frac{176}{x+y}+\frac{120}{x-y}-\frac{165}{x+y}-\frac{120}{x-y}=40-39 \\
& \Rightarrow \frac{176-165}{x+y}=1 \\
& \Rightarrow \frac{11}{x+y}=1 \\
& \Rightarrow x+y=11 \ldots \text { (a) }
\end{aligned}
$$

On putting the value of $x+y=11$ in Eq. (1), we get
$\Rightarrow \frac{44}{11}+\frac{30}{x-y}=10$
$\Rightarrow \frac{30}{x-y}=10-4$
$\Rightarrow 6(x-y)=30$
$\Rightarrow \mathrm{x}-\mathrm{y}=5$
Adding Eq. (a) and (b), we get
$\Rightarrow 2 \mathrm{x}=16$
$\Rightarrow \mathrm{x}=8$
On putting value of $x=8$ in eq. (a), we get
$8+y=11$
$\Rightarrow \mathrm{y}=3$
Hence, $x=8$ and $y=3$, which is the required solution.

6 D. Question

Solve for x and y the following system of equations:
$\frac{5}{x-1}+\frac{1}{y-2}=2$
$\frac{6}{x-1}-\frac{3}{y-2}=1$,

Answer

Given pair of linear equations is
$\frac{5}{x-1}+\frac{1}{y-2}=2 \ldots$ (i)
And $\frac{6}{x-1}-\frac{3}{y-2}=1 \ldots$
On multiplying Eq. (i) by 3 to make the coefficients equal of second term, we get the equation as
$\frac{15}{x-1}+\frac{3}{y-2}=6$

On adding Eq. (ii) and Eq. (iii), we get

$$
\begin{aligned}
& \frac{6}{x-1}-\frac{3}{y-2}+\frac{15}{x-1}+\frac{3}{y-2}=6+1 \\
& \Rightarrow \frac{6}{x-1}-\frac{15}{x-1}=7 \\
& \Rightarrow \frac{21}{x-1}=7 \\
& \Rightarrow x-1=3 \\
& \Rightarrow x=3+1 \\
& \Rightarrow x=4
\end{aligned}
$$

On putting the value of $x=4$ in Eq. (ii), we get
$\frac{6}{4-1}-\frac{3}{y-2}=1$
$\Rightarrow 2-\frac{3}{y-2}=1$
$\Rightarrow-\frac{3}{y-2}=1-2$
$\Rightarrow-\frac{3}{y-2}=-1$
$\Rightarrow(y-2)=3$
$\Rightarrow y=3+2$
$\Rightarrow \mathrm{y}=5$
Hence, $x=4$ and $y=5$, which is the required solution.

7 A. Question

Form the pair of linear equations for the following problems and find their solution by elimination method:

Aftab tells his daughter, "seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be." Find their present ages.

Answer

Let the present age of father i.e. Aftab $=\mathrm{x}$ yr

And the present age of his daughter = y yr
Seven years ago,
Aftab's age $=(x-7) y r$
Daughter's age $=(y-7) y r$
According to the question,
$(x-7)=7(y-7)$
$\Rightarrow \mathrm{x}-7=7 \mathrm{y}-49$
$\Rightarrow \mathrm{x}-7 \mathrm{y}=-42$
After three years,
Aftab's age $=(x+3) y r$
Daughter's age $=(y+3) y r$
According to the question,
$(x+3)=3(y+3)$
$\Rightarrow x+3=3 y+9$
$\Rightarrow x-3 y=6$
Now, we can solve this by an elimination method
On subtracting Eq. (ii) from (i) we get
$x-3 y-x+7 y=6-(-42)$
$\Rightarrow-3 y+7 y=6+42$
$\Rightarrow 4 y=48$
$\Rightarrow \mathrm{y}=12$
On putting y = 12 in Eq. (ii) we get
$x-3(12)=6$
$\Rightarrow \mathrm{x}-36=6$
$\Rightarrow \mathrm{x}=42$
Hence, the age of Aftab is 42 years and age of his daughter is 12 years.

7 B. Question

Form the pair of linear equations for the following problems and find their solution by elimination method:

Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?

Answer

Let the present age of Nuri $=x y r$
And the present age of Sonu = y yr
Five years ago,
Nuri's age $=(x-5) y r$
Sonu's age $=(y-5) y r$
According to the question,
$(x-5)=3(y-5)$
$\Rightarrow \mathrm{x}-5=3 \mathrm{y}-15$
$\Rightarrow x-3 y=-10$
After ten years,
Aftab's age $=(x+10) y r$
Daughter's age $=(y+10) y r$
According to the question,
$(x+10)=2(y+10)$
$\Rightarrow x+10=2 y+20$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=10$
Now, we can solve this by an elimination method
On subtracting Eq. (ii) from (i) we get
$x-2 y-x+3 y=10-(-10)$
$\Rightarrow-2 y+3 y=10+10$
$\Rightarrow \mathrm{y}=20$
On putting y $=20$ in Eq. (i) we get
$x-3(20)=-10$
$\Rightarrow \mathrm{x}-60=-10$
$\Rightarrow \mathrm{x}=50$
Hence, the age of Nuri is 50 years and age of Sonu is 20 years.

7 C. Question

Form the pair of linear equations for the following problems and find their solution by elimination method:

The difference between two numbers is 26 and one number is three times the other. Find them.

Answer

Let the one number $=x$
And the other number $=y$
According to the question,
$x-y=26$
and $x=3 y$
or $x-3 y=0$...(ii)
Now, we can solve this by an elimination method
On subtracting Eq. (ii) from (i) we get
$x-3 y-x+y=0-26$
$\Rightarrow-3 y+y=-26$
$\Rightarrow-2 y=-26$
$\Rightarrow \mathrm{y}=13$
On putting $y=13$ in Eq. (ii) we get
$x-3(13)=0$
$\Rightarrow \mathrm{x}-39=0$
$\Rightarrow \mathrm{x}=39$
Hence, the two numbers are 39 and 13.

Exercise 3.4

1 A. Question

Solve the following pair of linear equation by cross - multiplication method:
$8 x+5 y=9$
$3 x+2 y=4$

Answer

Given, pair of equations is
$8 x+5 y-9=0$ and $3 x+2 y-4=0$
By cross - multiplication method, we have

$\Rightarrow \frac{\mathrm{x}}{-20+18}=\frac{\mathrm{y}}{-27+32}=\frac{1}{16-15}$
$\Rightarrow \frac{\mathrm{x}}{-2}=\frac{\mathrm{y}}{5}=\frac{1}{1}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{x}{-2}=\frac{1}{1}$
$\Rightarrow \mathrm{x}=-2$
On taking II and III ratio, we get
$\Rightarrow \frac{\mathrm{y}}{5}=\frac{1}{1}$
$\Rightarrow \mathrm{y}=5$

1 B. Question

Solve the following pair of linear equation by cross - multiplication method:
$2 x+3 y=46$
$3 x+5 y=74$

Answer

Given, pair of equations is
$2 x+3 y-46=0$ and $3 x+5 y-74=0$

By cross - multiplication method, we have

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{x}}{-222+230}=\frac{\mathrm{y}}{-138+148}=\frac{1}{10-9} \\
& \Rightarrow \frac{x}{8}=\frac{\mathrm{y}}{10}=\frac{1}{1} \\
& \mathrm{I} \quad \text { II }
\end{aligned}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{x}{8}=\frac{1}{1}$
$\Rightarrow \mathrm{x}=8$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{10}=\frac{1}{1}$
$\Rightarrow \mathrm{y}=10$

1 C. Question

Solve the following pair of linear equation by cross - multiplication method:
$x+4 y+9=0$
$5 x-1=3 y$

Answer

Given, pair of equations is
$x+4 y+9=0$ and $5 x-3 y-1=0$
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-4+27}=\frac{y}{45+1}=\frac{1}{-3-20}$
$\Rightarrow \frac{x}{23}=\frac{y}{46}=\frac{1}{-23}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{x}{23}=\frac{1}{-23}$
$\Rightarrow \mathrm{x}=-1$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{46}=\frac{1}{-23}$
$\Rightarrow \mathrm{y}=-2$

1 D. Question

Solve the following pair of linear equation by cross - multiplication method:
$2 x+3 y-7=0$
$6 x+5 y-11=0$

Answer

Given, pair of equations is
$2 x+3 y-7=0$ and $6 x+5 y-11=0$
By cross - multiplication method, we have

On taking I and III ratio, we get
$\Rightarrow \frac{x}{2}=\frac{1}{-8}$
$\Rightarrow x=\frac{1}{-4}$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{-20}=\frac{1}{-8}$
$\Rightarrow \mathrm{y}=\frac{5}{2}$

1 E. Question

Solve the following pair of linear equation by cross - multiplication method:
$\frac{2}{x}+\frac{3}{y}=13$
$\frac{5}{x}-\frac{4}{y}=-2$

Answer

Given, pair of equations is

$$
\begin{aligned}
& \frac{2}{x}+\frac{3}{y}=13 \\
& \frac{5}{x}-\frac{4}{y}=-2 \\
& \text { Let } u=\frac{1}{x} \text { and } v=\frac{1}{y}
\end{aligned}
$$

So, Eq. (1) and (2) reduces to
$2 u+3 v-13=0$
$5 u-4 v+2=0$
By cross - multiplication method, we have

$\Rightarrow \frac{u}{6-52}=\frac{\mathrm{v}}{-65-4}=\frac{1}{-8-15}$
$\Rightarrow \frac{u}{-46}=\frac{v}{-69}=\frac{1}{-23}$

On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{u}}{-46}=\frac{1}{-23}$
$\Rightarrow \mathrm{u}=2$
On taking II and III ratio, we get
$\Rightarrow \frac{\mathrm{v}}{-69}=\frac{1}{-23}$
$\Rightarrow \mathrm{v}=3$
So, $u=\frac{1}{x}=2 \Rightarrow x=\frac{1}{2}$
and $v=\frac{1}{y}=3 \Rightarrow y=\frac{1}{3}$

1 F. Question

Solve the following pair of linear equation by cross - multiplication method:
$\frac{x}{3}-\frac{y}{12}=\frac{19}{4}$
$\frac{x}{3}-\frac{y}{12}=\frac{19}{4}$

Answer

Given, pair of equations is

$$
\begin{aligned}
& \frac{x}{6}+\frac{y}{15}=4 \\
& \Rightarrow 5 x+2 y=4 \times 30 \\
& \Rightarrow 5 x+2 y-120=0 \\
& \text { And } \frac{x}{3}-\frac{y}{12}=\frac{19}{4} \\
& \Rightarrow 4 x-y=57
\end{aligned}
$$

By cross - multiplication method, we have

On taking I and III ratio, we get
$\Rightarrow \frac{x}{-234}=\frac{1}{-13}$
$\Rightarrow \mathrm{x}=18$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{-195}=\frac{1}{-13}$
$\Rightarrow \mathrm{y}=15$

2 A. Question

Solve the following pair of equations by cross - multiplication method.
$a x+b y=a-b$
$b x-a y=a+b$

Answer

Given, pair of equations is

$$
\begin{aligned}
& a x+b y=a-b \Rightarrow a x+b y-(a-b)=0 \\
& b x-a y=a+b \Rightarrow b x-a y-(a+b)=0
\end{aligned}
$$

By cross - multiplication method, we have

$$
\begin{aligned}
& \Rightarrow \frac{x}{-b(a+b)-a(a-b)}=\frac{y}{-b(a-b)+a(a+b)}=\frac{1}{-a^{2}-b^{2}} \\
& \Rightarrow \frac{x}{-b a-b^{2}-a^{2}+a b}=\frac{y}{-b a+b^{2}+a^{2}+a b}=\frac{1}{-a^{2}-b^{2}} \\
& \Rightarrow \frac{x}{-b^{2}-a^{2}}=\frac{y}{b^{2}+a^{2}}=\frac{1}{-a^{2}-b^{2}}
\end{aligned}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{x}}{-\mathrm{b}^{2}-\mathrm{a}^{2}}=\frac{1}{-\mathrm{a}^{2}-\mathrm{b}^{2}}$
$\Rightarrow \mathrm{x}=1$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{b^{2}+a^{2}}=\frac{1}{-a^{2}-b^{2}}$
$\Rightarrow \mathrm{y}=-1$

2 B. Question

Solve the following pair of equations by cross - multiplication method.
$a^{2}-b^{2}$
$\frac{x}{a^{2}}+\frac{y}{b^{2}}=2$
$a \neq 0, b \neq 0$

Answer

Given, pair of equations is

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}=a+b \Rightarrow \frac{x}{a}+\frac{y}{b}-(a+b)=0 \\
& \text { And } \frac{x}{a^{2}}+\frac{y}{b^{2}}=2 \Rightarrow \frac{x}{a^{2}}+\frac{y}{b^{2}}-2=0
\end{aligned}
$$

By cross - multiplication method, we have

$\Rightarrow \frac{x}{\frac{-2}{b}+\frac{a+b}{b^{2}}}=\frac{y}{-\frac{a+b}{a^{2}}+\frac{2}{a}}=\frac{1}{\frac{1}{a^{2}}-\frac{1}{a^{2} b}}$
$\Rightarrow \frac{b^{2} x}{-2 b+a+b}=\frac{a^{2} y}{-a-b+2 a}=\frac{a^{2} b^{2}}{a-b}$
$\Rightarrow \frac{b^{2} x}{a-b}=\frac{a^{2} y}{a-b}=\frac{a^{2} b^{2}}{a-b}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{b^{2} x}{a-b}=\frac{a^{2} b^{2}}{a-b}$
$\Rightarrow \frac{\mathrm{x}}{1}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{~b}^{2}}$
$\Rightarrow \mathrm{x}=\mathrm{a}^{2}$
On taking II and III ratio, we get
$\Rightarrow \frac{a^{2} y}{a-b}=\frac{a^{2} b^{2}}{a-b}$
$\Rightarrow \mathrm{y}=\mathrm{b}^{2}$

2 C. Question

Solve the following pair of equations by cross - multiplication method.
$x-y=a+b$
$a x+b y=a^{2}-b^{2}$

Answer

Given, pair of equations is
$x-y=a+b \Rightarrow x-y-(a+b)=0$
$a x+b y=a^{2}-b^{2} \Rightarrow a x+b y-\left(a^{2}-b^{2}\right)=0$
By cross - multiplication method, we have

$$
\begin{aligned}
& \Rightarrow \frac{a^{2}-b^{2}+\mathrm{b}(\mathrm{a}+\mathrm{b})}{\mathrm{x}}=\frac{\mathrm{x}}{-\mathrm{a}(\mathrm{a}+\mathrm{b})+\mathrm{a}^{2}-\mathrm{b}^{2}}=\frac{1}{\mathrm{~b}+\mathrm{a}} \\
& \Rightarrow \frac{\mathrm{x}}{\mathrm{a}^{2}+\mathrm{ab}}=\frac{y}{-\mathrm{ba}-\mathrm{b}^{2}}=\frac{1}{\mathrm{~b}+\mathrm{a}} \\
& \Rightarrow \frac{\mathrm{x}}{\mathrm{a}(\mathrm{a}+\mathrm{b})}=\frac{y}{-\mathrm{b}(\mathrm{a}+\mathrm{b})}=\frac{1}{\mathrm{a}+\mathrm{b}} \\
& \quad \mathrm{I}
\end{aligned}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{x}{a(a+b)}=\frac{1}{a+b}$
$\Rightarrow \mathrm{x}=\mathrm{a}$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{-b(a+b)}=\frac{1}{a+b}$
$\Rightarrow \mathrm{y}=-\mathrm{b}$

2 D. Question

Solve the following pair of equations by cross - multiplication method.
$\frac{2 x}{a}+\frac{y}{b}=2$
$\frac{x}{a}-\frac{y}{b}=4$
$a \neq 0, b \neq 0$
Answer
$\frac{2 x}{a}+\frac{y}{b}=2$
$\frac{x}{a}-\frac{y}{b}=4$

Given, pair of equations is

$$
\begin{aligned}
& \frac{2 x}{a}+\frac{y}{b}=2 \Rightarrow \frac{2 x}{a}+\frac{y}{b}-2=0 \\
& \text { And } \frac{x}{a}-\frac{y}{b}=4 \Rightarrow \frac{x}{a}-\frac{y}{b}-4=0
\end{aligned}
$$

By cross - multiplication method, we have

$\Rightarrow \frac{x}{\frac{-4}{b}-\frac{2}{b}}=\frac{y}{\frac{-2}{a}+\frac{8}{a}}=\frac{1}{-\frac{2}{a b}-\frac{1}{a b}}$
$\frac{\mathrm{bx}}{-6}=\frac{\mathrm{ay}}{6}=\frac{\mathrm{ab}}{-3}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{bx}}{-6}=\frac{\mathrm{ab}}{-3}$
$\Rightarrow \mathrm{x}=2 \mathrm{a}$
On taking II and III ratio, we get
$\Rightarrow \frac{a y}{6}=\frac{a b}{-3}$
$\Rightarrow \mathrm{y}=-2 \mathrm{~b}$

2 E. Question

Solve the following pair of equations by cross - multiplication method.
$2 \mathrm{ax}+3 \mathrm{by}=\mathrm{a}+2 \mathrm{~b}$
$3 \mathrm{ax}+2 \mathrm{by}=2 \mathrm{a}+\mathrm{b}$

Answer

$2 \mathrm{ax}+3 \mathrm{by}=\mathrm{a}+2 \mathrm{~b}$
$3 \mathrm{ax}+2 \mathrm{by}=2 \mathrm{a}+\mathrm{b}$
Given, pair of equations is

$$
\begin{aligned}
& 2 a x+3 b y=a+2 b \Rightarrow 2 a x+3 b y-(a+2 b)=0 \\
& 3 a x+2 b y=2 a+b \Rightarrow 3 a x+2 b y-(2 a+b)=0
\end{aligned}
$$

By cross - multiplication method, we have

$$
\begin{aligned}
& \Rightarrow \frac{1}{-3 \mathrm{~b}(2 \mathrm{a}+\mathrm{b})+2 \mathrm{~b}(\mathrm{a}+2 \mathrm{~b})}=\frac{1}{-3 \mathrm{a}(\mathrm{a}+2 \mathrm{~b})+2 \mathrm{a}(2 \mathrm{a}+\mathrm{b})} \\
& =\frac{1}{4 \mathrm{ab}-9 \mathrm{ab}} \\
& \Rightarrow \frac{\mathrm{x}}{-4 \mathrm{ba}-3 \mathrm{~b}^{2}+4 \mathrm{ab}+4 \mathrm{~b}^{2}}=\frac{y}{-3 a^{2}-6 \mathrm{ba}+4 \mathrm{a}^{2}+2 \mathrm{ab}}=\frac{1}{-5 \mathrm{ab}} \\
& \Rightarrow \frac{\mathrm{x}}{\mathrm{~b}^{2}-4 \mathrm{ab}}=\frac{\mathrm{y}}{-4 \mathrm{ab}+\mathrm{a}^{2}}=\frac{1}{-5 \mathrm{ab}} \\
& \mathrm{I}
\end{aligned}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{x}{b^{2}-4 a b}=\frac{1}{-5 a b}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{b}(\mathrm{b}-4 \mathrm{a})}{-5 \mathrm{ab}}$
$\Rightarrow x=\frac{4 a-b}{5 a}$
On taking II and III ratio, we get

$$
\begin{aligned}
& \Rightarrow \frac{y}{-4 a b+a^{2}}=\frac{1}{-5 a b} \\
& \Rightarrow y=\frac{a(a-4 b)}{-5 a b} \\
& \Rightarrow y=\frac{4 b-a}{5 b}
\end{aligned}
$$

2 F. Question

Solve the following pair of equations by cross - multiplication method.
$\frac{x}{a}+\frac{y}{b}=2$
$a x+b y=a^{2}-b^{2}$

Answer

$\frac{x}{a}+\frac{y}{b}=2$
$a x+b y=a^{2}-b^{2}$
Given, pair of equations is

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}=2 \Rightarrow \frac{x}{a}+\frac{y}{b}-2=0 \\
& a x+b y=a^{2}-b^{2} \Rightarrow a x+b y-\left(a^{2}-b^{2}\right)=0
\end{aligned}
$$

By cross - multiplication method, we have

$\Rightarrow \frac{x}{\frac{-\left(a^{2}+b^{2}\right)}{b}+2 b}=\frac{y}{-2 a+\frac{\left(a^{2}+b^{2}\right)}{a}}=\frac{1}{\frac{b}{a}-\frac{a}{b}}$
$\Rightarrow \frac{b x}{-a^{2}-b^{2}+2 b^{2}}=\frac{a y}{-2 a^{2}+a^{2}+b^{2}}=\frac{a b}{b^{2}-a^{2}}$
$\Rightarrow \frac{b x}{-a^{2}+b^{2}}=\frac{a y}{-a^{2}+b^{2}}=\frac{a b}{b^{2}-a^{2}}$
$\Rightarrow \frac{\mathrm{bx}}{\mathrm{b}^{2}-\mathrm{a}^{2}}=\frac{\mathrm{ay}}{\mathrm{b}^{2}-\mathrm{a}^{2}}=\frac{\mathrm{ab}}{\mathrm{b}^{2}-\mathrm{a}^{2}}$
I II III
On taking I and III ratio, we get

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{bx}}{\mathrm{~b}^{2}-\mathrm{a}^{2}}=\frac{\mathrm{ab}}{\mathrm{~b}^{2}-\mathrm{a}^{2}} \\
& \Rightarrow \mathrm{x}=\mathrm{a}
\end{aligned}
$$

On taking II and III ratio, we get
$\Rightarrow \frac{a y}{b^{2}-a^{2}}=\frac{a b}{b^{2}-a^{2}}$
$\Rightarrow \mathrm{y}=\mathrm{b}$

3. Question

Solve the following system of equations by cross - multiplication method.
$a(x+y)+b(x-y)=a^{2}-a b+b^{2}$
$a(x+y)-b(x-y)=a^{2}+a b+b^{2}$

Answer

The given system of equations can be re - written as
$a x+a y+b x-b y-a^{2}+a b-b^{2}=0$
$\Rightarrow(\mathrm{a}+\mathrm{b}) \mathrm{x}+(\mathrm{a}-\mathrm{b}) \mathrm{y}-\left(\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}\right)=0$
and $a x+a y-b x+b y-a^{2}-a b-b^{2}=0$
$\Rightarrow(a-b) x+(a+b) y-\left(a^{2}+a b+b^{2}\right)=0$
Now, by cross - multiplication method, we have
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-(a-b)\left(a^{2}+a b+b^{2}\right)+(a+b)\left(a^{2}-a b+b^{2}\right)}$

$$
\begin{gathered}
=\frac{y}{-\left(a^{2}-a b+b^{2}\right)(a-b)+\left(a^{2}+a b+b^{2}\right)(a+b)} \\
=\frac{1}{(a+b)(a+b)-(a-b)(a-b)}
\end{gathered}
$$

$\Rightarrow \frac{x}{-\left(a^{3}-b^{3}\right)+\left(a^{3}+b^{3}\right)}$
$=\frac{y}{-a^{3}+a^{2} b-b^{2} a+b a^{2}-a b^{2}+b^{3}+a^{3}+a^{2} b+b^{2} a+b a^{2}+a b^{2}+b^{3}}$
$=\frac{1}{a^{2}+2 a b+b^{2}-a^{2}+2 a b-b^{2}}$

$$
\begin{gathered}
\Rightarrow \frac{x}{2 b^{3}}=\frac{y}{4 a^{2} b+2 b^{3}}=\frac{1}{4 a b} \\
\text { I II III }
\end{gathered}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{x}{2 b^{3}}=\frac{1}{4 a b}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{b}^{2}}{2 \mathrm{a}}$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{4 a^{2} b+2 b^{3}}=\frac{1}{4 a b}$
$\Rightarrow \mathrm{y}=\frac{2 \mathrm{a}^{2}+\mathrm{b}^{2}}{2 \mathrm{a}}$

4 A. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$x-3 y-7=0$
$3 x-3 y-15=0$

Answer

Given pair of linear equations
$x-3 y-7=0$
$3 x-3 y-15=0$
$\Rightarrow \mathrm{x}-\mathrm{y}-5=0$
As we can see that $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-3$ and $\mathrm{c}_{1}=-7$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-1$ and $\mathrm{c}_{2}=-5$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{1}=1, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-1}=3$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-7}{-5}=\frac{7}{5}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has unique solution

By cross - multiplication method, we have

$\Rightarrow \frac{x}{15-7}=\frac{y}{-7+5}=\frac{1}{-1+3}$
$\Rightarrow \frac{x}{8}=\frac{y}{-2}=\frac{1}{2}$
I II III

On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{x}}{8}=\frac{1}{2}$
$\Rightarrow \mathrm{x}=4$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{-2}=\frac{1}{2}$
$\Rightarrow \mathrm{y}=-1$

4 B. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$2 x+y=5$
$3 x+2 y=8$

Answer

Given pair of linear equations
$2 x+y=5$
$3 x+2 y=8$
As we can see that $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=1$ and $\mathrm{c}_{1}=-5$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=-8$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{2}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-5}{-8}=\frac{5}{8}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has unique solution
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-8+10}=\frac{y}{-15+16}=\frac{1}{4-3}$
$\Rightarrow \frac{x}{2}=\frac{y}{1}=\frac{1}{1}$
I II
III
On taking I and III ratio, we get
$\Rightarrow \frac{x}{2}=1$
$\Rightarrow \mathrm{x}=2$
On taking II and III ratio, we get
$\Rightarrow \frac{\mathrm{y}}{1}=1$
$\Rightarrow \mathrm{y}=1$

4 C. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$3 x-5 y=20$
$6 x-10 y=40$

Answer

Given pair of linear equations
$3 x-5 y=20$
$6 x-10 y=40$
$\Rightarrow 3 \mathrm{x}-5 \mathrm{y}=20$

As we can see that $a_{1}=3, b_{1}=-5$ and $c_{1}=-20$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-5$ and $\mathrm{c}_{2}=-20$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{3}=1, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-5}{-5}=1$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-20}{-20}=1$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has infinitely many solutions.

4 D. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$x-3 y-3=0$
$3 x-9 y-2=0$

Answer

Given pair of linear equations
$x-3 y-3=0$
$3 x-9 y-2=0$
As we can see that $a_{1}=1, b_{1}=-3$ and $c_{1}=-3$
and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-9$ and $\mathrm{c}_{2}=-2$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-9}=\frac{1}{3}$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-3}{-2}=\frac{3}{2}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has no solution

4 E. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$x+y=2$
$2 x+2 y=4$

Answer

Given pair of linear equations
$x+y=2$
$2 x+2 y=4$
$\Rightarrow x+y-2=0$
As we can see that $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=1$ and $\mathrm{c}_{1}=-2$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=1$ and $\mathrm{c}_{2}=-2$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{1}=1, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{1}=3$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-2}{-2}=1$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has infinitely many solution

4 F. Question

Which of the following pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it by using cross - multiplication method:
$x+y=2$
$2 x+2 y=6$

Answer

Given pair of linear equations
$x+y=2$
$2 x+2 y=6$
$\Rightarrow x+y-3=0$
As we can see that $a_{1}=1, b_{1}=1$ and $c_{1}=-2$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=1$ and $\mathrm{c}_{2}=-3$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{1}=1, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{1}=1$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-2}{-3}=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has no solution

5 A. Question

Solve the following system of linear equations by cross - multiplication method.
$\frac{15}{x+y}+\frac{7}{x-y}-10=0$
$\frac{15}{x+y}+\frac{7}{x-y}-10=0$
[Hint: Let $\mathrm{u}=\frac{1}{\mathrm{x}-\mathrm{y}}$ and $\mathrm{v}=\frac{1}{\mathrm{x}-\mathrm{y}}$]

Answer

Given, pair of equations is
$\frac{5}{x+y}+\frac{2}{x-y}+1=0$
$\frac{15}{x+y}+\frac{7}{x-y}-10=0$
Let $u=\frac{1}{x+y}$ and $v=\frac{1}{x-y}$
Now, the Eq. (1) and (2) reduces to
$5 u+2 v+1=0$
$15 u+7 v-10=0$
By cross - multiplication method, we have

On taking I and III ratio, we get
$\Rightarrow \frac{u}{-27}=\frac{1}{5}$
$\Rightarrow \mathrm{u}=\frac{-27}{5}$
On taking II and III ratio, we get
$\Rightarrow \frac{\mathrm{v}}{65}=\frac{1}{5}$
$\Rightarrow \mathrm{v}=13$
So, $u=\frac{1}{x+y}=\frac{-27}{5} \Rightarrow x+y=-\frac{5}{27} \ldots$ (a)
and $v=\frac{1}{x-y}=13 \Rightarrow x-y=\frac{1}{13} \ldots$ (b)
On adding Eq. (a) and (b), we get
$2 x=-\frac{5}{27}+\frac{1}{13}$
$\Rightarrow 2 x=\frac{-65+27}{27 \times 13}$
$\Rightarrow 2 \mathrm{x}=\frac{-38}{351}$
$\Rightarrow x=\frac{-19}{351}$
On putting the value of $\mathrm{x}=\frac{-19}{351}$ in Eq. (a), we get
$\frac{-19}{351}+y=-\frac{5}{27}$
$\Rightarrow \mathrm{y}=-\frac{5}{27}+\frac{19}{351}$
$\Rightarrow \mathrm{y}=\frac{-65+19}{351}$
$\Rightarrow y=-\frac{46}{351}$

5 B. Question

Solve the following system of linear equations by cross - multiplication method.
$a x-a y=2$
$(a-1) x+(a+1) y=2\left(a^{2}+1\right)$
[Hint: Let $\mathrm{u}=\frac{1}{\mathrm{x}-\mathrm{y}}$ and $\mathrm{v}=\frac{1}{\mathrm{x}-\mathrm{y}}$]

Answer

Given, pair of equations is

$$
a x-a y=2
$$

$$
(a-1) x+(a+1) y=2\left(a^{2}+1\right)
$$

By cross - multiplication method, we have

$\Rightarrow \frac{x}{2 a^{3}+2 a+2 a+2}=\frac{y}{-2 a+2+2 a^{3}+2 a}=\frac{1}{a^{2}+a+a^{2}-a}$
$\frac{\mathrm{x}}{2 \mathrm{a}^{3}+4 \mathrm{a}+2}=\frac{\mathrm{y}}{\text { I }}=\frac{1}{2 \mathrm{a}^{3}+2}=\frac{1}{2 \mathrm{a}^{2}}$
II III
On taking I and III ratio, we get

$$
\begin{aligned}
& \Rightarrow \frac{x}{2 a^{3}+4 a+2}=\frac{1}{2 a^{2}} \\
& \Rightarrow x=\frac{a^{3}+2 a+1}{a^{2}}
\end{aligned}
$$

On taking II and III ratio, we get
$\Rightarrow \frac{y}{2 a^{3}+2}=\frac{1}{2 a^{2}}$
$\Rightarrow y=\frac{a^{3}+1}{a^{2}}$

6. Question

If the cost of 2 pencils and 3 erasers is Rs. 9 and the cost of 4 pencils and 6 erasers is Rs. 18. Find the cost of each pencil and each eraser.

Answer

Let the cost of one pencil = Rs x
and cost of one eraser = Rs y
According to the question
$2 x+3 y=9$
$4 x+6 y=18$
$\Rightarrow 2(2 x+3 y)=18$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}=9$
As we can see From Eq. (1) and (2)
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of linear equations has infinitely many solutions.

7. Question

The paths traced by the wheels of two trains are given by equations $x+2 y-4$ $=0$ and $2 \mathrm{x}+4 \mathrm{y}-12=0$. Will the paths cross each other?

Answer

Given paths traced by the wheel of two trains are
$x+2 y-4=0$
$2 x+4 y-12=0$
$\Rightarrow x+2 y-6=0$
As we can see that $a_{1}=1, b_{1}=2$ and $c_{1}=-4$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=-6$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{1}=1, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{2}=1$ and $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-4}{-6}=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Given pair of equations has no solution
Hence, two paths will not cross each other.

8. Question

The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditure is 4 : 3. If each of them manages to save Rs. 2000 per month, find their monthly incomes.

Answer

Given ratio of incomes $=9: 7$
And the ratio of their expenditures $=4: 3$
Saving of each person = Rs. 2000
Let incomes of two persons $=9 \mathrm{x}$ and 7 x
And their expenditures $=4 y$ and $3 y$
According to the question,
$9 x-4 y=2000$
$\Rightarrow 9 x-4 y-2000=0$
$7 x-3 y=2000$
$\Rightarrow 7 \mathrm{x}-3 \mathrm{y}-2000=0$
By cross - multiplication method, we have

$\Rightarrow \frac{\mathrm{x}}{8000-6000}=\frac{\mathrm{y}}{-14000+18000}=\frac{1}{-27+28}$
$\Rightarrow \frac{\mathrm{x}}{2000}=\frac{\mathrm{y}}{\mathrm{I}} \begin{gathered}\text { InI } \\ \text { II }\end{gathered}=\frac{1}{1}$
On taking I and III ratios, we get
$\Rightarrow \frac{\mathrm{x}}{2000}=\frac{1}{1}$
$\Rightarrow \mathrm{x}=2000$

On taking II and III ratios, we get
$\Rightarrow \frac{y}{4000}=\frac{1}{1}$
$\Rightarrow \mathrm{y}=4000$
Hence, the monthly incomes of two persons are $9(2000)=$ Rs18000 and 7(2000) = Rs14000

9. Question

The sum of two - digits number and the number obtained by reversing the digits is 66 . If the digits of the number differ by 2 , find the number. How many such numbers are there?

Answer

Let unit's digit $=\mathrm{y}$
and the ten's digit $=x$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
reversing number $=x+10 y$
According to the question,
$10 x+y+x+10 y=66$
$\Rightarrow 11 \mathrm{x}+11 \mathrm{y}=66$
$\Rightarrow x+y=6$
$x-y=2$
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-2-6}=\frac{y}{-6+2}=\frac{1}{-1-1}$

$$
\begin{gathered}
\Rightarrow \frac{\mathrm{x}}{-8}=\frac{\mathrm{y}}{\mathrm{I}}=\frac{1}{-4}=\frac{\text { II }}{\frac{\text { III }}{}} \text {. }
\end{gathered}
$$

On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{x}}{-8}=\frac{1}{-1}$
$\Rightarrow \mathrm{x}=4$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{-4}=\frac{1}{-2}$
$\Rightarrow \mathrm{y}=2$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
$=10(4)+2$
$=42$
Reversing the number $=x+10 y$
$=24$
Hence, the two digit number is 42 and 24 . These are two such numbers.

10. Question

If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1 . It becomes $1 / 2$ if we add 1 to the denominator. What is the fraction?

Answer

Let the numerator $=\mathrm{x}$
and the denominator $=y$
So, the fraction $=\frac{x}{y}$
According to the question,
Condition I:
$\frac{x+1}{y-1}=1$
$\Rightarrow \mathrm{x}+1=\mathrm{y}-1$
$\Rightarrow \mathrm{x}-\mathrm{y}=-2$
$\Rightarrow \mathrm{x}-\mathrm{y}+2=0$
Condition II:
$\frac{x}{y+1}=\frac{1}{2}$
$\Rightarrow 2 \mathrm{x}=\mathrm{y}+1$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=1$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}-1=0$
By cross - multiplication method, we have

$\Rightarrow \frac{x}{1+2}=\frac{y}{4+1}=\frac{1}{-1+2}$
$\Rightarrow \frac{\mathrm{x}}{3}=\frac{\mathrm{y}}{5}=\frac{1}{1}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{\mathrm{x}}{3}=\frac{1}{1}$
$\Rightarrow \mathrm{x}=3$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{5}=\frac{1}{1}$
$\Rightarrow \mathrm{y}=5$
So, the numerator is 3 and the denominator is 5
Hence, the fraction is $\frac{3}{5}$

11. Question

The cost of 5 oranges and 3 apples is Rs. 35 and the cost of 2 oranges and 4 apples is Rs. 28. Find the cost of an orange and an apple.

Answer

Let the cost of an orange $=R s x$
And the cost of an apple = Rs y
According to the question,
$5 x+3 y=35$
And $2 x+4 y=28$
$\Rightarrow x+2 y=14$
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-42+70}=\frac{y}{-35+70}=\frac{1}{10-3}$
$\Rightarrow \frac{x}{28}=\frac{y}{35}=\frac{1}{7}$
I II III
On taking I and III ratio, we get
$\Rightarrow \frac{x}{28}=\frac{1}{7}$
$\Rightarrow \mathrm{x}=4$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{35}=\frac{1}{7}$
$\Rightarrow \mathrm{y}=5$
Hence, the cost of an orange is Rs. 4 and cost of an apple is Rs. 5

12. Question

A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days, she has to pay Rs. 1000 as hostel charges, whereas a student B,
who takes food for 26 days, pays Rs. 1180 as hostel charges. Find the fixed charges and cost of food per day.

Answer

Let fixed hostel charge (monthly) = Rs x
and cost of food for one day $=$ Rs y
In case of student A ,
$x+20 y=1000$
$x+20 y-1000=0$
In case of student B,
$x+26 y=1180$
$x+26 y-1180=0$
By cross - multiplication method, we have

$\Rightarrow \frac{x}{-23600+26000}=\frac{y}{-1000+1180}=\frac{1}{26-20}$
$\Rightarrow \frac{\mathrm{x}}{2400}=\frac{\mathrm{y}}{\text { I }} \frac{180}{\text { II }}=\frac{1}{6}$
On taking I and III ratio, we get
$\Rightarrow \frac{x}{2400}=\frac{1}{6}$
$\Rightarrow \mathrm{x}=400$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{180}=\frac{1}{6}$
$\Rightarrow \mathrm{y}=30$
Hence, monthly fixed charges is Rs. 400 and cost of food per day is Rs. 30

13. Question

A fraction becomes $1 / 3$ when 1 is subtracted from the numerator and it becomes $1 / 4$ when 8 is added to its denominator. Find the fraction.

Answer

Let the numerator $=\mathrm{x}$
and the denominator $=y$
So, the fraction $=\frac{x}{y}$
According to the question,
Condition I:

$$
\begin{align*}
& \frac{x-1}{y}=\frac{1}{3} \\
& \Rightarrow 3(x-1)=y \\
& \Rightarrow 3 x-3=y \\
& \Rightarrow 3 x-y-3=0 \tag{i}
\end{align*}
$$

Condition II:

$$
\begin{align*}
& \frac{x}{y+8}=\frac{1}{4} \\
& \Rightarrow 4 x=y+8 \\
& \Rightarrow 4 x-y=8 \\
& \Rightarrow 4 x-y-8=0 \tag{ii}
\end{align*}
$$

By cross - multiplication method, we have

On taking I and III ratio, we get
$\Rightarrow \frac{x}{5}=\frac{1}{1}$
$\Rightarrow \mathrm{x}=5$
On taking II and III ratio, we get
$\Rightarrow \frac{y}{12}=\frac{1}{1}$
$\Rightarrow \mathrm{y}=12$
So, the numerator is 5 and the denominator is 12
Hence, the fraction is $\frac{3}{5}$

Exercise 3.5

1. Question

The sum of the two numbers is 18 . The sum of their reciprocals is $1 / 4$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x+y=18 \ldots$...(i)
$\frac{1}{x}+\frac{1}{y}=\frac{1}{4}$
Eq. (ii) can be re - written as
$\frac{\mathrm{y}+\mathrm{x}}{\mathrm{xy}}=\frac{1}{4} \ldots$ (iii)
On putting the value of $x+y=18$ in Eq. (iii), we get
$\frac{18}{x y}=\frac{1}{4}$
$\Rightarrow \mathrm{xy}=72$
$\Rightarrow \mathrm{x}=\frac{72}{\mathrm{y}}$
On putting the value of $\mathrm{x}=\frac{72}{\mathrm{y}}$ in Eq. (i), we get
$\frac{72}{y}+y=18$
$\Rightarrow 72+y^{2}=18 y$
$\Rightarrow \mathrm{y}^{2}-18 \mathrm{y}+72=0$
$\Rightarrow y^{2}-12 y-6 y+72=0$
$\Rightarrow \mathrm{y}(\mathrm{y}-12)-6(\mathrm{y}-12)=0$
$\Rightarrow(y-6)(y-12)=0$
$\Rightarrow \mathrm{y}=6$ and 12
If $y=6$, then $x=\frac{72}{6}=12$
If $y=12$, then $x=\frac{72}{12}=6$
Hence, the two numbers are 6 and 12.

2. Question

The sum of two numbers is 15 and sum of their reciprocals is $\frac{3}{10}$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x+y=15$
$\frac{1}{x}+\frac{1}{y}=\frac{3}{10}$.
Eq. (ii) can be re - written as
$\frac{\mathrm{y}+\mathrm{x}}{\mathrm{xy}}=\frac{3}{10} \ldots$ (iii)
On putting the value of $x+y=18$ in Eq. (iii), we get
$\frac{15}{x y}=\frac{3}{10}$
$\Rightarrow \mathrm{xy}=50$
$\Rightarrow \mathrm{x}=\frac{50}{\mathrm{y}}$
On putting the value of $x=\frac{50}{y}$ in Eq. (i), we get
$\frac{50}{y}+y=18$
$\Rightarrow 50+\mathrm{y}^{2}=15 \mathrm{y}$
$\Rightarrow y^{2}-15 y+50=0$
$\Rightarrow y^{2}-10 y-5 y+50=0$
$\Rightarrow y(y-10)-5(y-10)=0$
$\Rightarrow(y-5)(y-10)=0$
$\Rightarrow \mathrm{y}=5$ and 10
If $y=5$, then $x=\frac{50}{5}=10$
If $y=10$, then $x=\frac{50}{10}=5$
Hence, the two numbers are 5 and 10.

3. Question

Two numbers are in the ratio of $5: 6$. If 8 is subtracted from each of the numb, they become in the ratio of $4: 5$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,

$$
\begin{aligned}
& \frac{x}{y}=\frac{5}{6} \\
& \Rightarrow y=\frac{6 x}{5} \ldots(i) \\
& \text { Also, } \frac{x-8}{y-8}=\frac{4}{5} \\
& \Rightarrow 5(x-8)=4(y-8)
\end{aligned}
$$

$\Rightarrow 5 \mathrm{x}-40=4 \mathrm{y}-32$
$\Rightarrow 5 \mathrm{x}-4 \mathrm{y}=8$...(ii)
On putting the value of $y=\frac{6 x}{5}$ in Eq. (ii), we get
$5 x-4\left(\frac{6 x}{5}\right)=8$
$\Rightarrow \frac{25 x-24 x}{5}=8$
$\Rightarrow x=40$
On putting the value of $x=40$ in Eq. (i), we get
$y=\frac{6 \times 40}{5}=48$
Hence, the two numbers are 40 and 48.

4. Question

The sum of two numbers is 16 and the sum of their reciprocals is $1 / 3$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x+y=16 \ldots$ (i)
$\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$
Eq. (ii) can be re - written as

$$
\begin{equation*}
\frac{y+x}{x y}=\frac{1}{3} . \tag{iii}
\end{equation*}
$$

On putting the value of $x+y=16$ in Eq. (iii), we get
$\frac{16}{x y}=\frac{1}{3}$
$\Rightarrow x y=48$
$\Rightarrow \mathrm{x}=\frac{48}{\mathrm{y}}$

On putting the value of $x=\frac{48}{y}$ in Eq. (i), we get

$$
\begin{aligned}
& \frac{48}{y}+y=16 \\
& \Rightarrow 48+y^{2}=16 y \\
& \Rightarrow y^{2}-16 y+48=0 \\
& \Rightarrow y^{2}-12 y-4 y+48=0 \\
& \Rightarrow y(y-12)-4(y-12)=0 \\
& \Rightarrow(y-4)(y-12)=0 \\
& \Rightarrow y=4 \text { and } 12
\end{aligned}
$$

$$
\text { If } y=4, \text { then } x=\frac{48}{4}=12
$$

$$
\text { If } y=12 \text {, then } x=\frac{48}{12}=4
$$

Hence, the two numbers are 4 and 12.

5. Question

Two positive numbers differ by 3 and their product is 54 . Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x-y=3$
Also, $\mathrm{x} \times \mathrm{y}=54$
$\Rightarrow \mathrm{x}=\frac{54}{\mathrm{y}} \ldots$ (ii)
On putting the value of $\mathrm{x}=\frac{54}{\mathrm{y}}$ in Eq. (i), we get
$\frac{54}{y}-y=3$
$\Rightarrow 54-y^{2}=3 y$
$\Rightarrow y^{2}+3 y-54=0$
$\Rightarrow y^{2}+9 y-6 y-54=0$
$\Rightarrow y(y+9)-6(y+9)=0$
$\Rightarrow(y-6)(y+9)=0$
$\Rightarrow \mathrm{y}=-9$ and 6
But $y=-9$ can't be the one number as it is given that the numbers are positive.
$\Rightarrow \mathrm{y}=6$, then $\mathrm{x}=\frac{54}{6}=9$
Hence, the two numbers are 9 and 6 .

6. Question

Two numbers are in the ratio of $3: 5$. If 5 is subtracted from each of the number they become in the ratio of $1: 2$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,

$$
\begin{align*}
& \frac{x}{y}=\frac{3}{5} \\
& \Rightarrow y=\frac{5 x}{3} \ldots(i) \\
& \text { Also, } \frac{x-5}{y-5}=\frac{1}{2} \\
& \Rightarrow 2(x-5)=(y-5) \\
& \Rightarrow 2 x-10=y-5 \\
& \Rightarrow 2 x-y=5 \ldots(\mathrm{ii}) \tag{ii}
\end{align*}
$$

On putting the value of $y=\frac{5 x}{3}$ in Eq. (ii), we get

$$
\begin{aligned}
& 2 x-\left(\frac{5 x}{3}\right)=5 \\
& \Rightarrow \frac{6 x-5 x}{3}=5 \\
& \Rightarrow x=15
\end{aligned}
$$

On putting the value of $x=15$ in Eq. (i), we get
$y=\frac{5 \times 15}{3}=25$
Hence, the two numbers are 15 and 25.

7. Question

Two numbers are in the ratio of $3: 4$. If 8 is added to each number, they become in the ratio of $4: 5$. Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$\frac{x}{y}=\frac{3}{4}$
$\Rightarrow \mathrm{y}=\frac{4 \mathrm{x}}{3} \ldots$ (i)
Also, $\frac{x+8}{y+8}=\frac{4}{5}$
$\Rightarrow 5(x+8)=4(y+8)$
$\Rightarrow 5 \mathrm{x}+40=4 \mathrm{y}+32$
$\Rightarrow 5 x-4 y=-8$
On putting the value of $y=\frac{6 x}{5}$ in Eq. (ii), we get
$5 x-4\left(\frac{4 x}{3}\right)=-8$
$\Rightarrow \frac{15 x-16 x}{3}=-8$
$\Rightarrow \mathrm{x}=24$
On putting the value of $x=24$ in Eq. (i), we get
$y=\frac{4 \times 24}{3}=32$
Hence, the two numbers are 24 and 32 .

8. Question

Two numbers differ by 2 and their product is 360 . Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x-y=2 \ldots(i)$
Also, $\mathrm{x} \times \mathrm{y}=360$
$\Rightarrow \mathrm{x}=\frac{360}{\mathrm{y}} \ldots$ (ii)
On putting the value of $\mathrm{x}=\frac{360}{y}$ in Eq. (i), we get

$$
\begin{aligned}
& \frac{360}{y}-y=2 \\
& \Rightarrow 360-y^{2}=2 y \\
& \Rightarrow y^{2}+2 y-360=0 \\
& \Rightarrow y^{2}+20 y-18 y-360=0 \\
& \Rightarrow y(y+20)-18(y+20)=0 \\
& \Rightarrow(y-18)(y+20)=0 \\
& \Rightarrow y=-20 \text { and } 18
\end{aligned}
$$

But $y=-20$ can't be the one number as it is given that the numbers are positive.
$\Rightarrow y=18$, then $x=\frac{360}{18}=20$
Hence, the two numbers are 20 and 18.

9. Question

Two numbers differ by 4 and their product is 192 . Find the numbers.

Answer

Let the two numbers be x and y .
According to the question,
$x-y=4$

Also, $\mathrm{x} \times \mathrm{y}=192$
$\Rightarrow \mathrm{x}=\frac{192}{\mathrm{y}} \ldots$ (ii)
On putting the value of $\mathrm{x}=\frac{192}{\mathrm{y}}$ in Eq. (i), we get
$\frac{192}{y}-y=4$
$\Rightarrow 192-y^{2}=4 y$
$\Rightarrow \mathrm{y}^{2}+4 \mathrm{y}-192=0$
$\Rightarrow y^{2}+16 y-12 y-192=0$
$\Rightarrow y(y+16)-12(y+16)=0$
$\Rightarrow(y-12)(y+16)=0$
$\Rightarrow \mathrm{y}=-16$ and 12
But $y=-16$ can't be the one number as it is given that the numbers are positive.
$\Rightarrow \mathrm{y}=12$, then $\mathrm{x}=\frac{192}{12}=16$
Hence, the two numbers are 16 and 12.

10. Question

Two numbers differ by 4 and their product is 96 . Find the numbers.

Answer

Let the two numbers be x and y.
According to the question,
$x-y=4$
Also, $\mathrm{x} \times \mathrm{y}=96$
$\Rightarrow \mathrm{x}=\frac{96}{\mathrm{y}} \ldots$ (ii)
On putting the value of $\mathrm{x}=\frac{96}{\mathrm{y}}$ in Eq. (i), we get
$\frac{96}{y}-y=4$
$\Rightarrow 96-y^{2}=4 y$
$\Rightarrow y^{2}+4 y-96=0$
$\Rightarrow y^{2}+12 y-8 y-96=0$
$\Rightarrow y(y+12)-8(y+12)=0$
$\Rightarrow(y-8)(y+12)=0$
$\Rightarrow \mathrm{y}=-8$ and 12
But $y=-8$ can't be the one number as it is given that the numbers are positive.
$\Rightarrow \mathrm{y}=12$, then $\mathrm{x}=\frac{96}{12}=8$
Hence, the two numbers are 8 and 12 .

11. Question

The monthly incomes of A and B are in the ratio of 5:4 and their monthly expenditures are in the ratio of $7: 5$. If each saves Rs. 3000 per month, find the monthly income of each.

Answer

Given ratio of incomes $=5: 4$
And the ratio of their expenditures $=7: 5$
Saving of each person $=$ Rs. 3000
Let incomes of two persons $=5 \mathrm{x}$ and 4 x
And their expenditures $=7 \mathrm{y}$ and 5 y
According to the question,
$5 x-7 y=3000 \ldots$ (i)
$4 x-5 y=3000$
On multiplying Eq. (i) by 4 and Eq. (ii) by 5 to make the coefficients of x equal, we get
$20 x-28 y=12000$
$20 x-25 y=15000$
On subtracting Eq. (iii) from (iv), we get
$20 x-25 y-20 x+28 y=15000-12000$
$\Rightarrow 3 y=3000$
$\Rightarrow \mathrm{y}=1000$
On putting the $\mathrm{y}=1000$ in Eq. (i), we get
$5 x-7 y=3000$
$\Rightarrow 5 \mathrm{x}-7(1000)=3000$
$\Rightarrow 5 \mathrm{x}=10000$
$\Rightarrow \mathrm{x}=2000$
Thus, monthly income of both the persons are $5(2000)$ and $4(2000)$, i.e. Rs. 10000 and Rs. 8000

12. Question

Scooter charges consist of fixed charges and the remaining depending upon the distance travelled in kilometres. If a person travels 12 km , he pays Rs. 45 and for travelling 20 km , he pays Rs. 73. Express the above statements in the form of simultaneous equations and hence, find the fixed charges and the rate per km.

Answer

Let fixed charge = Rs x
and charge per kilometer $=$ Rs y
According to the question,
$x+12 y=45$
and $x+20 y=73$
On subtracting Eq. (i) from Eq. (ii), we get
$x+20 y-x-12 y=73-45$
$\Rightarrow 8 y=28$
$\Rightarrow \mathrm{y}=\frac{28}{8}=3.5$
On putting the value of $y=3.5$ in Eq. (i), we get
$x+12(3.5)=45$
$\Rightarrow x+42=45$
$\Rightarrow x=45-42=3$
Hence, monthly fixed charges is Rs. 3 and charge per kilometer is Rs. 3.5

13. Question

A part of monthly hostel charges in a college is fixed and the remaining depend on the number of days one has taken food in the mess. When a student A, takes food for 22 days, he has to pay Rs. 1380 as hostel charges, whereas a student B, who takes food for 28 days, pays Rs. 1680 as hostel charges. Find the fixed charge and the cost of food per day.

Answer

Let fixed hostel charge (monthly) = Rs x
and cost of food for one day = Rs y
In case of student A,
$x+22 y=1380$
In case of student B,
$x+28 y=1680$
On subtracting Eq. (i) from Eq. (ii), we get
$x+28 y-x-22 y=1680-1380$
$\Rightarrow 6 y=300$
$\Rightarrow \mathrm{y}=50$
On putting the value of $y=50$ in Eq. (i), we get
$x+22(50)=1380$
$\Rightarrow \mathrm{x}+1100=1380$
$\Rightarrow \mathrm{x}=1380-1100=280$
Hence, monthly fixed charges is Rs. 280 and cost of food per day is Rs. 50

14. Question

Taxi charges in a city consist of fixed charges per day and the remaining depending upon the distance travelled in kilometers. If a person travels 110 km, he pays Rs. 690, and for travelling 200 km, he pays Rs. 1050. Find the fixed charges per day and the rate per km.

Answer

Let fixed charge $=$ Rs. x
and charge per kilometer $=$ Rs. y
According to the question,
$x+110 y=690$
and $x+200 y=1050$
On subtracting Eq. (i) from Eq. (ii), we get
$x+200 y-x-110 y=1050-690$
$\Rightarrow 90 y=360$
$\Rightarrow \mathrm{y}=40$
On putting the value of $y=40$ in Eq. (i), we get
$x+110(40)=690$
$\Rightarrow x+440=690$
$\Rightarrow \mathrm{x}=690-440=250$
Hence, monthly fixed charges is Rs. 250 and charge per kilometer is Rs. 40

15. Question

A part of monthly hostel charges in a college are fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 25 days, he has to pay Rs. 1750 as hostel charges whereas a student a d who takes food for 28 days, pays Rs. 1900 as hostel charges. Find the fixed charges and the cost of the food per day.

Answer

Let fixed hostel charge (monthly) = Rs x
and cost of food for one day = Rs y
In case of student A,
$x+25 y=1750$
In case of student B,
$x+28 y=1900$
On subtracting Eq. (i) from Eq. (ii), we get
$x+28 y-x-25 y=1900-1750$
$\Rightarrow 3 y=150$
$\Rightarrow \mathrm{y}=50$
On putting the value of $y=50$ in Eq. (i), we get
$x+25(50)=1750$
$\Rightarrow \mathrm{x}+1250=1750$
$\Rightarrow \mathrm{x}=1750-1250=500$
Hence, monthly fixed charges is Rs. 500 and cost of food per day is Rs. 50

16. Question

The total expenditure per month of a household consists of a fixed rent of the house and the mess charges, depending upon the number of people sharing the house. The total monthly expenditure is Rs. 3,900 for 2 people and Rs. 7,500 for 5 people. Find the rent of the house and the mess charges per head per month.

Answer

Let fixed rent of the house $=$ Rs. x
And the mess charges per hesd per month = Rs. y
According to the question,
$x+2 y=3900$
and $x+5 y=7500$
On subtracting Eq. (i) from Eq. (ii), we get
$x+5 y-x-2 y=7500-3900$
$\Rightarrow 3 y=3600$
$\Rightarrow \mathrm{y}=1200$
On putting the value of $y=1200$ in Eq. (i), we get
$x+2(1200)=3900$
$\Rightarrow \mathrm{x}+2400=3900$
$\Rightarrow \mathrm{x}=1500$
Hence, fixed rent of the house is Rs. 1500 and the mess charges per head per month is Rs. 1200.

17. Question

The car rental charges in a city comprise a fixed charge together with the charge for the distance covered. For a journey of 13 km , the charge paid is Rs. 96 and for a journey of 18 km , the charge paid is Rs. 131. What will a person have to pay for travelling a distance of 25 km ?

Answer

Let fixed charge $=$ Rs. x
and charge per kilometer $=$ Rs. y
According to the question,
$x+13 y=96$
and $\mathrm{x}+18 \mathrm{y}=131$
On subtracting Eq. (i) from Eq. (ii), we get
$x+18 y-x-13 y=131-96$
$\Rightarrow 5 y=35$
$\Rightarrow \mathrm{y}=7$
On putting the value of $\mathrm{y}=7 \mathrm{in}$ Eq. (i), we get
$x+13(7)=96$
$\Rightarrow \mathrm{x}+91=96$
$\Rightarrow \mathrm{x}=5$
Hence, monthly fixed charges is Rs. 5 and charge per kilometer is Rs. 7
Now, amount to be paid for travelling 25 km
$=$ Fixed charge + Rs 7×25
$=5+175$
$=$ Rs. 180
Hence, the amount paid by a person for travelling 25 km is Rs. 180

18. Question

The sum of a two - digit number and the number formed by interchanging the digits is 132 . If 12 is added to the number, the new number becomes 5 times the sum of the digits. Find the number.

Answer

Let unit's digit $=\mathrm{y}$
and the ten's digit $=\mathrm{x}$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
After interchanging the digits, New number $=x+10 y$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
According to the question,
$(10 x+y)+(x+10 y)=132$
$\Rightarrow 11 x+11 y=132$
$\Rightarrow 11(\mathrm{x}+\mathrm{y})=132$
$\Rightarrow \mathrm{x}+\mathrm{y}=12$...(i)
and $10 \mathrm{x}+\mathrm{y}+12=5(\mathrm{x}+\mathrm{y})$
$\Rightarrow 10 x+y+12=5 x+5 y$
$\Rightarrow 10 x-5 x+y-5 y=-12$
$\Rightarrow 5 \mathrm{x}-4 \mathrm{y}=-12$
From Eq. (i), we get
$x=12-y$
On substituting the value of $\mathrm{x}=12-\mathrm{y}$ in Eq. (ii), we get
$5(12-y)-4 y=-12$
$\Rightarrow 60-5 y-4 y=-12$
$\Rightarrow-9 y=-12-60$
$\Rightarrow-9 y=-72$
$\Rightarrow \mathrm{y}=8$
On putting the value of $y=8$ in Eq. (iii), we get
$x=12-8=4$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 4+8$
$=48$
Hence, the two digit number is 48.

19. Question

A two - digit number is 4 times the sum of its digits. If 18 is added to the number, the digits are reversed. Find the number.

Answer

Let unit's digit $=\mathrm{y}$
and the ten's digit $=x$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the two digit number $=10 \mathrm{x}+\mathrm{y}$
The sum of the digit $=x+y$
According to the question,
$(10 x+y)=4(x+y)$
$\Rightarrow 10 x+y=4 x+4 y$
$\Rightarrow 10 x-4 x+y-4 y=0$
$\Rightarrow 6 \mathrm{x}-3 \mathrm{y}=0$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=0$
$\Rightarrow \mathrm{y}=2 \mathrm{x}$
After interchanging the digits, New number $=x+10 y$
and $10 x+y+18=x+10 y$
$\Rightarrow 10 x+y+18=x+10 y$
$\Rightarrow 10 \mathrm{x}-\mathrm{x}+\mathrm{y}-10 \mathrm{y}=-18$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow \mathrm{x}-\mathrm{y}=-2 \ldots$
On substituting the value of $y=2 x$ in Eq. (ii), we get
$x-y=-18$
$\Rightarrow \mathrm{x}-2 \mathrm{x}=-2$
$\Rightarrow-\mathrm{x}=-2$
$\Rightarrow \mathrm{x}=2$
On putting the value of $x=2$ in Eq. (i), we get
$y=2 \times 2=4$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 2+4$
$=20+4$
$=24$
Hence, the two digit number is 24 .

20. Question

A number consists of two digits. When it is divided by the sum of its digits, the quotient is 6 with no remainder. When the number is diminished by 9 , the digits are reversed. Find the number.

Answer

Let unit's digit $=y$
and the ten's digit $=\mathrm{x}$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
According to the question,
$\frac{(10 x+y)}{x+y}=6$
$\Rightarrow 10 \mathrm{x}+\mathrm{y}=6(\mathrm{x}+\mathrm{y})$
$\Rightarrow 10 x+y=6 x+6 y$
$\Rightarrow 10 x+y-6 x-6 y$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}=0$
The reverse of the number $=x+10 y$
and $10 \mathrm{x}+\mathrm{y}-9=\mathrm{x}+10 \mathrm{y}$
$\Rightarrow 10 x+y-9=x+10 y$
$\Rightarrow 10 x-x+y-10 y=9$
$\Rightarrow 9 x-9 y=9$
$\Rightarrow x-y=1$
$\Rightarrow \mathrm{x}=\mathrm{y}+1$
On substituting the value of $x=y+1$ in Eq. (i), we get
$4 x-5 y=0$
$\Rightarrow 4(y+1)-5 y=0$
$\Rightarrow 4 y+4-5 y=0$
$\Rightarrow 4-\mathrm{y}=0$
$\Rightarrow \mathrm{y}=4$
On substituting the value of $\mathrm{y}=4$ in Eq. (ii), we get
$x=y+1$
$\Rightarrow \mathrm{x}=4+1$
$\Rightarrow \mathrm{x}=5$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 5+4$
$=50+4$
$=54$
Hence, the two digit number is 54 .

21. Question

The sum of the digits of a two - digit number is 12 . The number obtained by interchanging its digits exceeds the given number by 18. Find the number.

Answer

Let unit's digit $=y$
and the ten's digit $=\mathrm{x}$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$

The sum of the digit $=x+y$
According to the question,
$x+y=12 \ldots$ (i)
After interchanging the digits, the number $=x+10 y$
and $10 \mathrm{x}+\mathrm{y}+18=\mathrm{x}+10 \mathrm{y}$
$\Rightarrow 10 x+y+18=x+10 y$
$\Rightarrow 10 \mathrm{x}-\mathrm{x}+\mathrm{y}-10 \mathrm{y}=-18$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow \mathrm{x}-\mathrm{y}=-2$
On adding Eq. (i) and (ii), we get
$x+y+x-y=12-2$
$\Rightarrow 2 \mathrm{x}=10$
$\Rightarrow \mathrm{x}=5$
On substituting the value of $x=5$ in Eq. (i), we get
$x+y=12$
$\Rightarrow 5+\mathrm{y}=12$
$\Rightarrow \mathrm{y}=7$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 5+7$
$=50+7$
$=57$
Hence, the two digit number is 57 .

22. Question

A two - digit number is 3 more than 4 times the sum of its digits. If 18 is added to the number, the digits are reversed. Find the number.

Answer

Let unit's digit $=y$
and the ten's digit $=\mathrm{x}$

So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
According to the question,
$10 \mathrm{x}+\mathrm{y}=3+4(\mathrm{x}+\mathrm{y})$
$\Rightarrow 10 x+y=3+4 x+4 y$
$\Rightarrow 10 x+y-4 x-4 y=3$
$\Rightarrow 6 \mathrm{x}-3 \mathrm{y}=3$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=1$.
The reverse number $=x+10 y$
and $10 x+y+18=x+10 y$
$\Rightarrow 10 x+y+18=x+10 y$
$\Rightarrow 10 x-x+y-10 y=-18$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow \mathrm{x}-\mathrm{y}=-2$.
On subtracting Eq. (i) from Eq. (ii) , we get
$x-y-2 x+y=-2-1$
$\Rightarrow-\mathrm{x}=-3$
$\Rightarrow \mathrm{x}=3$
On substituting the value of $x=3$ in Eq. (i), we get
$2(3)-y=1$
$\Rightarrow 6-\mathrm{y}=1$
$\Rightarrow-\mathrm{y}=1-6$
$\Rightarrow-y=-5$
$\Rightarrow \mathrm{y}=5$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 3+5$
$=30+5$
$=35$
Hence, the two digit number is 35 .

23. Question

A number consisting of two digits is seven times the sum of its digits. When 27 is subtracted from the number, the digits are reversed. Find the number.

Answer

Let unit's digit $=y$
and the ten's digit $=x$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
According to the question,
$10 x+y=7(x+y)$
$\Rightarrow 10 x+y=7 x+7 y$
$\Rightarrow 10 x+y-7 x-7 y=0$
$\Rightarrow 3 \mathrm{x}-6 \mathrm{y}=0$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=0$
$\Rightarrow x=2 y \ldots(i)$
The reverse number $=x+10 y$
and $10 x+y-27=x+10 y$
$\Rightarrow 10 x+y-27=x+10 y$
$\Rightarrow 10 x-x+y-10 y=27$
$\Rightarrow 9 x-9 y=27$
$\Rightarrow \mathrm{x}-\mathrm{y}=3$
On substituting the value of $x=2 y$ in Eq. (ii), we get
$x-y=3$
$\Rightarrow 2 \mathrm{y}-\mathrm{y}=3$
$\Rightarrow \mathrm{y}=3$
On putting the value of $\mathrm{y}=3$ in Eq. (i), we get
$x=2(3)=6$
So, the Original number $=10 \mathrm{x}+\mathrm{y}$
$=10 \times 6+3$
$=60+3$
$=63$
Hence, the two digit number is 63.

24. Question

The sum of the digits of a two - digit number is 15 . The number obtained by interchanging the digits exceeds the given number by 9 . Find the number.

Answer

Let unit's digit $=y$
and the ten's digit $=\mathrm{x}$
So, the original number $=10 \mathrm{x}+\mathrm{y}$
The sum of the number $=10 x+y$
The sum of the digit $=x+y$
According to the question,
$x+y=15$
After interchanging the digits, the number $=x+10 y$
and $10 x+y+9=x+10 y$
$\Rightarrow 10 x+y+9=x+10 y$
$\Rightarrow 10 x-x+y-10 y=-9$
$\Rightarrow 9 x-9 y=-9$
$\Rightarrow \mathrm{x}-\mathrm{y}=-1$...(ii)
On adding Eq. (i) and (ii), we get
$x+y+x-y=15-1$
$\Rightarrow 2 \mathrm{x}=14$
$\Rightarrow \mathrm{x}=7$
On substituting the value of $x=5$ in Eq. (i), we get
$x+y=15$
$\Rightarrow 7+y=15$
$\Rightarrow \mathrm{y}=8$
So, the Original number $=10 x+y$
$=10 \times 7+8$
$=70+8$
$=78$

Hence, the two digit number is 78.

25. Question

The sum of the numerator and denominator of a fraction is 3 less than twice the denominator. If the numerator and denominator are decreased by 1 , the numerator becomes half the denominator. Determine the fraction.

Answer

Let the numerator $=\mathrm{x}$
and the denominator $=y$
So, the fraction $=\frac{x}{y}$
According to the question,
Condition I:
$x+y=2 y-3$
$\Rightarrow \mathrm{x}+\mathrm{y}-2 \mathrm{y}=-3$
$\Rightarrow \mathrm{x}-\mathrm{y}=-3$
Condition II:
$\frac{x-1}{y-1}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}-1)=\mathrm{y}-1$
$\Rightarrow 2 \mathrm{x}-2=\mathrm{y}-1$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=1$
On subtracting Eq. (i) from Eq. (ii), we get
$2 x-y-x+y=1+3$
$\Rightarrow \mathrm{x}=4$
On putting the value of x in Eq. (i), we get
$4-y=-3$
$\Rightarrow \mathrm{y}=7$
So, the numerator is 4 and the denominator is 7
Hence, the fraction is $\frac{4}{7}$

26. Question

The sum of the numerator and denominator of a fraction is 4 more than twice the numerator. If the numerator and denominator are increased by 3 , then are in the ratio $2: 3$. Determine the fraction.

Answer

Let the numerator $=\mathrm{x}$
and the denominator $=y$
So, the fraction $=\frac{x}{y}$
According to the question,
Condition I:
$x+y=2 x+4$
$\Rightarrow \mathrm{x}+\mathrm{y}-2 \mathrm{x}=4$
$\Rightarrow-x+y=4$
$\Rightarrow \mathrm{y}=4+\mathrm{x}$.
Condition II:

$$
\begin{aligned}
& \frac{x+3}{y+3}=\frac{2}{3} \\
& \Rightarrow 3(x+3)=2(y+3) \\
& \Rightarrow 3 x+9=2 y+6
\end{aligned}
$$

$\Rightarrow 3 \mathrm{x}-2 \mathrm{y}=-3$
On putting the value of y in Eq.(ii), we get
$3 x-2(4+x)=-3$
$\Rightarrow 3 \mathrm{x}-8-2 \mathrm{x}=-3$
$\Rightarrow \mathrm{x}=5$
On putting the value of x in Eq. (i), we get
$y=4+5$
$\Rightarrow \mathrm{y}=9$
So, the numerator is 5 and the denominator is 9
Hence, the fraction is $\frac{5}{9}$

27. Question

The sum of the numerator and denominator of a fraction is 8 . If 3 is added to both 3 the numerator and the denominator, the fraction becomes $3 / 4$. Find the fraction.

Answer

Let the numerator $=\mathrm{x}$
and the denominator $=y$
So, the fraction $=\frac{x}{y}$
According to the question,
Condition I:
$x+y=8$
$\Rightarrow \mathrm{y}=8-\mathrm{x}$
Condition II:

$$
\begin{align*}
& \frac{x+3}{y+3}=\frac{3}{4} \\
& \Rightarrow 4(x+3)=3(y+3) \\
& \Rightarrow 4 x+12=3 y+9 \\
& \Rightarrow 4 x-3 y=-3 \ldots(i i) \tag{ii}
\end{align*}
$$

On putting the value of y in Eq.(ii), we get
$4 x-3(8-x)=-3$
$\Rightarrow 4 \mathrm{x}-24+3 \mathrm{x}=-3$
$\Rightarrow 7 \mathrm{x}=21$
$\Rightarrow \mathrm{x}=3$
On putting the value of x in Eq. (i), we get
$y=8-3$
$\Rightarrow \mathrm{y}=5$
So, the numerator is 3 and the denominator is 5
Hence, the fraction is $\frac{3}{5}$

28. Question

The numerator of a fraction is one less than its denominator. If 3 is added to each of the numerator and denominator, the fraction is increased by $3 / 28$, find the fraction. 28

Answer

Let the denominator $=\mathrm{x}$
Given that numerator is one less than the denominator
\Rightarrow numerator $=\mathrm{x}-1$
So, the fraction $=\frac{x-1}{x}$
According to the question,

$$
\begin{aligned}
& \frac{x-1+3}{x+3}=\frac{x-1}{x}+\frac{3}{28} \\
& \Rightarrow \frac{x+2}{x+3}=\frac{x-1}{x}+\frac{3}{28} \\
& \Rightarrow \frac{x+2}{x+3}-\frac{x-1}{x}=\frac{3}{28} \\
& \Rightarrow \frac{(x+2) x-(x+3)(x-1)}{(x+3)(x)}=\frac{3}{28}
\end{aligned}
$$

$$
\Rightarrow 28\left\{\left(x^{2}+2 x\right)-\left(x^{2}-x+3 x-3\right)\right\}=3\left(x^{2}+3 x\right)
$$

$\Rightarrow 28 x^{2}+56 x-28 x^{2}-56 x+84=3 x^{2}+9 x$
$\Rightarrow 3 x^{2}+9 x-84=0$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-28=0$
$\Rightarrow \mathrm{x}^{2}+7 \mathrm{x}-4 \mathrm{x}-28=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+7)-4(\mathrm{x}+7)=0$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}+7)=0$
$\Rightarrow \mathrm{x}=4$ and -7
But x is a natural number
Hence, $x=4$
So, the fraction is $\frac{x-1}{x}=\frac{4-1}{4}=\frac{3}{4}$

29. Question

The age of the father is 3 years more than 3 times the son's age. 3 years here, the age of the father will be 10 years more than twice the age of the son. Find their present ages.

Answer

Let the age of father $=x$ years
And the age of his son $=y$ years
According to the question,
$x=3+3 y \ldots(i)$
Three year here,
Father's age $=(x+3)$ years
Son's age $=(y+3)$ years
According to the question,
$(x+3)=10+2(y+3)$
$\Rightarrow x+3=10+2 y+6$
$\Rightarrow x=2 y+13$
From Eq. (i) and (ii), we get
$3+3 y=13+2 y$
$\Rightarrow 3 y-2 y=13-3$
$\Rightarrow \mathrm{y}=10$
On putting the value of $y=7$ in Eq. (i), we get
$x=3+3(10)$
$\Rightarrow \mathrm{x}=3+30$
$\Rightarrow \mathrm{x}=33$
Hence, the age of father is 33 years and the age of his son is 10 years.

30. Question

Two years ago, a man was five times as old as his son. Two years later his age will be 8 more than three times the age of the son. Find the present ages of man and his son.

Answer

Let the age of a man $=x$ years
And the age of his son $=y$ years
Two years ago,
Man's age $=(x-2)$ years
Son's age $=(y-2)$ years
According to the question,
$(x-2)=5(y-2)$
$\Rightarrow \mathrm{x}-2=5 \mathrm{y}-10$
$\Rightarrow \mathrm{x}=5 \mathrm{y}-10+2$
$\Rightarrow \mathrm{x}=5 \mathrm{y}-8 \ldots(\mathrm{i})$
Two years later,
Father's age $=(x+2)$ years
Son's age $=(y+2)$ years
According to the question,
$(x+2)=8+3(y+2)$
$\Rightarrow x+2=8+3 y+6$
$\Rightarrow x=3 y+12 \ldots$ (ii)
From Eq. (i) and (ii), we get
$5 y-8=3 y+12$
$\Rightarrow 5 y-3 y=12+8$
$\Rightarrow 2 \mathrm{y}=20$
$\Rightarrow \mathrm{y}=10$
On putting the value of $y=11$ in Eq. (i), we get
$x=5(10)-8$
$\Rightarrow \mathrm{x}=50-8$
$\Rightarrow \mathrm{x}=42$
Hence, the age of man is 42 years and the age of his son is 10 years.

31. Question

Father's age is three times the sum of ages of his two children. After 5 years, his age will be twice the sum of ages of two children. Find the age of father.

Answer

Let the age of two children be x and y
So, the father's present age $=3(x+y)$
After five years,
Age of two children $=(x+5)+(y+5)$ years
$=(x+y+10)$ years
So, the age of father after five years $=3(x+y)+5$
$=3 x+3 y+5$
According to the question,

$$
\begin{aligned}
& 3 x+3 y+5=2(x+y+10) \\
& \Rightarrow 3 x+3 y+5=2 x+2 y+20 \\
& \Rightarrow 3 x-2 x+3 y-2 y=20-5 \\
& \Rightarrow x+y=15
\end{aligned}
$$

So, the age of two children $=15$ years
And the age of father $=3(15)=45$ years
Hence, the age of father is 45 years and the age of his two children is 15 years.

32. Question

Five years ago, A was thrice as old as B and ten years later, A shall be twice as old as B. What are the present ages of A and B ?

Answer

Let the age of $\mathrm{A}=\mathrm{x}$ years
And the age of $B=y$ years
Five years ago,
A's age $=(x-5)$ years
B's age $=(y-5)$ years
According to the question,
$(x-5)=3(y-5)$
$\Rightarrow \mathrm{x}-5=3 \mathrm{y}-15$
$\Rightarrow x=3 y-10 \ldots$ (i)
Ten years later,
A's age $=(x+10)$
B's age $=(y+10)$
According to the question,
$(x+10)=2(y+10)$
$\Rightarrow x+10=2 y+20$
$\Rightarrow x=2 y+10$
From Eq. (i) and (ii), we get
$3 y-10=2 y+10$
$\Rightarrow 3 y-2 y=10+10$
$\Rightarrow \mathrm{y}=20$
On putting the value of $\mathrm{y}=20$ in Eq. (i), we get
$x=3(20)-10$
$\Rightarrow \mathrm{x}=50$
Hence, the age of person A is 50years and Age of B is 20years.

33. Question

Ten years hence, a man's age will be twice the age of his son. Ten years ago, the man was four times as old as his son. Find their present ages.

Answer

Let the age of a man $=x$ years
And the age of his son = y years
Ten years hence,
Man's age $=(x+10)$ years
Son's age $=(y+10)$ years
According to the question,
$(x+10)=2(y+10)$
$\Rightarrow x+10=2 y+20$
$\Rightarrow x=2 y+20-10$
$\Rightarrow \mathrm{x}=2 \mathrm{y}+10 \ldots$ (i)
Ten years ago,
Father's age $=(x-10)$ years
Son's age $=(y-10)$ years
According to the question,
$(x-10)=4(y-10)$
$\Rightarrow x-10=4 y-40$
$\Rightarrow x=4 y-30$
From Eq. (i) and (ii), we get
$2 y+10=4 y-30$
$\Rightarrow 2 \mathrm{y}-4 \mathrm{y}=-30-10$
$\Rightarrow-2 y=-40$
$\Rightarrow \mathrm{y}=20$
On putting the value of $\mathrm{y}=20$ in Eq. (i), we get
$x=2 y+10$
$\Rightarrow \mathrm{x}=2(20)+10$
$\Rightarrow \mathrm{x}=50$
Hence, the age of man is 50 years and the age of his son is 20 years.

34. Question

Find a cyclic quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=(2 \mathrm{x}+4)^{\circ}, \angle \mathrm{B}=(\mathrm{y}+3)^{\circ}, \angle \mathrm{C}=(2 \mathrm{y}+10)$ and $\angle D=(4 x-5)^{\circ}$. Find the four angles.

Answer

We know that, in a cyclic quadrilateral, the sum of two opposite angles is 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+4+2 \mathrm{y}+10=180$ and $\mathrm{y}+3+4 \mathrm{x}-5=180$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}=180-14$ and $4 \mathrm{x}+\mathrm{y}-2=180$
$\Rightarrow \mathrm{x}+\mathrm{y}=83$ and $4 \mathrm{x}+\mathrm{y}=182$
So, we get pair of linear equation i.e.
$x+y=83$
$4 \mathrm{x}+\mathrm{y}=182 \ldots$ (ii)
On subtracting Eq.(i) from (ii), we get
$4 x+y-x-y=182-83$
$\Rightarrow 3 \mathrm{x}=99$
$\Rightarrow \mathrm{x}=33$
On putting the value of $\mathrm{x}=33$ in Eq. (i) we get,
$33+y=83$
$\Rightarrow y=83-33=50$
On putting the values of x and y, we calculate the angles as
$\angle \mathrm{A}=(2 \mathrm{x}+43)^{\circ}=2(33)+4=66+4=70^{\circ}$
$\angle \mathrm{B}=(\mathrm{y}+3)^{\circ}=50+3=53^{\circ}$
$\angle \mathrm{C}=(2 \mathrm{y}+10)^{\circ}=2(50)+10=100+10=110^{\circ}$
and $\angle \mathrm{D}=(4 \mathrm{x}-5)^{\circ}=4(33)-5=132-5=127^{\circ}$
Hence, the angles are $\angle \mathrm{A}=63^{\circ}, \angle \mathrm{B}=57^{\circ}, \angle \mathrm{C}=117^{\circ}, \angle \mathrm{D}=123^{\circ}$

35. Question

Find the four angles of a cyclic quadrilateral ABCD in which $\angle \mathrm{A}=(2 \mathrm{x}-3)^{\circ}$,
$\angle \mathrm{B}=(\mathrm{y}+7)^{\circ}, \angle \mathrm{C}=(2 \mathrm{y}+17)^{\circ}$ and $\angle \mathrm{D}=(4 \mathrm{x}-9)^{\circ}$.
$\angle \mathrm{A}=63^{\circ}, \angle \mathrm{B}=57^{\circ}, \angle \mathrm{C}=117^{\circ}, \angle \mathrm{D}=123^{\circ}$.

Answer

We know that, in a cyclic quadrilateral, the sum of two opposite angles is 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}-3+2 \mathrm{y}+17=180$ and $\mathrm{y}+7+4 \mathrm{x}-9=180$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}+14=180$ and $4 \mathrm{x}+\mathrm{y}-2=180$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}=180-14$ and $4 \mathrm{x}+\mathrm{y}=182$
$\Rightarrow \mathrm{x}+\mathrm{y}=83$ and $4 \mathrm{x}+\mathrm{y}=182$
So, we get pair of linear equation i.e.
$x+y=83$
$4 \mathrm{x}+\mathrm{y}=182 \ldots$ (ii)
On subtracting Eq.(i) from (ii), we get
$4 x+y-x-y=182-83$
$\Rightarrow 3 \mathrm{x}=99$
$\Rightarrow \mathrm{x}=33$
On putting the value of $\mathrm{x}=33$ in Eq. (i) we get,
$33+y=83$
$\Rightarrow y=83-33=50$
On putting the values of x and y, we calculate the angles as
$\angle \mathrm{A}=(2 \mathrm{x}-3)^{\circ}=2(33)-3=66-3=63^{\circ}$
$\angle \mathrm{B}=(\mathrm{y}+7)^{\circ}=50+7=57^{\circ}$
$\angle \mathrm{C}=(2 \mathrm{y}+17)^{\circ}=2(50)+17=100+17=117^{\circ}$
and $\angle \mathrm{D}=(4 \mathrm{x}-9)^{\circ}=4(33)-9=132-9=123^{\circ}$
Hence, the angles are $\angle \mathrm{A}=63^{\circ}, \angle \mathrm{B}=57^{\circ}, \angle \mathrm{C}=117^{\circ}, \angle \mathrm{D}=123^{\circ}$

36. Question

In a $\triangle A B C, \angle C=3 \angle B=2(\angle A+\angle B)$. Find the three angles.
$\angle \mathrm{A}=20^{\circ}, \angle \mathrm{B}=40^{\circ}, \angle \mathrm{C}=120^{\circ}$.

Answer

We know that, in a triangle , the sum of three angles is 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
According to the question,

$\angle \mathrm{C}=3 \angle \mathrm{~B}=2$	$(\angle \mathrm{~A}+\angle \mathrm{B})$
I	II
III	

On taking II and III, we get
$\Rightarrow 3 \angle \mathrm{~B}=2(\angle \mathrm{~A}+\angle \mathrm{B})$
$\Rightarrow 3 \angle \mathrm{~B}=2 \angle \mathrm{~A}+2 \angle \mathrm{~B}$
$\Rightarrow \angle \mathrm{B}=2 \angle \mathrm{~A}$.
Now, on taking I and II, we get
$\angle \mathrm{C}=3 \angle \mathrm{~B}$
$\Rightarrow \angle \mathrm{C}=3(2 \angle \mathrm{~A})($ from eq. (i) $)$
$\Rightarrow \angle \mathrm{C}=6 \angle \mathrm{~A} . . .(\mathrm{ii})$
On substituting the value of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ in Eq. (a), we get
$\angle \mathrm{A}+2 \angle \mathrm{~A}+6 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow 9 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=20^{\circ}$
On puuting the value of $\angle \mathrm{A}=20^{\circ}$ in Eq. (i) and (ii), we get
$\angle \mathrm{B}=2 \angle \mathrm{~A}=2(20)=40^{\circ}$
$\angle \mathrm{C}=6 \angle \mathrm{~A}=6(20)=120^{\circ}$
Hence, the angles are $\angle \mathrm{A}=20^{\circ}, \angle \mathrm{B}=40^{\circ}, \angle \mathrm{C}=120^{\circ}$

37. Question

In a $\triangle A B C, \angle A=x^{\circ}, \angle B=(3 x)^{\circ}$ and $\angle C=y^{\circ}$.
If $3 y-5 x=30$, show that the triangle is right - angled.

Answer

We know that, in a triangle , the sum of three angles is 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
According to the question,
$x+3 x+y=180$
$\Rightarrow 4 \mathrm{x}+\mathrm{y}=180$
$\Rightarrow \mathrm{y}=180-4 \mathrm{x}$
Given that $3 y-5 x=30 \ldots$ (ii)
On substituting the value of y in Eq. (ii), we get

$$
\begin{aligned}
& 3(180-4 x)-5 x=30 \\
& \Rightarrow 540-12 x-5 x=30 \\
& \Rightarrow 540-17 x=30 \\
& \Rightarrow-17 x=30-540 \\
& \Rightarrow-17 x=-510
\end{aligned}
$$

$\Rightarrow \mathrm{x}=30$
Now, we substitute the value of x in Eq.(i), we get
$\Rightarrow \mathrm{y}=180-4(30)$
$\Rightarrow \mathrm{y}=60$
On putting the value of x and y, we calculate the angles
$\angle \mathrm{A}=\mathrm{x}^{\circ}=30^{\circ}$
$\angle \mathrm{B}=(3 \mathrm{x})^{\circ}=3(30)=90^{\circ}$
and $\angle \mathrm{C}=\mathrm{y}^{\circ}=60^{\circ}$
Here, we can see that $\angle \mathrm{B}=90^{\circ}$, so triangle is a right angled.

38. Question

The area of a rectangle gets reduced by $8 \mathrm{~m}^{2}$, when its length is reduced by 5 m and its breadth is increased by 3 m . If we increase the length by 3 m and breadth by 2 m , the area is increased by $74 \mathrm{~m}^{2}$. Find the length and the breadth of the rectangle.

Answer

Let the length of a rectangle $=\mathrm{x} \mathrm{m}$
and the breadth of a rectangle $=y \mathrm{~m}$
Then, Area of rectangle $=x y \mathrm{~m}^{2}$
Condition I :
Area is reduced by $8 m^{2}$, when length $=(x-5) m$ and breadth $=(y+3) m$
Then, area of rectangle $=(x-5) \times(y+3) m^{2}$
According to the question,
$x y-(x-5) \times(y+3)=8$
$\Rightarrow x y-(x y+3 x-5 y-15)=8$
$\Rightarrow x y-x y-3 x+5 y+15=8$
$\Rightarrow-3 x+5 y=8-15$
$\Rightarrow 3 x-5 y=7$
Condition II:

Area is increased by $74 \mathrm{~m}^{2}$, when length $=(x+3) \mathrm{m}$ and breadth $=(y+2) \mathrm{m}$
Then, area of rectangle $=(x+3) \times(y+2) \mathrm{m}^{2}$
According to the question,
$(x+3) \times(y+2)-x y=74$
$\Rightarrow(x y+3 y+2 x+6)-x y=74$
$\Rightarrow x y+2 x+3 y+6-x y=74$
$\Rightarrow 2 x+3 y=74-6$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}=68$
On multiplying Eq. (i) by 2 and Eq. (ii) by 3, we get
$6 x-10 y=14 \ldots$ (iii)
$6 x+9 y=204 \ldots$...iv)
On subtracting Eq. (i) from Eq. (ii), we get
$6 x+9 y-6 x+10 y=204-14$
$\Rightarrow 19 \mathrm{y}=190$
$\Rightarrow \mathrm{y}=10$
On putting the value of $y=10$ in Eq. (i), we get
$3 x-5(10)=7$
$\Rightarrow 3 \mathrm{x}-50=7$
$\Rightarrow 3 \mathrm{x}=57$
$\Rightarrow \mathrm{x}=19$
Hence, the length of the rectangle is 19 m and the breadth of a rectangle is 10 m

39. Question

The length of a room exceeds its breadth by 3 metres. If the length is increased by 3 metres and the breadth is decreased by 2 metres, the area remains the same. Find the length and the breadth of the room.

Answer

Let the breadth of a room $=x \mathrm{~m}$

According to the question,
Length of the room $=x+3$
Then, Area of room $=(x+3) \times(x) \mathrm{m}^{2}$
$=x^{2}+3 x$
Condition II:
Area remains same,
when length $=(x+3+3) m=(x+6) m$
and breadth $=(x-2) m$
According to the question,
$x^{2}+3 x=(x+6)(x-2)$
$\Rightarrow x^{2}+3 \mathrm{x}=\mathrm{x}^{2}-2 \mathrm{x}+6 \mathrm{x}-12$
$\Rightarrow 3 \mathrm{x}=4 \mathrm{x}-12$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{x}=-12$
$\Rightarrow \mathrm{x}=12$
So, length of the room $=(x+3)=12+3=15 m$
Hence, the length of the room is 15 m and the breadth of a room is 12 m

40. Question

Two places A and B are 120 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in the same direction, they meet in 6 hours, and if they move in opposite directions, they meet in 1 hour 12 minutes. Find the speed of each car.

Answer

Let the speed of car $\mathrm{I}=\mathrm{x} \mathrm{km} / \mathrm{hr}$
And the speed of car II = y km/hr
Car I starts from point A and Car II starts from point B.
Let two cars meet at C after 6h.
Distance travelled by car I in $6 \mathrm{~h}=6 \mathrm{x} \mathrm{km}$
Distance travelled by car II in $6 \mathrm{~h}=6 \mathrm{y} \mathrm{km}$

Since, they are travelling in same direction, sign should be negative
$6 x-6 y=120$
$\Rightarrow \mathrm{x}-\mathrm{y}=20$
Now, Let two cars meet after 1 hr 12 min
$1 \mathrm{hr} 12 \min =1+\frac{12}{60}=\frac{6}{5} \mathrm{hr}$
Since they are travelling in opposite directions, sign should be positive.
$\frac{6}{5} x+\frac{6}{5} y=120$
$\Rightarrow 6 x+6 y=120 \times 5$
$\Rightarrow \mathrm{x}+\mathrm{y}=100$
On adding (i) and (ii), we get
$x-y+x+y=20+100$
$\Rightarrow 2 \mathrm{x}=120$
$\Rightarrow x=60$
Putting the value of $x=60$ in Eq. (i), we get
$60-y=20$
$\Rightarrow \mathrm{y}=40$
So, the speed of the two cars are $60 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{hr}$ respectively.

41. Question

A train travels a distance of 300 km at a constant speed. If the speed of SE the 20 train is increased by 5 km an hour, the journey would have taken 2 hours less. Find the original speed of the train.

Answer

Total distance travelled $=300 \mathrm{~km}$
Let the speed of train $=x \mathrm{~km} / \mathrm{hr}$
We know that,
time $=\frac{\text { distance }}{\text { speed }}$

Hence, time taken by train $=\frac{300}{x}$
According to the question,
Speed of the train is increased by 5 km an hour
\therefore the new speed of the train $=(x+5) \mathrm{km} / \mathrm{hr}$
Time taken to cover $300 \mathrm{~km}=\frac{300}{x+5}$
Given that time taken is 2 hrs less from the previous time

$$
\begin{aligned}
& \Rightarrow \frac{300}{x}-\frac{300}{x+5}=2 \\
& \Rightarrow \frac{300(x+5)-300(x)}{x(x+5)}=2 \\
& \Rightarrow 300 x+1500-300 x=2 x(x+5) \\
& \Rightarrow 1500=2 x^{2}+10 x \\
& \Rightarrow 750=x^{2}+5 \mathrm{x} \\
& \Rightarrow x^{2}+5 \mathrm{x}-750=0 \\
& \Rightarrow \mathrm{x}^{2}+30 \mathrm{x}-25 \mathrm{x}-750=0 \\
& \Rightarrow \mathrm{x}(\mathrm{x}+30)-25(\mathrm{x}+30)=0 \\
& \Rightarrow(\mathrm{x}-25)(\mathrm{x}+30)=0 \\
& \Rightarrow(\mathrm{x}-25)=0 \text { or }(\mathrm{x}+30)=0 \\
& \therefore \mathrm{x}=25 \text { or } \mathrm{x}=-30
\end{aligned}
$$

Since, speed can't be negative.
Hence, the speed of the train is $25 \mathrm{~km} / \mathrm{hr}$

42. Question

A plane left 30 minutes later than the scheduled time and in order to reach the destination 1500 km away in time, it has to increase the speed by 250 $\mathrm{km} / \mathrm{hr}$ from the usual speed. Find its usual speed.

Answer

Let the usual time taken by the aeroplane $=\mathrm{xkm} / \mathrm{hr}$
Distance to the destination $=1500 \mathrm{~km}$

We know that,
speed $=\frac{\text { distance }}{\text { time }}$
Hence, speed $=\frac{1500}{x}$ hrs
According to the question,
Plane left 30min later than the scheduled time
$30 \min =\frac{30}{60}=\frac{1}{2} \mathrm{hr}$
Time taken by the aeroplane $=\mathrm{x}-\frac{1}{2} \mathrm{hrs}$
\therefore the speed of the plane $=\frac{1500}{x-\frac{1}{2}}$
Given that speed has to increase by $250 \mathrm{~km} / \mathrm{hr}$
$\Rightarrow \frac{1500}{x-\frac{1}{2}}-\frac{1500}{x}=250$
$\Rightarrow \frac{1500}{\frac{2 x-1}{2}}-\frac{1500}{x}=250$
$\Rightarrow \frac{2}{2 x-1}-\frac{1}{x}=\frac{250}{1500}$
$\Rightarrow \frac{2 x-(2 x-1)}{(2 x-1) x}=\frac{1}{6}$
$\Rightarrow 6(2 x-2 x+1)=2 x^{2}-x$
$\Rightarrow 6=2 \mathrm{x}^{2}-\mathrm{x}$
$\Rightarrow 2 x^{2}-x-6=0$
$\Rightarrow 2 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-6=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}-2)+3(\mathrm{x}-2)=0$
$\Rightarrow(2 \mathrm{x}+3)(\mathrm{x}-2)=0$
$\Rightarrow(2 \mathrm{x}+3)=0$ or $(\mathrm{x}-2)=0$
$\therefore \mathrm{x}=\frac{3}{2}$ or $\mathrm{x}=2$

Since, time can't be negative.
Hence, the time taken by the aeroplane is 2 hrs and the speed is $750 \mathrm{~km} / \mathrm{hr}$

43. Question

A man travels 600 km partly by train and partly by car. If he covers 400 km by train and the rest by car, it takes him 6 hours and 30 minutes. But, if he travels 200 km by train and the rest by car, he takes half an hour longer. Find the speed of the train and that of the car.

Answer

Let the speed of a train $=x \mathrm{~km} / \mathrm{hr}$
And the speed of a car $=y \mathrm{~km} / \mathrm{hr}$
Total distance travelled $=600 \mathrm{~km}$
According to the question,
If he covers 400 km by train and rest by car i.e. $(600-400)=200 \mathrm{~km}$
Time take $=6 \mathrm{hrs} 30 \mathrm{~min}=6+\frac{30}{60}=6.5 \mathrm{hrs}$
If he travels 200 km by train and rest by car i.e. $(600-200)=400 \mathrm{~km}$
He takes half hour longer i.e. 7 hours
So, total time $=$ train time + car time
We know that,

$$
\begin{align*}
& \text { time }=\frac{\text { distance }}{\text { speed }} \\
& \Rightarrow \frac{400}{x}+\frac{200}{y}=6.5 \tag{i}\\
& \Rightarrow \frac{200}{x}+\frac{400}{y}=7 \ldots
\end{align*}
$$

Let take $\frac{1}{\mathrm{x}}=\mathrm{u}$ and $\frac{1}{\mathrm{y}}=\mathrm{v}$
$400 u+200 v=6.5$
and $200 u+400 v=7 \ldots$ (iv)
On multiplying Eq. (iii) by 2 and Eq. (iv) by 4, we get
$800 u+400 v=13 \ldots(a)$
$800 u+1600 v=28$
On subtracting Eq. (a) from Eq. (b), we get
$800 u+1600 v-800 u-400 v=28-13$
$\Rightarrow 1200 \mathrm{v}=15$
$\Rightarrow \mathrm{v}=\frac{15}{1200}$
$\Rightarrow \mathrm{V}=\frac{1}{80}$
On putting the value of v in Eq. (iv), we get
$200 u+400\left(\frac{1}{80}\right)=7$
$\Rightarrow 200 u+5=7$
$\Rightarrow 200 u=2$
$\Rightarrow u=\frac{1}{100}$
So, we get $u=\frac{1}{100}$ and $v=\frac{1}{80}$
$\Rightarrow \mathrm{x}=100$ and $\mathrm{y}=80$
Hence, the speed of the train is $100 \mathrm{~km} / \mathrm{hr}$ and the speed of the car is 80km/hr.

44. Question

Places A and B are 80 km apart from each other on a highway. One car starts from A and another from B at the same time. If they move in the same direction, they meet in 8 hours and if they move in opposite directions, they meet in 1 hour and 20 minutes. Find speed of the cars.

Answer

Let the speed of car I = x km/hr
And the speed of car II $=y \mathrm{~km} / \mathrm{hr}$
Car I starts from point A and Car II starts from point B.
Let two cars meet at C after 8h.
Distance travelled by car I in $8 \mathrm{~h}=8 \mathrm{x} \mathrm{km}$

Distance travelled by car II in $8 \mathrm{~h}=8 \mathrm{y} \mathrm{km}$
Since, they are travelling in same direction, sign should be negative
$8 x-8 y=80$
$\Rightarrow \mathrm{x}-\mathrm{y}=10$
Now, Let two cars meet after 1hr 20 min
$1 \mathrm{hr} 20 \mathrm{~min}=1+\frac{20}{60}=\frac{4}{3} \mathrm{hr}$
Since they are travelling in opposite directions, sign should be positive.
$\frac{4}{3} x+\frac{4}{3} y=80$
$\Rightarrow 4 x+4 y=240$
$\Rightarrow x+y=60$
On adding (i) and (ii), we get
$x-y+x+y=10+60$
$\Rightarrow 2 \mathrm{x}=70$
$\Rightarrow \mathrm{x}=35$
Putting the value of $x=25$ in Eq. (i), we get
$35-y=10$
$\Rightarrow \mathrm{y}=25$
So, the speed of the two cars are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{hr}$ respectively.

45. Question

A boat goes 16 km upstream and 24 km downstream in 6 hours. Also, it covers 12 km upstream and 36 km downstream in the same time. Find the speed of the boat in still water and that of the stream.

Answer

Let speed of the boat in still water $=x \mathrm{~km} / \mathrm{hr}$
and speed of the stream $=y \mathrm{~km} / \mathrm{hr}$
Then, the speed of the boat downstream $=(x+y) k m / h r$
And speed of the boat upstream $=(x-y) k m / h r$

According to the question
Condition I: When boat goes 16 km upstream, let the time taken be t_{1}.
Then,
$\mathrm{t}_{1}=\frac{16}{\mathrm{x}-\mathrm{y}} \mathrm{h}\left[\because\right.$ time $\left.=\frac{\text { distance }}{\text { speed }}\right]$
When boat goes 24 km downstream, let the time taken be t_{2}.
Then,
$t_{2}=\frac{24}{x+y} h$
But total time taken $\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=6$ hours
$\therefore \frac{16}{x-y}+\frac{24}{x+y}=6$

Condition II: When boat goes 12 km upstream, let the time taken be T_{1}.
Then,
$\mathrm{T}_{1}=\frac{12}{\mathrm{x}-\mathrm{y}} \mathrm{h}\left[\because\right.$ time $\left.=\frac{\text { distance }}{\text { speed }}\right]$
When boat goes 36 km downstream, let the time taken be T_{2}.
Then,
$\mathrm{T}_{2}=\frac{36}{\mathrm{x}+\mathrm{y}} \mathrm{h}$
But total time taken $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)=6$ hours
$\therefore \frac{12}{x-y}+\frac{36}{x+y}=6$.
Now, we solve tis pair of linear equations by elimination method
$\frac{16}{x+y}+\frac{24}{x-y}=6$
And $\frac{12}{x+y}+\frac{36}{x-y}=6 \ldots$
On multiplying Eq. (i) by 3 and Eq. (ii) by 4 to make the coefficients equal of first term, we get the equation as
$\frac{48}{x+y}+\frac{72}{x-y}=18$
$\frac{48}{x+y}+\frac{144}{x-y}=24$
On substracting Eq. (iii) from Eq. (iv), we get

$$
\begin{aligned}
& \frac{48}{x+y}+\frac{144}{x-y}-\frac{48}{x+y}-\frac{72}{x-y}=24-18 \\
& \Rightarrow \frac{144-72}{x-y}=6 \\
& \Rightarrow \frac{72}{x-y}=6 \\
& \Rightarrow x-y=12 \ldots(a)
\end{aligned}
$$

On putting the value of $x-y=12$ in Eq. (i), we get
$\Rightarrow \frac{16}{x+y}+\frac{24}{12}=6$
$\Rightarrow \frac{16}{x+y}=6-2$
$\Rightarrow \frac{16}{x+y}=4$
$\Rightarrow \mathrm{x}+\mathrm{y}=4 \ldots$ (b)
Adding Eq. (a) and (b), we get
$\Rightarrow 2 \mathrm{x}=16$
$\Rightarrow \mathrm{x}=8$
On putting value of $x=8$ in eq. (a), we get
$8-y=12$
$\Rightarrow \mathrm{y}=-4$ but speed can't be negative
$\Rightarrow \mathrm{y}=4$
Hence, $x=8$ and $y=4$, which is the required solution.
Hence, the speed of the boat in still water is $8 \mathrm{~km} / \mathrm{hr}$ and speed of the stream is $4 \mathrm{~km} / \mathrm{hr}$

46. Question

A man travels 370 km , partly by train and partly by car. If he covers 250 km by train and the rest by car, it takes him 4 hours. But, if he travels 130 km by train and the rest by car, he takes 18 minutes longer. Find the speed of the train and that of the car.

Answer

Let the speed of a train $=x \mathrm{~km} / \mathrm{hr}$
And the speed of a car $=y \mathrm{~km} / \mathrm{hr}$
Total distance travelled $=370 \mathrm{~km}$
According to the question,
If he covers 250 km by train and rest by car i.e. $(370-250)=120 \mathrm{~km}$
Time take $=4 \mathrm{hrs}$
If he travels 130 km by train and rest by car i.e. $(370-130)=240 \mathrm{~km}$
He takes 18 min longer i.e. $4+\frac{18}{60}=4.3 \mathrm{hrs}$
So, total time $=$ train time + car time
We know that,
time $=\frac{\text { distance }}{\text { speed }}$
$\Rightarrow \frac{250}{x}+\frac{120}{y}=4 \ldots$ (i)
$\Rightarrow \frac{130}{x}+\frac{240}{y}=4.3$
Let take $\frac{1}{\mathrm{x}}=\mathrm{u}$ and $\frac{1}{\mathrm{y}}=\mathrm{v}$
$250 u+120 v=4$...(iii)
and $130 u+240 v=4.3 \ldots(i v)$
On multiplying Eq. (iii) by 2
$500 u+240 v=8$
On subtracting Eq. (iv) from Eq. (v), we get
$500 u+240 v-130 u-240 v=8-4.3$
$\Rightarrow 370 \mathrm{u}=3.7$
$\Rightarrow \mathrm{u}=\frac{3.7}{370}$
$\Rightarrow u=\frac{1}{100}$
On putting the value of v in Eq. (iv), we get
$130\left(\frac{1}{100}\right)+240 \mathrm{v}=4.3$
$\Rightarrow 1.3+240 \mathrm{v}=4.3$
$\Rightarrow 240 \mathrm{v}=3$
$\Rightarrow \mathrm{v}=\frac{1}{80}$
So, we get $u=\frac{1}{100}$ and $v=\frac{1}{80}$
$\Rightarrow \mathrm{x}=100$ and $\mathrm{y}=80$
Hence, the speed of the train is $100 \mathrm{~km} / \mathrm{hr}$ and the speed of the car is 80km/hr.

