5. Triangles

Exercise 5.1

1. Question

Fill in the blanks with the correct word given in brackets:
(i) All squares are having the same length of sides are.
[similar, congruent, both congruent and similar]
(ii) All circles having the same radius are \qquad
[similar, congruent, both congruent and similar]
(iii) All rhombuses having one angle 90° \qquad [similar, congruent]
(iv) All photographs of a given building made by the same negative are \qquad [similar, congruent, both congruent and similar]
(v) Two polygons having equal numbers of sides are similar if their corresponding angles are equal and their corresponding sides are \qquad
[equal, proportional]

Answer

(i)

Both congruent and similar because
(a) all squares have same shape and size
(b) their corresponding angles are equal
(c) their corresponding sides are proportional
(ii)

Both congruent and similar because all circles have same shape and size
(iii) Similar because all rhombuses have the same angle, but size can vary.
(iv) Similar because all photographs have the same shape but not necessarily the same size.
(v) Two polygons having equal numbers of sides are similar if their corresponding angles are equal and their corresponding sides are Proportional

2. Question

State which of the following statements are true and which are false:
(i) Two similar figures are congruent.
(ii) All congruent figures are similar.
(iii) All isosceles triangles are similar.
(iv) All right-angled triangles are similar.
(v) All squares are similar.
(vi) All rectangles are similar.
(vii) Two photographs of a person made by the same negative are similar.
(viii) Two photographs of a person one at the age of 5 years and other at the age of 50 years are similar.

Answer

(i) This statement is false because all the congruent figures are similar, but similar figures need not be congruent.
E.g. Two equilateral triangles having sides 1 cm and 2 cm .

In case of equilateral triangles, all the sides are equal, and all the angles are of 60°.

But here, their corresponding angles are equal, but sides of triangle ABC and $P Q R$ are not equal in length.

So, they are similar figures but not congruent.
(ii) This statement is true because all congruent figures are similar, but similar figures need not be congruent.
(iii) This statement is false because for two triangles to be similar to the angles in one triangle must have the same values as the angles in the other triangle. The sides must be proportionate.
E.g.

These are the two isosceles triangles having two equal sides, but we can see that the sides are not proportionate.
(iv) This statement is false.

Suppose these are two right-angled triangles

Here, both of the triangles are right-angled, but other corresponding two angles are not equal. So, these are not similar figures.
(v) This statement is true because all the angles in a square are right angles and all the sides are equal. Hence, a smaller square can be enlarged to the size of a larger square, and vice-versa is also true.
(vi) This statement is false because similarity preserves the ratio of length. Therefore, two rectangles with a different ratio between their sides cannot be similar.
(vii) This statement is true because photographs are produced by projecting the image from a negative through an enlarger to a photographic paper. The enlarger reproduces the image from the negative but makes it bigger. The images are not identical and are not of the same size, but they are similar.

These two photographs of Sadie are the same shape, but they are not the same size.
(viii) This statement is false because here the photograph of a person is taken at the different ages.

3. Question

Give two examples of:
(i) Congruent figures.
(ii) Similar figures which are not congruent.
(iii) Non-similar figures.

Answer

(i) (a) Two circles having radii 2 cm and different centres

In this, both of them have the same radii, but their centres are different.
(b) Two squares having the same length of side 5 cm

We know that in a square all the sides are equal and all angles are of 90°. So, these two squares are congruent.
(ii) (a) Two equilateral triangles having sides 1 cm and 2 cm .

In case of equilateral triangles, all the sides are equal, and all the angles are of 60°.

But here, their corresponding angles are equal, but sides of triangle ABC and $P Q R$ are not equal in length.

So, they are similar figures but not congruent.
(b) Two circles having radii 1 cm and 2 cm

Both of the figures are of circle but they are having different radii. So, they are similar but not congruent.
(iii) (a) A rhombus and a rectangle

In the case of a rhombus, all the sides are equal, and the angles can either be right angles or combination of acute and obtuse angles but in rectangle all angles are equal, and opposite sides are equal.

Hence, a rhombus and a rectangle are non-similar figures.

Here, both of the triangles are right-angled but other two angles are not equal. So, these are not similar figures.

4. Question

State whether the following right-angled triangles are similar or not:

Answer

Two polygons of a same number of sides are similar, if
a) all the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of right-angled triangle $P Q R$ and $A B C$
$\frac{\mathrm{PQ}}{\mathrm{AB}}=\frac{8}{4}=2$,
$\frac{\mathrm{PR}}{\mathrm{AC}}=\frac{10}{5}=2$
and $\frac{\mathrm{QR}}{\mathrm{BC}}=\frac{6}{3}=2$
The corresponding sides of a right-angled triangle $A B C$ and $P Q R$ are proportional, and their corresponding angles are not equal. Hence, triangles $A B C$ and $P Q R$ are not similar.

5. Question

State whether the following rectangles are similar or not.

Answer

Two polygons of the same number of sides are similar, if
a) All the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of rectangles $A B C D$ and $P Q R S$
$\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{5}{2}$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{10}{4}=\frac{5}{2}$
And it is given that both are rectangles and we know that, in rectangle all angles are of 90°

The corresponding sides of a rectangle $A B C D$ and $P Q R S$ are proportional, and their corresponding angles are equal. Hence, rectangles ABCD and PQRS are similar.

6. Question

State whether the following quadrilaterals are similar or not:

Answer

Two polygons of the same number of sides are similar, if
a) All the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of quadrilaterals ABCD and PQRS
$\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{5}{2}$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{5}{4}$,
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{5}{2}$,
$\frac{\mathrm{CD}}{\mathrm{RS}}=\frac{5}{4}$
and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=\angle \mathrm{P}=\angle \mathrm{Q}=\angle \mathrm{R}=\angle \mathrm{S}=90^{\circ}$

The corresponding sides of a quadrilateral $A B C D$ and $P Q R S$ are not proportional. Hence, quadrilaterals ABCD and PQRS are not similar.

7 A. Question

State whether the following pair of polygons are similar or not.

Answer

Two polygons of a same number of sides are similar, if
a) all the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of polygons ABCD and PQRS
$\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{2}{2}=1$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{4}{4}=1$,
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2}{2}=1$,
$\frac{\mathrm{CD}}{\mathrm{RS}}=\frac{4}{4}=1$
and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ but $\angle \mathrm{P}, \angle \mathrm{Q}, \angle \mathrm{R}, \angle \mathrm{S} \neq 90^{\circ}$
The corresponding sides of a polygon $A B C D$ and $P Q R S$ are proportional, but their corresponding angles are not equal. Hence, polygon ABCD and PQRS are not similar.

7 B. Question

State whether the following pair of polygons are similar or not.

Answer

Two polygons of a same number of sides are similar if
a) all the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of polygons ABCD and PQRS
$\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{2.1}{4.2}=\frac{1}{2}$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{1.5}{3.0}=\frac{1}{2}$,
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2.5}{5.0}=\frac{1}{2}$,
$\frac{C D}{\mathrm{RS}}=\frac{2.4}{4.8}=\frac{1}{2}$
and $\angle \mathrm{A}=\angle \mathrm{P}=105^{\circ}, \angle \mathrm{B}=\angle \mathrm{Q}=100^{\circ}, \angle \mathrm{C}=\angle \mathrm{R}=70^{\circ}, \angle \mathrm{D}=\angle \mathrm{S}=85^{\circ}$
The corresponding sides of a polygon $A B C D$ and $P Q R S$ are proportional, and their corresponding angles are also equal. Hence, polygon ABCD and PQRS are similar.

7 C. Question

State whether the following pair of polygons are similar or not.

Answer

Two polygons of the same number of sides are similar, if
a) All the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of polygons $A B C D$ and $P Q R S$
$\frac{\mathrm{AD}}{\mathrm{PS}}=\frac{3}{3}=1$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{3}{3.5}$,
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{3}{3}=1$,
$\frac{C D}{R S}=\frac{3}{3.5}$
Clearly, the corresponding sides of a polygon ABCD and PQRS are not proportional. Hence, polygon ABCD and PQRS are not similar.

7 D. Question

State whether the following pair of polygons are similar or not.

Answer

Two polygons of the same number of sides are similar if
a) all the corresponding angles are equal.
b) all the corresponding sides are in the same ratio (or proportion)

In case of polygons $\square \mathrm{ABCD}$ and $\diamond \mathrm{ABCD}$
$\frac{\mathrm{AB}}{\mathrm{AB}}=\frac{2.1}{4.2}=2$,
$\frac{\mathrm{BC}}{\mathrm{BC}}=\frac{2.1}{4.2}=2$,
$\frac{C D}{C D}=\frac{2.1}{4.2}=2$,
$\frac{\mathrm{DA}}{\mathrm{DA}}=\frac{2.1}{4.2}=2$
The corresponding sides of a polygon ABCD and ABCD are proportional, but their corresponding angles are not equal as we can see the first figure is of a square (all angles are of 90°) and other is of a rhombus (in rhombus the diagonal meet in the middle at a right angle). Hence, polygon ABCD and ABCD are not similar.

Exercise 5.2

1. Question

In $\triangle A B C, P$ and Q are two points on $A B$ and $A C$ respectively such that $P Q|\mid B C$ and $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{3}$, then find $\frac{\mathrm{AQ}}{\mathrm{QC}}$.

Answer

Given: PQ || BC
and $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{3}$
By Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\therefore \frac{A P}{P B}=\frac{A Q}{Q C}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{2}{3}$

2. Question

In figures (i) and (ii), $\mathrm{DE} \| \mathrm{BC}$. Find EC in (i) and AD in (ii).

(i)

(ii)

Answer
(i)

Given: DE || BC
$\therefore \frac{A D}{D B}=\frac{A E}{E C}$
[by basic proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.]
$\Rightarrow \frac{1.5}{3}=\frac{1}{\mathrm{EC}}$ [given: $\mathrm{AD}=1.5 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm} \& \mathrm{AE}=1 \mathrm{~cm}$]
$\Rightarrow \mathrm{EC}=\frac{3}{1.5}$
$\Rightarrow \mathrm{EC}=\frac{3 \times 10}{15}$
$\Rightarrow \mathrm{EC}=\frac{30}{15}$
$\Rightarrow \mathrm{EC}=2 \mathrm{~cm}$
(ii)

Given: $\mathrm{DB}=7.2 \mathrm{~cm}, \mathrm{AE}=1.8 \mathrm{~cm}$ and $\mathrm{EC}=5.4 \mathrm{~cm}$
and $D E \| B C$
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
[by basic proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.]
$\Rightarrow \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4}$
$\Rightarrow \mathrm{AD}=\frac{7.2 \times 1.8}{5.4}$
$\Rightarrow \mathrm{AD}=\frac{72 \times 18}{54 \times 10}$
$\Rightarrow \mathrm{AD}=\frac{24}{10}$
$\Rightarrow \mathrm{AD}=2.4 \mathrm{~cm}$

3. Question

In a $\triangle A B C, D E \| B C$, where D is a point on $A B$ and E is a point on $A C$, then
(i) $\frac{\mathrm{EC}}{\mathrm{DB}}=$
(ii) $\frac{\mathrm{AD}}{\mathrm{AE}}=$ \qquad
(iii) $\frac{\mathrm{AB}}{\mathrm{DB}}=$ (iv) $\frac{\mathrm{EC}}{\mathrm{DB}}=$

Answer

(i) Given: DE || BC

Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ [by basic proportionality theorem]
(ii) Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

By basic proportionality theorem, we know that
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{A D}{A B-A D}=\frac{A E}{A C-A E}$
$\Rightarrow \frac{A D}{A D\left(\frac{A B}{A D}-1\right)}=\frac{A E}{A E\left(\frac{A C}{A E}-1\right)}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}-1=\frac{\mathrm{AC}}{\mathrm{AE}}-1$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
(iii) From part (i), we know that $\frac{A D}{D B}=\frac{A E}{E C}$

On adding 1 to both the sides, we get
$\frac{\mathrm{AD}}{\mathrm{DB}}+1=\frac{\mathrm{AE}}{\mathrm{EC}}+1$
$\Rightarrow \frac{\mathrm{AD}+\mathrm{DB}}{\mathrm{DB}}=\frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$
(iv) From part (iii), we have $\frac{A B}{D B}=\frac{A C}{E C}$
$\Rightarrow \frac{\mathrm{EC}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{AB}}$

4. Question

If in $\triangle \mathrm{ABC}, \mathrm{DE}| | \mathrm{BC}$ and DE cuts sides AB and AC at D and E respectively such that $\mathrm{AD}: \mathrm{DB}=4: 5$, then find AE : EC .

Answer

Given: DE || BC
and $\frac{A D}{D B}=\frac{4}{5}$
To find: AE: EC
Given: DE || BC
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ [by basic proportionality theorem]
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{4}{5}$

5. Question

In the adjoining figure, $D E \| B C$. Find x.

Answer

Given: AD = x
$\mathrm{DB}=16, \mathrm{AE}=34$ and $\mathrm{EC}=17$
Given: DE || BC
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

So, by basic proportionality theorem
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{x}{16}=\frac{34}{17}$
$\Rightarrow \frac{\mathrm{x}}{16}=2$
$\Rightarrow \mathrm{x}=32$

6. Question

In the adjoining figure, $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}$ and $\mathrm{DE} \| \mathrm{BC}$, then find EC.

Answer

Given: $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}$
and $D E \| B C$

Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

So, by basic proportionality theorem
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{2}{3}=\frac{5}{\mathrm{EC}}$
$\Rightarrow \mathrm{EC}=\frac{5 \times 3}{2}$
$\Rightarrow \mathrm{EC}=7.5 \mathrm{~cm}$

7. Question

In the adjoining figure, $\mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}, \mathrm{CE}=4.8 \mathrm{~cm}$, find BD.

Answer

Given: $\mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}$ and $\mathrm{EC}=4.8 \mathrm{~cm}$
and $D E \| B C$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

So, by basic proportionality theorem

$$
\begin{aligned}
& \therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \Rightarrow \frac{2.4}{\mathrm{DB}}=\frac{3.2}{4.8} \\
& \Rightarrow \frac{2.4}{\mathrm{DB}}=\frac{2}{3}
\end{aligned}
$$

$\Rightarrow \mathrm{DB}=\frac{2.4 \times 3}{2}$
$\Rightarrow \mathrm{DB}=3.6 \mathrm{~cm}$
or $\mathrm{BD}=3.6 \mathrm{~cm}$

8. Question

If $D E$ has been drawn parallel to side $B C$ of $\triangle A B C$ cutting $A B$ and $A C$ at points D and E respectively, such that $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}$, then find the value of $\frac{\mathrm{AE}}{\mathrm{EC}}$.

Answer

Given: DE || BC
and $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}$
To find : $\frac{\mathrm{AE}}{\mathrm{EC}}$
Given: DE || BC
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ [by basic proportionality theorem]
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{3}{4}$

9. Question

In the adjoining figure, P and Q are points on sides AB and AC respectively of mix such that $P Q \| B C$ and $A P=8 \mathrm{~cm}, A B=12 \mathrm{~cm}, A Q=3 x \mathrm{~cm}, Q C=(x+2) \mathrm{cm}$. Find x .

Answer

Given: $A P=8 \mathrm{~cm}, A B=12 \mathrm{~cm}, A Q=(3 x) \mathrm{cm}$ and $\mathrm{QC}=(\mathrm{x}+2) \mathrm{cm}$
and $P Q|\mid B C$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\therefore \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$ [by basic proportionality theorem]

$$
\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}-\mathrm{AP}}=\frac{\mathrm{AQ}}{\mathrm{QC}}
$$

$$
\Rightarrow \frac{8}{12-8}=\frac{3 x}{x+2}
$$

$$
\Rightarrow \frac{8}{4}=\frac{3 x}{x+2}
$$

$$
\Rightarrow 2=\frac{3 x}{x+2}
$$

$$
\Rightarrow 2(x+2)=3 x
$$

$$
\Rightarrow 2 x+4=3 x
$$

$$
\Rightarrow 2 x-3 x=-4
$$

$$
\Rightarrow x=4
$$

10. Question

In the adjoining figure, $D E \| B C$, find x.

Answer

Given: $\mathrm{AD}=4, \mathrm{DB}=\mathrm{x}-4, \mathrm{AE}=\mathrm{x}-3$ and $\mathrm{EC}=3 \mathrm{x}-19$
and $D E \| B C$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

So, by basic proportionality theorem
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{4}{x-4}=\frac{x-3}{3 x-19}$
$\Rightarrow 4(3 \mathrm{x}-19)=(\mathrm{x}-4)(\mathrm{x}-3)$
$\Rightarrow 12 \mathrm{x}-76=\mathrm{x}^{2}-3 \mathrm{x}-4 \mathrm{x}+12$
$\Rightarrow 12 \mathrm{x}-76=\mathrm{x}^{2}-7 \mathrm{x}+12$
$\Rightarrow x^{2}-7 x+12-12 x+76=0$
$\Rightarrow x^{2}-19 x+88=0$
Solving the Quadratic equation by splitting themiddle term, we get,
$\Rightarrow x^{2}-11 x-8 x+88=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-11)-8(\mathrm{x}-11)=0$
$\Rightarrow(\mathrm{x}-8)(\mathrm{x}-11)=0$
$\Rightarrow \mathrm{x}=8$ and 11

11. Question

If D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ and $A B=12$ $\mathrm{cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}, \mathrm{AC}=18 \mathrm{~cm}$, then prove that $\mathrm{DE} \| \mathrm{BC}$.

Answer

Given: $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$
To Prove: DE || BC
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AD}}{\mathrm{AB}-\mathrm{AD}}=\frac{8}{12-8}=\frac{8}{4}=2$
and $\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AE}}{\mathrm{AC}-\mathrm{EC}}=\frac{12}{18-12}=\frac{12}{6}=2$
Thus, $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

Hence, DE || BC [by converse of basic proportionality theorem]

Hence, Proved.

12. Question

P and Q are points on sides $A B$ and $A C$ respectively of $\triangle A B C$. For each of the following cases, state whether $P Q \| B C$.
(i) $\mathrm{AP}=8 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{AC}=22 \mathrm{~cm}$ and $\mathrm{AQ}=16 \mathrm{~cm}$.
(ii) $\mathrm{AB}=1.28 \mathrm{~cm}, \mathrm{AC}=2.56 \mathrm{~cm}, \mathrm{AP}=0.16 \mathrm{~cm}$ and $\mathrm{AQ}=0.32 \mathrm{~cm}$
(iii) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{AP}=4 \mathrm{~cm}, \mathrm{AQ}=8 \mathrm{~cm}$.
(iv) $\mathrm{AP}=4 \mathrm{~cm}, \mathrm{~PB}=4.5 \mathrm{~cm}, \mathrm{AQ}=4 \mathrm{~cm}, \mathrm{QC}=5 \mathrm{~cm}$.

Answer

(i) Given: $\mathrm{AP}=8 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{AC}=22 \mathrm{~cm}$ and $\mathrm{AQ}=16 \mathrm{~cm}$

To find: $P Q|\mid B C$
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{8}{3}$
and $\frac{A Q}{Q C}=\frac{16}{A C-A Q}=\frac{16}{22-16}=\frac{16}{6}=\frac{8}{3}$
Thus, $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

Hence, $\mathrm{PQ}|\mid \mathrm{BC}$ [by converse of basic proportionality theorem]
Hence, Proved.
(ii) Given: $\mathrm{AB}=1.28 \mathrm{~cm}, \mathrm{AC}=2.56 \mathrm{~cm}, \mathrm{AP}=0.16 \mathrm{~cm}$ and $\mathrm{AQ}=0.32 \mathrm{~cm}$

To find: PQ || BC
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{0.16}{\mathrm{AB}-\mathrm{AP}}=\frac{0.16}{1.28-0.16}=\frac{0.16}{1.12}=\frac{1}{7}$
and $\frac{A Q}{Q C}=\frac{16}{A C-A Q}=\frac{0.32}{2.56-0.32}=\frac{0.32}{2.24}=\frac{1}{7}$
Thus, $\frac{A P}{P B}=\frac{A Q}{Q C}$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

Hence, PQ || BC [by converse of basic proportionality theorem]

Hence, Proved.

(iii) Given: $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{AP}=4 \mathrm{~cm}, \mathrm{AQ}=8 \mathrm{~cm}$

To find: $P Q|\mid B C$
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{4}{\mathrm{AB}-\mathrm{AP}}=\frac{4}{5-4}=\frac{4}{1}=4$
and $\frac{A Q}{Q C}=\frac{8}{A C-A Q}=\frac{8}{10-8}=\frac{8}{2}=4$
Thus, $\frac{A P}{P B}=\frac{A Q}{Q C}$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.

Hence, PQ || BC [by converse of basic proportionality theorem]
Hence, Proved.
(iv) Given: $\mathrm{AP}=4 \mathrm{~cm}, \mathrm{~PB}=4.5 \mathrm{~cm}, \mathrm{AQ}=4 \mathrm{~cm}, \mathrm{QC}=5 \mathrm{~cm}$

To find: PQ || BC
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{4}{4.5}=\frac{4 \times 10}{45}=\frac{8}{9}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{4}{5}$
Thus, $\frac{\mathrm{AP}}{\mathrm{PB}} \neq \frac{\mathrm{AQ}}{\mathrm{QC}}$
Basic Proportionality theorem which states that if a line is drawn parallel to one side of a triangle the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\Rightarrow P Q$ is not parallel to $B C$

13. Question

In the adjoining figure, AD is the bisector of $\angle \mathrm{BAC}$. If $\mathrm{BC}=10 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$ $A C=6 \mathrm{~cm}$, then find $A B$.

Answer

Given: AD is the bisector of $\angle \mathrm{BAC}$
and by Angle-Bisector theorem which states that if a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the other two sides.
$\therefore \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \frac{6}{10}=\frac{A B}{6}$
$\Rightarrow \mathrm{AB}=\frac{36}{10}$
$\Rightarrow \mathrm{AB}=3.6 \mathrm{~cm}$

14. Question

In the adjoining figure, $A D$ is the bisector of $\angle B A C$. If $A B=10 \mathrm{~cm}, A C=6 \mathrm{~cm}$, $B C=12 \mathrm{~cm}$, find BD.

Answer

Given: AD is the bisector of $\angle \mathrm{BAC}$
and by Angle-Bisector theorem which states that if a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the other two sides.
$\therefore \frac{C D}{D B}=\frac{A C}{A B}$
$\Rightarrow \frac{C D}{B C-C D}=\frac{6}{10}$
$\Rightarrow \frac{C D}{C D\left(\frac{B C}{C D}-1\right)}=\frac{6}{10}$
$\Rightarrow \frac{B C}{C D}-1=\frac{10}{6}$
$\Rightarrow \frac{B C}{C D}=\frac{10}{6}+1$
$\Rightarrow \frac{12}{C D}=\frac{10+6}{6}$
$\Rightarrow \frac{12}{C D}=\frac{16}{6}$
$\Rightarrow \mathrm{CD}=\frac{12 \times 6}{16}$
$\Rightarrow \mathrm{CD}=\frac{9}{2}=4.5 \mathrm{~cm}$
And BC $-\mathrm{CD}=\mathrm{DB}$
$\Rightarrow 12-4.5=\mathrm{DB}$
$\Rightarrow \mathrm{DB}=7.5 \mathrm{~cm}$

15. Question

In $E A B C, A D$ is the bisector of $\angle A$. If $A B=3.5 \mathrm{~cm}, A C=4.2 \mathrm{~cm}, D C=2.4 \mathrm{~cm}$.
Find BD.

Answer

Given: AD is the bisector of $\angle \mathrm{A}$
and by Angle-Bisector theorem which states that if a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the other two sides.
$\therefore \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \frac{\mathrm{BD}}{2.4}=\frac{3.5}{4.2}$
$\Rightarrow \mathrm{BD}=\frac{3.5 \times 2.4}{4.2}$
$\Rightarrow \mathrm{BD}=2 \mathrm{~cm}$

Exercise 5.3

1. Question

State which of the following pairs of triangles are similar. Write the similarity criterion used and write the pairs of similar triangles in symbolic form (all lengths of sides are in cm).
(i)

(ii)

(iv)

(v)

A

Answer

(i) In $\triangle A B C$,
$\angle \mathrm{A}=70^{\circ}$ and $\angle \mathrm{B}=50^{\circ}$
And we know that, sum of the angles $=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 70^{\circ}+50^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=60^{\circ}$
And In \triangle DEF
$\angle \mathrm{F}=70^{\circ}$ and $\angle \mathrm{E}=50^{\circ}$
And we know that, sum of the angles $=180^{\circ}$
$\Rightarrow \angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$
$\Rightarrow \angle \mathrm{D}+50^{\circ}+70^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{D}=60^{\circ}$
Yes, $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by AAA similarity criterion]
(ii) In $\triangle A B C$ and $\triangle P Q R$

Here, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{AC}}{\mathrm{PR}}=\frac{4}{8}=\frac{1}{2}$
As, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$ [by SSS similarity criterion]
(iii) In \triangle MNL and $\triangle P Q R$
$\angle \mathrm{NML}=\angle \mathrm{PQR}=70^{\circ}$
$\frac{M N}{P Q}=\frac{2.5}{6}=\frac{25}{6 \times 10}=\frac{5}{6 \times 2}=\frac{5}{12}$
and $\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{5}{10}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{MN}}{\mathrm{PQ}} \neq \frac{\mathrm{ML}}{\mathrm{QR}}$
No, the two triangles are not similar.
(iv) In $\triangle P Q R$ and $\triangle L M N$
$\angle \mathrm{PQR}=\angle \mathrm{LNM}=50^{\circ}$
$\frac{\mathrm{PQ}}{\mathrm{LN}}=\frac{4}{8}=\frac{1}{2}$
and $\frac{\mathrm{QR}}{\mathrm{MN}}=\frac{10}{20}=\frac{1}{2}$
$\Rightarrow \frac{P Q}{L N}=\frac{Q R}{M N}$
$\therefore \Delta \mathrm{PQR} \sim \Delta$ LMN [by SAS similarity criterion]
(v) In Δ LMP and Δ DEF

Here, $\frac{\mathrm{LM}}{\mathrm{DE}}=\frac{2.7}{4}=\frac{1}{2}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{MP}}{\mathrm{EF}}=\frac{2}{5}$
As $\frac{\mathrm{AB}}{\mathrm{PQ}} \neq \frac{\mathrm{BC}}{\mathrm{QR}} \neq \frac{\mathrm{AC}}{\mathrm{PR}}$

So, no two triangles are not similar
(vi) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$
$\angle \mathrm{A}=\angle \mathrm{Q}=85^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{P}=60^{\circ}$
and $\angle \mathrm{C}=\angle \mathrm{R}=35^{\circ}$
So, $\Delta \mathrm{PQR} \sim \Delta$ LMN [by AAA similarity]
(vii) In $\triangle A B C$ and $\triangle P Q R$

Here, $\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{PR}}=\frac{2.5}{5}=\frac{1}{2}, \frac{\mathrm{AC}}{\mathrm{PQ}}=\frac{3}{6}=\frac{1}{2}$
As, $\frac{A B}{Q R}=\frac{B C}{P R}=\frac{A C}{P Q}$
So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$ [by SSS similarity criterion]

2. Question

If diagonals $A C$ and $B D$ of trapezium $A B C D$ with $A B|\mid C D$ intersect each other at 0 and $A B=18 \mathrm{~cm}, D C=30 \mathrm{~cm}, O B=y \mathrm{~cm}, O D=10 \mathrm{~cm}$, find y .

Answer

Given: ABCD is a trapezium with $A B \| C D$
and diagonals AB and CD intersecting at O
To find: y
Firstly, we prove that $\Delta \mathrm{OAB} \sim \Delta \mathrm{ODC}$
Let $\triangle \mathrm{OAB}$ and $\triangle \mathrm{ODC}$
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ [vertically opposite angles]
$\angle O B A=\angle O D C[\because A B| | C D$ with $B D$ as transversal.
alternate angles are equal]
$\angle O A B=\angle O C D[\because A B| | C D$ with $B D$ as transversal.
alternate angles are equal]
$\therefore \Delta \mathrm{OAB} \sim \Delta \mathrm{ODC}$ [by AAA similarity]
Since triangles are similar. Hence corresponding sides are proportional.
$\Rightarrow \frac{O A}{O C}=\frac{O B}{O D}=\frac{A B}{D C}$
$\Rightarrow \frac{O B}{O D}=\frac{A B}{D C}$
$\Rightarrow \frac{\mathrm{y}}{10}=\frac{18}{30}$
$\Rightarrow y=6 \mathrm{~cm}$

3. Question

In the given figure $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=5.5 \mathrm{~cm}$ and $\mathrm{AB}=4.6 \mathrm{~cm}$. P and Q are points on $A B$ and $A C$ respectively such that $P Q \| B C$. If $P Q=2.5 \mathrm{~cm}$, find other sides of $\triangle A P Q$.

Answer

Given: PQ || BC
To find: AP and AQ
Since, $\mathrm{PQ}|\mid \mathrm{BC}, \mathrm{AB}$ is transversal, then,
$\Delta \mathrm{APQ}=\Delta \mathrm{ABC}$ [by corresponding angles]
Since, $\mathrm{PQ}|\mid \mathrm{BC}, \mathrm{AC}$ is transversal, then,
$\Delta \mathrm{APQ}=\Delta \mathrm{ABC}$ [by corresponding angles]
In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{APQ}=\angle \mathrm{ABC}$
$\angle \mathrm{AQP}=\angle \mathrm{ACB}$
$\therefore \Delta \mathrm{APQ} \cong \triangle \mathrm{ABC}$ [by AAA similarity]
Since, the corresponding sides of similar triangles are proportional
$\therefore \frac{A P}{A B}=\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AP}}{4.6}=\frac{2.5}{5}$
$\Rightarrow \mathrm{AP}=\frac{2.5 \times 4.6}{5}$
$\Rightarrow \mathrm{AP}=2.3$
Now, taking $\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{2.5}{5}=\frac{\mathrm{AQ}}{5.5}$
$\Rightarrow \mathrm{AQ}=\frac{2.5 \times 5.5}{5}$
$\Rightarrow A Q=2.75$
Therefore, $\mathrm{AP}=2.3 \mathrm{~cm}$ and $\mathrm{AQ}=2.75 \mathrm{~cm}$

4. Question

In the given figure $\triangle A B R \sim \triangle P Q R$, if $P Q=30 \mathrm{~cm}, A R=45 \mathrm{~cm}, A P=72 \mathrm{~cm}$ and $Q R=42 \mathrm{~cm}$, find $P R$ and $B R$.

Answer

Given: $\triangle \mathrm{ABR} \sim \Delta \mathrm{PQR}$

As, $\triangle \mathrm{ABR}$ and $\triangle \mathrm{PQR}$ are similar
$\therefore \frac{A R}{P R}=\frac{B R}{Q R}=\frac{A B}{Q P}$
$\Rightarrow \frac{45}{\mathrm{AP}-\mathrm{AR}}=\frac{\mathrm{BR}}{42}=\frac{\mathrm{AB}}{30}$
$\Rightarrow \frac{45}{72-45}=\frac{B R}{42}$
$\Rightarrow \frac{45}{27}=\frac{B R}{42}$
$\Rightarrow \mathrm{BR}=70 \mathrm{~cm}$
and $\mathrm{PR}=\mathrm{AP}-\mathrm{AR}=72-45=27 \mathrm{~cm}$

5. Question

In the given figure, QA and PB are perpendiculars to AB . If $\mathrm{AO}=10 \mathrm{~cm}, \mathrm{BO}=6$ cm and $\mathrm{PB}=9 \mathrm{~cm}$, find AQ .

Answer

Let us take $\triangle \mathrm{OAQ}$ and $\triangle \mathrm{OBP}$
$\angle \mathrm{AOQ}=\angle \mathrm{BOP}$ (vertically opposite angles)
$\angle O A Q=\angle O B P\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{OAQ} \sim \triangle \mathrm{OBP}$ (by AA similarity criterion)

Given: $\mathrm{AO}=10 \mathrm{~cm}, \mathrm{BO}=6 \mathrm{~cm}$ and $\mathrm{PB}=9 \mathrm{~cm}$
As, $\triangle \mathrm{OAQ} \sim \Delta \mathrm{OBP}$
$\therefore \frac{A O}{B O}=\frac{A Q}{B P}$
$\Rightarrow \frac{10}{6}=\frac{A Q}{9}$
$\Rightarrow A Q=15 \mathrm{~cm}$

6. Question

In the given figure $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$, if $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}, \mathrm{AP}=$ 2.8 cm , Find CA and AQ.

Answer

Given: $\triangle \mathrm{ACB} \sim \Delta \mathrm{APQ}$
As, $\triangle \mathrm{ACB}$ and $\triangle \mathrm{APQ}$ are similar
$\therefore \frac{\mathrm{CA}}{\mathrm{AP}}=\frac{\mathrm{BA}}{\mathrm{AQ}}=\frac{\mathrm{CB}}{\mathrm{QP}}$
$\Rightarrow \frac{\mathrm{CA}}{2.8}=\frac{6.5}{\mathrm{AQ}}=\frac{8}{4}$
$\Rightarrow \frac{\mathrm{CA}}{2.8}=\frac{6.5}{\mathrm{AQ}}=2$
Taking $\frac{\mathrm{CA}}{2.8}=2$
$\Rightarrow C A=5.6 \mathrm{~cm}$
Now, taking $\frac{6.5}{\mathrm{AQ}}=2$
$\Rightarrow A Q=3.25 \mathrm{~cm}$

7. Question

In the given figure, $X Y|\mid B C$. Find the length of $X Y$, given $B C=6 \mathrm{~cm}$.

Answer

Given: XY || BC
To find: XY
Since, $X Y|\mid B C, A B$ is transversal, then,
$\Delta \mathrm{AXY}=\Delta \mathrm{ABC}$ [by corresponding angles]
Since, $X Y|\mid B C, A C$ is transversal, then,
$\Delta \mathrm{AYX}=\Delta \mathrm{ABC}$ [by corresponding angles]
In $\triangle A X Y$ and $\triangle A B C$
$\angle A X Y=\angle A B C$
$\angle A Y X=\angle A C B$
$\therefore \triangle \mathrm{AXY} \cong \triangle \mathrm{ABC}$ [by AA similarity]
Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{\mathrm{AX}}{\mathrm{AB}}=\frac{\mathrm{XY}}{\mathrm{BC}}=\frac{\mathrm{AY}}{\mathrm{AC}}$
$\Rightarrow \frac{A X}{A B}=\frac{X Y}{B C}$
$\Rightarrow \frac{1}{A X+X B}=\frac{X Y}{6}$
$\Rightarrow \frac{1}{1+3}=\frac{X Y}{6}$
$\Rightarrow \frac{1}{4}=\frac{X Y}{6}$
$\Rightarrow X Y=\frac{6}{4}$
$\Rightarrow \mathrm{XY}=1.5$
Therefore, $\mathrm{XY}=1.5 \mathrm{~cm}$

8. Question

The perimeters of two similar triangles, $A B C$ and $P Q R(\triangle A B C \sim \triangle P Q R)$ are respectively 72 cm and 48 cm . If $P Q=20 \mathrm{~cm}$, find $A B$.

Answer

Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \mathrm{PQ}=20 \mathrm{~cm}$
And perimeter of $\triangle A B C$ and $\triangle P Q R$ are 72 cm and 48 cm respectively.
As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$ (corresponding sides are proportional)
$\Rightarrow \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{A B+B C+A C}{P Q+Q R+P R}$
$\Rightarrow \frac{A B+B C+A C}{P Q+Q R+P R}=\frac{A B}{P Q}$
$\Rightarrow \frac{\text { Perimeter of } \mathrm{ABC}}{\text { Perimeter of } \mathrm{PQR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
$\Rightarrow \frac{72}{48}=\frac{\mathrm{AB}}{20}$
$\Rightarrow \mathrm{AB}=\frac{72 \times 20}{48}$
$\Rightarrow A B=30 \mathrm{~cm}$

9. Question

In the given figure, if $P Q \| R S$, prove that $\triangle P O Q \sim \Delta S O R$.

Answer

Given: PQ || RS
To Prove: \triangle POQ $\sim \Delta$ SOR
Let us take \triangle POQ and \triangle SOR
$\angle O P Q=\angle O S R$ (as PQ || RS, Alternate angles)
$\angle \mathrm{POQ}=\angle \mathrm{ROS}$ (vertically opposite angles)
$\angle O Q P=\angle O R S$ (as PQ || RS, Alternate angles)
$\therefore \triangle \mathrm{POQ} \sim \Delta$ SOR (by AAA similarity criterion)
Hence Proved

10. Question

In the given figure, if $\angle \mathrm{A}=\angle \mathrm{C}$, then prove that $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$

Answer

Given: $\angle \mathrm{A}=\angle \mathrm{C}$
To Prove: $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
Let us take $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\angle \mathrm{A}=\angle \mathrm{C}$ (given)
$\angle A O B=\angle C O D$ (vertically opposite angles)
$\therefore \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$ (by AA similarity criterion)
Hence Proved

11. Question

In the given figure $\mathrm{DB} \perp \mathrm{BC}, \mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{AC} \perp \mathrm{BC}$, prove that $\triangle \mathrm{BDE} \sim \triangle \mathrm{ABC}$.

Answer

We have, $\mathrm{DB} \perp \mathrm{BC}$ and $\mathrm{AC} \perp \mathrm{BC}$
$\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}+90^{\circ}$
$\Rightarrow \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\therefore \mathrm{BD} \| \mathrm{AC}$
$\Rightarrow \angle \mathrm{EBD}=\angle \mathrm{CAB}$ (alternate angles)
Let us take $\triangle \mathrm{BDE}$ and $\triangle \mathrm{ABC}$
$\angle B E D=\angle A C B\left(\right.$ each $\left.90^{\circ}\right)$
$\angle \mathrm{EBD}=\angle \mathrm{CAB}$ (alternate angles)
$\therefore \triangle \mathrm{BDE} \sim \triangle \mathrm{ABC}$ (by AA similarity criterion)
Hence Proved
12. Question

In the given figure, $\angle 1=\angle 2$ and $\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CB}}{\mathrm{CE}}$, prove that $\triangle \mathrm{ACB} \sim \triangle \mathrm{DCE}$

Answer

We have, $\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CB}}{\mathrm{CE}}$
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{BD}}{\mathrm{CE}}$
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{CD}}{\mathrm{CE}}(\because, \mathrm{BD}=\mathrm{DC}$ as $\angle 1=\angle 2)$
Also, $\angle 1=\angle 2$
i.e. $\angle \mathrm{DBC}=\angle \mathrm{ACB}$
$\therefore \triangle \mathrm{ACB} \sim \triangle \mathrm{DCE}$ (by SAS similarity criterion)
Hence Proved

13. Question

In an isosceles $\triangle A B C$ with $A C=B C$, the base $A B$ is produced both ways to P and Q such that $A P \times B Q=A C^{2}$. Prove that : $\triangle A C P \sim \triangle B Q C$

Answer

Given ABC is an isosceles triangle and $\mathrm{AC}=\mathrm{BC}$
$\because \mathrm{AC}=\mathrm{BC}$
$\Rightarrow \angle \mathrm{CAB}=\angle \mathrm{CBA}$
$\Rightarrow 180^{\circ}-\angle \mathrm{CAB}=180^{\circ}-\angle \mathrm{CBA}$
$\Rightarrow \angle \mathrm{CAP}=\angle \mathrm{CBQ}$
Also, $\mathrm{AP} \times \mathrm{BQ}=\mathrm{AC}^{2}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BQ}}$
$\Rightarrow \frac{A P}{A C}=\frac{B C}{B Q}(\because A C=B C)$
Thus, by SAS similarity, we get
$\triangle \mathrm{ACP} \sim \triangle \mathrm{BQC}$
Hence Proved

14. Question

In the given figure, find $\angle \mathrm{P}$.

Answer

From the figure,
$\frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{3.8}{7.6}=\frac{1}{2}$
$\frac{B C}{P Q}=\frac{6}{12}=\frac{1}{2}$
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}$
Hence, $\frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{\mathrm{BC}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{1}{2}$

Now it can be seen that both the triangles are similar as the corresponding sides are propotional.

From the figure we can see that,
$\angle \mathrm{P}=\angle \mathrm{C}$
From $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$60^{\circ}+80^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-140^{\circ}$
$\angle \mathrm{C}=40^{\circ}$
Hence, $\angle \mathrm{P}=40^{\circ}$

15. Question

P and Q are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$. If $A P=2$ $\mathrm{cm}, \mathrm{PB}=4 \mathrm{~cm}, A Q=3 \mathrm{~cm}$ and $\mathrm{QC}=6 \mathrm{~cm}$, show that $\mathrm{BC}=3 \mathrm{PQ}$.

Answer

Here, $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{4}=\frac{1}{2}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{3}{6}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
$\therefore \mathrm{PQ} \| \mathrm{BC}$ [by converse of basic proportionality theorem]
Now, take $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{APQ}=\angle \mathrm{ABC}$ (corresponding angles)
$\angle \mathrm{AQP}=\angle \mathrm{ACB}$ (corresponding angles)
$\therefore \Delta \mathrm{APQ} \sim \Delta \mathrm{ABC}$ (by AA similarity criterion)

Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{A P}{A B}=\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{2}{6}=\frac{P Q}{B C}=\frac{3}{9}$
$\Rightarrow \frac{2}{6}=\frac{P Q}{B C}$
$\Rightarrow B C=3 P Q$
Hence Proved

16. Question

P and Q are respectively the points on the sides $A B$ and $A C$ of a $\triangle A B C$. If $A P=$ $2 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{AQ}=3 \mathrm{~cm}$ and $\mathrm{QC}=9$, Prove that $\mathrm{BC}=4 \mathrm{PQ}$.

Answer

Here, $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{6}=\frac{1}{3}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{3}{9}=\frac{1}{3}$
$\Rightarrow \frac{A P}{P B}=\frac{A Q}{Q C}$
$\therefore \mathrm{PQ} \| \mathrm{BC}$ [by the converse of basic proportionality theorem]
Now, take $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{APQ}=\angle \mathrm{ABC}$ (corresponding angles)
$\angle \mathrm{AQP}=\angle \mathrm{ACB}$ (corresponding angles)
$\therefore \Delta \mathrm{APQ} \sim \Delta \mathrm{ABC}$ (by AA similarity criterion)
Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{A P}{A B}=\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{2}{8}=\frac{P Q}{B C}=\frac{3}{12}$
$\Rightarrow \frac{2}{8}=\frac{P Q}{B C}$
$\Rightarrow B C=4 P Q$
Hence Proved

17. Question

In the given figure, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}=\frac{1}{2}$ and $\mathrm{AB}=5 \mathrm{~cm}$. Find the value of DC .

Answer
In $\triangle A O B$ and $\triangle C O D$,
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite angles)
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$ (given)
Therefore according to SAS similarity criterion,
$\therefore \triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
Since, triangles are similar, hence corresponding sides will be proportional
$\therefore \frac{A O}{O C}=\frac{B O}{O D}=\frac{A B}{D C}$
$\Rightarrow \frac{1}{2}=\frac{1}{2}=\frac{5}{\mathrm{DC}}$
$\Rightarrow \frac{1}{2}=\frac{5}{\mathrm{DC}}$
$\Rightarrow D C=10 \mathrm{~cm}$

18. Question

In the given figure, $\mathrm{OA} . \mathrm{OB}=\mathrm{OC} . \mathrm{OD}$, show that: $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$.

Answer

Given: $O A \times O B=O C \times O D$
To Prove: $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
Now, OA .OB = OC.OD
$\Rightarrow \frac{O A}{O C}=\frac{O D}{O B} \ldots(\mathrm{i})$
In $\triangle A O D$ and $\triangle C O B$
$\frac{O A}{O C}=\frac{O D}{O B}($ from (i) $)$
$\angle \mathrm{AOD}=\angle \mathrm{COB}$ (vertically opposite angles)
$\therefore \triangle \mathrm{AOD} \sim \triangle \mathrm{COB}$ (by SAS similarity criterion)
We know that if two triangles are similar then their corresponding angles are equal.
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
Hence Proved

19. Question

In the given figure, $C M$ and $R N$ are respectively the medians of $\triangle A B C$ and $\Delta P Q R$. If $\triangle A B C \sim \triangle P Q R$, prove that:
(i) $\triangle \mathrm{AMC} \sim \triangle \mathrm{PNR}$
(ii) $\frac{C M}{R N}=\frac{A B}{P Q}$
(iii) $\Delta \mathrm{CMB} \sim \Delta \mathrm{RNQ}$

Answer

Given: $C M$ is the median of $\triangle A B C$ and $R N$ is the median of $\triangle P Q R$
Also, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
To Prove: (i) $\Delta \mathrm{AMC} \sim \Delta \mathrm{PNR}$
$C M$ is median of $\triangle A B C$
So, $\mathrm{AM}=\mathrm{MB}=\frac{1}{2} \mathrm{AB}$
Similarly, RN is the median of $\triangle \mathrm{PQR}$
So, $\mathrm{PN}=\mathrm{QN}=\frac{1}{2} \mathrm{PQ}$
Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
(corresponding sides of similar triangle are proportional)
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{CA}}{\mathrm{RP}}$
$\frac{2 \mathrm{AM}}{2 \mathrm{PN}}=\frac{\mathrm{CA}}{\mathrm{RP}}($ from (1) and (2))
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{CA}}{\mathrm{RP}}$
Also, since $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\angle A=\angle P$.
(corresponding angles of similar triangles are equal)
In $\triangle \mathrm{AMC}$ and $\triangle \mathrm{PNR}$
$\angle \mathrm{A}=\angle \mathrm{P}$ (from (4))
$\frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{CA}}{\mathrm{RP}}($ from (3) $)$
$\therefore \Delta \mathrm{AMC} \sim \Delta$ PNR (by SAS similarity)
Hence Proved
(ii)To Prove: $\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$

In part (i), we proved that $\Delta \mathrm{AMC} \sim \Delta \mathrm{PNR}$
So, $\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AM}}{\mathrm{PN}}$
(corresponding sides of a similar triangle are proportional)
Therefore, $\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{\mathrm{AM}}{\mathrm{PN}}$
$\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{2 \mathrm{AM}}{2 \mathrm{PN}}$
$\frac{C M}{R N}=\frac{A B}{P Q}$
Hence Proved
(iii) $\Delta \mathrm{CMB} \sim \Delta \mathrm{RNQ}$

Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
(corresponding sides of similar triangle are proportional)
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\frac{2 B M}{2 Q N}=\frac{B C}{Q R}($ from (1) and (2))
$\Rightarrow \frac{2 \mathrm{M}}{\mathrm{QN}}=\frac{\mathrm{BC}}{\mathrm{QR}}$.
Also, since $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\angle B=\angle Q \ldots(6)$
(corresponding angles of similar triangles are equal)
In $\triangle \mathrm{CMB}$ and $\triangle \mathrm{RNQ}$
$\angle B=\angle Q($ from (6) $)$
$\frac{\mathrm{BM}}{\mathrm{QN}}=\frac{\mathrm{BC}}{\mathrm{QR}}($ from (5) $)$
$\therefore \Delta \mathrm{CMB} \sim \Delta \mathrm{RNQ}$ (by SAS similarity)
Hence Proved

20. Question

In the adjoining figure, the diagonal BD of a parallelogram ABCD intersects the segment AE at the point F , where E is any point on the side BC . Show that $D F \times F E=B F \times F A$.

Answer

Given: ABCD is a parallelogram
To Prove: DF x FE = BF x FA
In $\triangle \mathrm{AFD}$ and $\triangle \mathrm{BFE}$
$\angle 1=\angle 2$ (alternate angles)
$\angle 3=\angle 4$ (vertically opposite angles)
$\therefore \Delta \mathrm{AFD} \sim \Delta \mathrm{BFE}$ (by AA similarity criterion)
So, $\frac{\mathrm{FB}}{\mathrm{FD}}=\frac{\mathrm{FE}}{\mathrm{FA}}$
(corresponding sides of similar triangle are proportional)
$\Rightarrow \frac{\mathrm{BF}}{\mathrm{DF}}=\frac{\mathrm{FE}}{\mathrm{FA}}$
$\Rightarrow \mathrm{DF} \times \mathrm{FE}=\mathrm{BF} \times \mathrm{FA}$
Hence Proved

21. Question

In the given figure, DEFG is a square and $\angle \mathrm{BAC}$ is a right angle. Show that $\mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$.

Answer

Given: DEFG is a square and $\angle \mathrm{BAC}=90^{\circ}$
To Prove: $\mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$.
In $\Delta \mathrm{AGF}$ and $\Delta \mathrm{DBG}$
$\angle \mathrm{GAF}=\angle \mathrm{BDG}\left[\right.$ each $\left.90^{\circ}\right]$
$\angle \mathrm{AGF}=\angle \mathrm{DBG}$
[corresponding angles because $\mathrm{GF}|\mid \mathrm{BC}$ and AB is the transversal]
$\therefore \Delta \mathrm{AFG} \sim \Delta \mathrm{DBG}$ [by AA Similarity Criterion] ...(1)
In $\Delta \mathrm{AGF}$ and $\Delta \mathrm{EFC}$
$\angle \mathrm{GAF}=\angle \mathrm{CEF}\left[\right.$ each 90°]
$\angle A F G=\angle E C F$
[corresponding angles because GF|| BC and AC is the transversal]
$\therefore \Delta \mathrm{AGF} \sim \Delta \mathrm{EFC}$ [by AA Similarity Criterion]
From equation (1) and (2), we have
$\Delta \mathrm{DBG} \sim \Delta \mathrm{EFC}$
Since, the triangle is similar. Hence corresponding sides are proportional
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{EF}}=\frac{\mathrm{DG}}{\mathrm{EC}}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{DE}}=\frac{\mathrm{DE}}{\mathrm{EC}}[\because \mathrm{DEFG}$ is a square $]$
$\Rightarrow \mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$
Hence Proved

22. Question

In the given figure, ABD is a right angled triangle being right angled at A and $A D \perp B C$. Show that:

(i) $\mathrm{AB}^{2}=\mathrm{BC} \cdot \mathrm{BD}$
(ii) $\mathrm{AC}^{2}=\mathrm{BC} . \mathrm{DC}$
(iii) AB. AC. $=\mathrm{BC} . \mathrm{AD}$

Answer

(i) In $\triangle \mathrm{DAB}$ and $\triangle \mathrm{ACB}$
$\angle \mathrm{ADB}=\angle \mathrm{CAB}\left[\right.$ each $\left.90^{\circ}\right]$
$\angle \mathrm{DAB}=\angle \mathrm{CAB}$ [common angle]
$\therefore \Delta \mathrm{DAB} \sim \Delta \mathrm{ACB}$ [by AA similarity]
Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{BC} \times \mathrm{BD}$
(ii) In $\triangle A C B$ and $\triangle D A C$
$\angle \mathrm{CAB}=\angle \mathrm{ADC}\left[\right.$ each $\left.90^{\circ}\right]$
$\angle \mathrm{CAB}=\angle \mathrm{CAD}$ [common angle]
$\therefore \Delta \mathrm{ACB} \sim \Delta \mathrm{DAC}$ [by AA similarity]
Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{\mathrm{DC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{BC} . \mathrm{DC}$
(iii) In part (i) we proved that $\Delta \mathrm{DAB} \sim \Delta \mathrm{ACB}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\Rightarrow A B \times A C=B C \times A D$
Hence Proved

23. Question

In the given figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{AB}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}$ and $C D=5.4 \mathrm{~cm}$, find $B C$.

Answer

Given: $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$
and $\mathrm{AB}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}$ and $\mathrm{CD}=5.4 \mathrm{~cm}$
To find: BC
Firstly, we have to show that $\Delta \mathrm{ABC} \sim \Delta \mathrm{BDC}$
Let $\triangle \mathrm{ABC}$ and $\Delta \mathrm{BDC}$
$\angle \mathrm{ABC}=\angle \mathrm{BDC}\left[\right.$ each $\left.90^{\circ}\right]$
$\angle \mathrm{ACB}=\angle \mathrm{BCD}$ [common angle]
$\therefore \triangle \mathrm{ABC} \sim \Delta \mathrm{BDC}$ [by AA similarity criterion]
Since, triangles are similar, hence corresponding sides are proportional.
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$
$\Rightarrow \frac{5.7}{\mathrm{BC}}=\frac{3.8}{5.4}$
$\Rightarrow \mathrm{BC}=\frac{5.7 \times 5.4}{3.8}$
$\Rightarrow \mathrm{BC}=8.1 \mathrm{~cm}$

24. Question

In the given figure, $\angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Show that $\triangle \mathrm{BDA} \sim \triangle \mathrm{BAC}$. If $\mathrm{AC}=$ $75 \mathrm{~cm}, \mathrm{AB}=1 \mathrm{~cm}$ and $\mathrm{BC}=1.25 \mathrm{~cm}$, find $A D$.

Answer

Given: $\angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$
and $\mathrm{AC}=75 \mathrm{~cm}, \mathrm{AB}=1 \mathrm{~cm}$ and $\mathrm{BC}=1.25 \mathrm{~cm}$
Now, In $\triangle A D B$ and $\triangle C A B$
$\angle \mathrm{ADB}=\angle \mathrm{CAB}\left[\right.$ each $\left.90^{\circ}\right]$
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$ [common angle]
$\therefore \Delta \mathrm{ADB} \sim \Delta \mathrm{CAB}$ [by AA similarity]
Since the triangles are similar, hence corresponding sides are in proportional.
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AB}}$
$\Rightarrow \frac{75}{1.25}=\frac{\mathrm{AD}}{1}$
$\Rightarrow \mathrm{AD}=60 \mathrm{~cm}$

Exercise 5.4

1. Question

In two similar triangles ABC and $\mathrm{DEF}, \mathrm{AC}=3 \mathrm{~cm}$ and $\mathrm{DF}=5 \mathrm{~cm}$. Find the ratio of the areas of the two triangles.

Answer

Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and $\mathrm{AC}=3 \mathrm{~cm}$ and $\mathrm{DF}=5 \mathrm{~cm}$
To find: Areas of the two triangles

We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AC})^{2}}{(\mathrm{DF})^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(3)^{2}}{(5)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{9}{25}$

2. Question

The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

Answer

Given: $\mathrm{AM}=6 \mathrm{~cm}$ and $\mathrm{DN}=9 \mathrm{~cm}$
Here, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar triangles
We know that, in similar triangles, corresponding angles are in the same ratio.
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$
$\angle \mathrm{B}=\angle \mathrm{E}$ [from (i)]
and $\angle \mathrm{M}=\angle \mathrm{N}$ [each 90°]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by AA similarity]
So, $\frac{A M}{D N}=\frac{A B}{D E}=\frac{B M}{E N}$

We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.

$$
\begin{aligned}
& \therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}} \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AM})^{2}}{(\mathrm{DN})^{2}}[\text { from }(\mathrm{ii})] \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(6)^{2}}{(9)^{2}} \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{36}{81} \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{4}{9}
\end{aligned}
$$

3. Question

In the given figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar, $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{sq} \mathrm{cm}$. Determine the area of $\triangle D E F$.

Answer

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{EF}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$
and area of $\triangle \mathrm{ABC}=54 \mathrm{sq} \mathrm{cm}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{EF})^{2}}$
$\Rightarrow \frac{54}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(3)^{2}}{(4)^{2}}$ [given]
$\Rightarrow \frac{54}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{9}{16}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\frac{54 \times 16}{9}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=96 \mathrm{~cm}^{2}$

4. Question

If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{AB}=10 \mathrm{~cm}$, area $(\triangle \mathrm{ABC})=20 \mathrm{sq} . \mathrm{cm}$, area $(\triangle \mathrm{DEF})=45$ sq. cm . Determine DE.

Answer
Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=10 \mathrm{~cm}$,
and area of $\Delta \mathrm{ABC}=20 \mathrm{sq} \mathrm{cm}$, area of $\Delta \mathrm{DEF}=45 \mathrm{sq} \mathrm{cm}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{20}{45}=\frac{(10)^{2}}{(\mathrm{DE})^{2}}$ [given]
$\Rightarrow \frac{20}{45}=\frac{100}{(\mathrm{DE})^{2}}$
$\Rightarrow(\mathrm{DE})^{2}=\frac{100 \times 45}{20}$
$\Rightarrow(\mathrm{DE})^{2}=5 \times 45$
$\Rightarrow \mathrm{DE}=15 \mathrm{~cm}$

5. Question

In $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ and $\mathrm{DE}|\mid \mathrm{BC}$. If $\mathrm{DE}=3 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and area $(\triangle \mathrm{ADE})=15$ sq. cm , find the area of $\triangle A B C$.

Answer

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{ADE}$
$\mathrm{DE}=3 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and area $(\triangle \mathrm{ADE})=15 \mathrm{sq} . \mathrm{cm}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{DE})^{2}}{(\mathrm{BC})^{2}}$
$\Rightarrow \frac{15}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(3)^{2}}{(6)^{2}}$ [given]
$\Rightarrow \frac{15}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{9}{36}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\frac{15 \times 36}{9}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=60 \mathrm{~cm}^{2}$

6. Question

In the figure $D E \| B C$. If $D E=4 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and area $(\triangle A D E)=25 \mathrm{sq} . \mathrm{cm}$, find the area of $\triangle \mathrm{ABC}$.

Answer

Given: DE || BC
$\mathrm{DE}=4 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and area $(\triangle \mathrm{ADE})=25 \mathrm{sq} . \mathrm{cm}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\angle \mathrm{B}=\angle \mathrm{D}[\because \mathrm{DE} \| \mathrm{BC}$ and AB is transversal,
Corresponding angles are equal]
$\angle \mathrm{C}=\angle \mathrm{E}[\because \mathrm{DE} \| \mathrm{BC}$ and AC is transversal,
Corresponding angles are equal]
$\angle \mathrm{BAC}=\angle \mathrm{DAE}$ [common angle]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{ADE}$ [by AAA similarity]
Now, we know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{DE})^{2}}{(\mathrm{BC})^{2}}$
$\Rightarrow \frac{25}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(4)^{2}}{(8)^{2}}$ [given]
$\Rightarrow \frac{25}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{16}{64}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\frac{25 \times 64}{16}$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ABC})=25 \times 4$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ABC})=100 \mathrm{~cm}^{2}$

7. Question

Two isosceles triangles have equal vertical angles and their areas are in the ratio $16: 25$. find the ratio of their corresponding heights.

Answer

Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two isosceles triangles with $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{DE}=\mathrm{DF}$ and $\angle A=\angle D$

Now, let AM and DN are their respective altitudes or heights.
Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
$\angle \mathrm{A}=\angle \mathrm{D}$ [given]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by SAS similarity]
We know that, in similar triangles, corresponding angles are in the same ratio.
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$

In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$
$\angle \mathrm{B}=\angle \mathrm{E}[$ from (i)]
and $\angle \mathrm{M}=\angle \mathrm{N}$ [each 90°]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by AA similarity]
So, $\frac{A M}{D N}=\frac{A B}{D E}=\frac{B M}{E N}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{16}{25}=\frac{(\mathrm{AM})^{2}}{(\mathrm{DN})^{2}}$ [from (ii)]
$\Rightarrow \frac{(4)^{2}}{(5)^{2}}=\frac{(\mathrm{AM})^{2}}{(\mathrm{DN})^{2}}$
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{DN}}=\frac{4}{5}$

8. Question

The areas of two similar triangles are $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$, respectively. If the altitude of the bigger triangle is 5 cm , find the corresponding altitude of the other.

Answer

Given: Let $\triangle \mathrm{ABC}=100 \mathrm{~cm}^{2}$ and $\Delta \mathrm{DEF}=49 \mathrm{~cm}^{2}$
Let $\mathrm{AM}=5 \mathrm{~cm}$
Here, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar triangles
We know that, in similar triangles, corresponding angles are in the same ratio.
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$
$\angle \mathrm{B}=\angle \mathrm{E}$ [from (i)]
and $\angle \mathrm{M}=\angle \mathrm{N}$ [each 90°]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by AA similarity]

So, $\frac{A M}{D N}=\frac{A B}{D E}=\frac{B M}{E N}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{100}{49}=\frac{5^{2}}{(\mathrm{DN})^{2}}[$ from (ii)]
$\Rightarrow \frac{100}{49}=\frac{25}{(\mathrm{DN})^{2}}$
$\Rightarrow(\mathrm{DN})^{2}=\frac{25 \times 49}{100}$
$\Rightarrow(\mathrm{DN})^{2}=\frac{49}{4}$
$\Rightarrow \mathrm{DN}=\frac{7}{2}$
$\Rightarrow \mathrm{DN}=3.5 \mathrm{~cm}$
The height of the other altitude is 3.5 cm

9. Question

The areas of two similar triangles are $100 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If a median of the smaller triangle is 5.6 cm , find the corresponding median of the other.

Answer

Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two similar triangles such that ar ($\triangle \mathrm{ABC}$)
$=100 \mathrm{~cm}^{2}$ and ar $(\triangle \mathrm{DEF})=64 \mathrm{~cm}^{2}$
Also, let AM and DN are medians of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ respectively.
Now in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\angle \mathrm{B}=\angle \mathrm{E}[\because \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}]$
and $\frac{A B}{D E}=\frac{B M}{E N}\left[\because \frac{A B}{D E}=\frac{B C}{E F} \Rightarrow \frac{A B}{D E}=\frac{2 B M}{2 E N}\right]$
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by SAS similarity]
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AM}}{\mathrm{DN}} \ldots$ (i)
Now, as $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\frac{(\mathrm{AM})^{2}}{(\mathrm{DN})^{2}}[$ from (i)]
$\Rightarrow \frac{100}{64}=\frac{(\mathrm{AM})^{2}}{(5.6)^{2}}$
$\Rightarrow(\mathrm{AM})^{2}=\frac{100 \times 5.6 \times 5.6}{64}$
$\Rightarrow(\mathrm{AM})^{2}=\frac{100 \times 56 \times 56}{64 \times 10 \times 10}$
$\Rightarrow(\mathrm{AM})^{2}=7 \times 7$
$\Rightarrow \mathrm{AM}=7 \mathrm{~cm}$
Hence, the length of the other median is 7 cm .

10. Question

In the given figure, $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{DE}=5 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and $\operatorname{ar}(\triangle \mathrm{ADE})=20 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$.

Answer

Given: DE || BC
$\mathrm{DE}=5 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and area $(\triangle \mathrm{ADE})=20 \mathrm{sq} . \mathrm{cm}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\angle \mathrm{B}=\angle \mathrm{D}[\because \mathrm{DE} \| \mathrm{BC}$ and AB is transversal,
Corresponding angles are equal]
$\angle \mathrm{C}=\angle \mathrm{E}[\because \mathrm{DE} \| \mathrm{BC}$ and AB is transversal,
Corresponding angles are equal]
$\angle \mathrm{BAC}=\angle \mathrm{DAE}$ [common angle]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ [by AAA similarity]
Now, we know that the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{DE})^{2}}{(\mathrm{BC})^{2}}$
$\Rightarrow \frac{20}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(5)^{2}}{(10)^{2}}$ [given]
$\Rightarrow \frac{20}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{25}{100}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\frac{20 \times 100}{25}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=20 \times 4$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ABC})=80 \mathrm{~cm}^{2}$

11. Question

The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 6.3 cm , find the corresponding altitude of the other.

Answer

Given: Let $\triangle \mathrm{ABC}=81 \mathrm{~cm}^{2}$ and $\triangle \mathrm{DEF}=49 \mathrm{~cm}^{2}$
Let $\mathrm{AM}=6.3 \mathrm{~cm}$
Here, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar triangles

We know that, in similar triangles, corresponding angles are in the same ratio.
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F} \ldots$ (i)
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$
$\angle \mathrm{B}=\angle \mathrm{E}$ [from (i)]
and $\angle \mathrm{M}=\angle \mathrm{N}$ [each 90°]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [by AA similarity]
So, $\frac{A M}{D N}=\frac{A B}{D E}=\frac{B M}{E N} \ldots$ (ii)
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{81}{49}=\frac{(6.3)^{2}}{(\mathrm{DN})^{2}}$ [from (ii)]
$\Rightarrow \frac{81}{49}=\frac{6.3 \times 6.3}{(\mathrm{DN})^{2}}$
$\Rightarrow(\mathrm{DN})^{2}=\frac{6.3 \times 6.3 \times 49}{81}$
$\Rightarrow(\mathrm{DN})^{2}=\frac{63 \times 63 \times 49}{81 \times 10 \times 10}$
$\Rightarrow(\mathrm{DN})^{2}=\frac{7 \times 7 \times 49}{100}$
$\Rightarrow \mathrm{DN}=4.9 \mathrm{~cm}$
Height of the other altitude is 4.9 cm

12. Question

In the given figure, $\triangle A B C \sim \triangle D E F$. If $A B=2 D E$ and area of $\triangle A B C$ is 56 sq. cm , find the area of $\triangle D E F$.

Answer

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and $\mathrm{AB}=2 \mathrm{DE}$
And area of $\triangle \mathrm{ABC}$ is 56 sq. cm
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(\mathrm{AB})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \frac{56}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{(2 \mathrm{DE})^{2}}{(\mathrm{DE})^{2}}$ [given]
$\Rightarrow \frac{56}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{4(\mathrm{DE})^{2}}{(\mathrm{DE})^{2}}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\frac{56}{4}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=14 \mathrm{sq} \mathrm{cm}$

13. Question

In the given figure, $\mathrm{DE}|\mid \mathrm{BC}$ and $\mathrm{DE}: \mathrm{BC}=4: 5$. Calculate the ratio of the areas of $\triangle \mathrm{ADE}$ and the trapezium $\triangle \mathrm{CEDB}$.

Answer

It is given that $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{DE}: \mathrm{BC}=4: 5$
Let $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$ [corresponding angles]
$\angle \mathrm{AED}=\angle \mathrm{ACB}$ [corresponding angles]
$\therefore \Delta \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [by AA similarity]
We know that the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{DE})^{2}}$
Subtracting 1 from both the sides, we get
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})}-1=\frac{(5)^{2}}{(4)^{2}}-1$ [given]
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})-\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\frac{25-16}{16}$
$\Rightarrow \frac{\operatorname{ar}(\mathrm{CEDB})}{\operatorname{ar}(\triangle \mathrm{ADE})}=\frac{9}{16}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\mathrm{CEDB})}=\frac{16}{9}$

14. Question

$A B C$ is a triangle, and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=$ $1 \mathrm{~cm}, 1 \mathrm{BP}=3 \mathrm{~cm}, \mathrm{AQ}=1.5 \mathrm{~cm}, \mathrm{CQ}=4.5 \mathrm{~cm}$. Prove that the area of $\Delta \mathrm{APQ}=$ $1 / 16$ (area of $\triangle \mathrm{ABC}$).

Answer

Given: $\mathrm{AP}=1 \mathrm{~cm}, 1 \mathrm{BP}=3 \mathrm{~cm}, \mathrm{AQ}=1.5 \mathrm{~cm}, \mathrm{CQ}=4.5 \mathrm{~cm}$
Here, $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{1}{3}$ and $\frac{\mathrm{AQ}}{\mathrm{QC}}==\frac{1.5}{4.5}=\frac{1}{3}$
$\Rightarrow \mathrm{PQ}|\mid \mathrm{BC}$ [by converse of basic proportionality theorem]
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{APQ}$
$\angle \mathrm{B}=\angle \mathrm{P}[\because \mathrm{PQ}| | \mathrm{BC}$ and AB is transversal,
Corresponding angles are equal]
$\angle \mathrm{C}=\angle \mathrm{Q}[\because \mathrm{PQ} \| \mathrm{BC}$ and AC is transversal,
Corresponding angles are equal]
$\angle \mathrm{BAC}=\angle \mathrm{PAQ}$ [common angle]
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{APQ}$ [by AAA similarity]
Now, we know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{APQ})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{AP})^{2}}{(\mathrm{AB})^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{APQ})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(1)^{2}}{(1+3)^{2}}$ [given]
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{APQ})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{16}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APQ})=\frac{1}{16} \operatorname{ar}(\triangle \mathrm{ABC})$
Hence Proved

15. Question

$\triangle \mathrm{ABC}$ is right angled at A and $\mathrm{AD} \perp \mathrm{BC}$. If $\mathrm{BC}=13 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$.

Answer

Given: $\mathrm{AD} \perp \mathrm{BC}$
and $\mathrm{BC}=13 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$
Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$
$\angle \mathrm{A}=\angle \mathrm{D}$ [each 90°]
$\angle \mathrm{C}=\angle \mathrm{C}$ [common angle]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADC}$ [by AA similarity]
We know that, the ratio of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{AC})^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{(13)^{2}}{(5)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{169}{25}$

Exercise 5.5

1. Question

Sides of some triangles are given below. Determine which of them are right triangles
(i) $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$
(ii) $(2 \mathrm{a}-1) \mathrm{cm}, 2 \sqrt{2 \mathrm{a}} \mathrm{cm}$ and $(2 \mathrm{a}+1) \mathrm{cm}$
(iii) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(iv) $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer

(i) Using Pythagoras theorem, i.e. if the square of the hypotenuse is equal to the sum of the other two sides. Then, the given triangle is a right angled triangle, otherwise not.

Here, $(8)^{2}+(15)^{2}=64+225=289=(17)^{2}$
\therefore given sides $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and 17 cm make a right angled triangle.
(ii) Using Pythagoras theorem, i.e. if the square of the hypotenuse is equal to the sum of the other two sides. Then, the given triangle is a right angled triangle, otherwise not.

Here, $(2 a-1)^{2}+(2 \sqrt{(2 a)})^{2}$
$\Rightarrow 4 \mathrm{a}^{2}+1-4 \mathrm{a}+8 \mathrm{a}$
$\Rightarrow 4 \mathrm{a}^{2}+1+4 \mathrm{a}$
$=(2 a+1)^{2}$
\therefore given sides $(2 a-1) \mathrm{cm}, 2 \sqrt{2 \mathrm{a}} \mathrm{cm}$ and $(2 \mathrm{a}+1) \mathrm{cm}$ make a right angled triangle.
(iii) Using Pythagoras theorem, i.e. if the square of the hypotenuse is equal to the sum of the other two sides. Then, the given triangle is a right angled triangle, otherwise not.

Here, $(7)^{2}+(24)^{2}=49+576=625=(25)^{2}$
\therefore given sides $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm make a right angled triangle.
(iv) Using Pythagoras theorem, i.e. if the square of the hypotenuse is equal to the sum of the other two sides. Then, the given triangle is a right angled triangle, otherwise not.

Here, $(1.4)^{2}+(4.8)^{2}=1.96+23.04=25=(5)^{2}$
\therefore given sides $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}$ and 5 cm make a right angled triangle.

2. Question

A ladder 26 m long reaches a window 24 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Answer

Let AC be the position of a window from the ground and BC be the ladder, then the height of the window, $\mathrm{AC}=24 \mathrm{~m}$ and length of the ladder, $\mathrm{BC}=26 \mathrm{~m}$

Let $\mathrm{AB}=\mathrm{x} \mathrm{m}$ be the distance of the foot of the ladder from the base of the wall.

In $\triangle C A B$, using Pythagoras Theorm,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(24)^{2}+(\mathrm{AB})^{2}=(26)^{2}$
$\Rightarrow(\mathrm{AB})^{2}=(26)^{2}-(24)^{2}$
$\Rightarrow(\mathrm{AB})^{2}=(26-24)(26+24)$
$\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$\Rightarrow(\mathrm{AB})^{2}=(2)(50)$
$\Rightarrow(\mathrm{AB})^{2}=100$
$\Rightarrow \mathrm{AB}= \pm 10$
$\Rightarrow \mathrm{AB}=10$ [taking positive square root]
Hence, the distance of the foot of the ladder from base of the wall is 10 m

3. Question

A man goes 15 m due west and then 8 m due north. How far is he from the starting point?

Answer

Let $\mathrm{AB}=15 \mathrm{~m}$ and $\mathrm{AC}=8 \mathrm{~m}$
In $\triangle \mathrm{CAB}$, using Pythagoras Theorm,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(8)^{2}+(15)^{2}=(B C)^{2}$
$\Rightarrow(\mathrm{BC})^{2}=64+225$
$\Rightarrow(\mathrm{BC})^{2}=289$
$\Rightarrow \mathrm{BC}= \pm 17$
$\Rightarrow B C=17$ [taking positive square root]
Hence, the man is 17 m far from the starting point.

4. Question

A ladder 10 m long just reaches the top of a building 8 m high from the ground. Find the distance of the foot of the ladder from the building.

Answer

Let AC be the top of the building from the ground and BC be the ladder, then the height of the building, $A C=8 \mathrm{~m}$ and length of the ladder, $B C=10 \mathrm{~m}$

Let $\mathrm{AB}=\mathrm{x} \mathrm{m}$ be the distance of the foot of the ladder from the building.
In $\triangle C A B$, using Pythagoras Theorm,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(8)^{2}+(\mathrm{AB})^{2}=(10)^{2}$
$\Rightarrow(\mathrm{AB})^{2}=(10)^{2}-(8)^{2}$
$\Rightarrow(\mathrm{AB})^{2}=(10-8)(10+8)$
$\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$\Rightarrow(\mathrm{AB})^{2}=(2)(18)$
$\Rightarrow(\mathrm{AB})^{2}=36$
$\Rightarrow \mathrm{AB}= \pm 6$
$\Rightarrow \mathrm{AB}=6$ [taking positive square root]
Hence, the distance of the foot of the ladder from building is 6 m

5. Question

Find the length of a diagonal of a rectangle whose adjacent sides are 30 cm and 16 cm .

Answer

Let $A B C D$ be a rectangle and $A B$ and $B C$ are the adjacent sides of length 30 cm and 16 cm respectively.

Let AC be the diagonal.
In $\triangle C B A$, using Pythagoras Theorm,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(30)^{2}+(16)^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AC})^{2}=900+256$
$\Rightarrow(\mathrm{AC})^{2}=1156$
$\Rightarrow \mathrm{AB}= \pm 34$
$\Rightarrow \mathrm{AB}=34$ [taking positive square root]
Hence, the length of a diagonal of a rectangle is 34 cm

6. Question

A 13 m -long ladder reaches a window of a building 12 m above the ground. Determine the distance of the foot of the ladder from the building.

Answer

Let AC be the position of a window from the ground and BC be the ladder, then the height of the window, $\mathrm{AC}=12 \mathrm{~m}$ and length of the ladder, $\mathrm{BC}=13 \mathrm{~m}$

Let $\mathrm{AB}=\mathrm{x} \mathrm{m}$ be the distance of the foot of the ladder from the base of the wall.

In $\triangle C A B$, using Pythagoras Theorem,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(12)^{2}+(\mathrm{AB})^{2}=(13)^{2}$
$\Rightarrow(A B)^{2}=(13)^{2}-(12)^{2}$
$\Rightarrow(A B)^{2}=(13-12)(13+12)$
$\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$\Rightarrow(\mathrm{AB})^{2}=(1)(25)$
$\Rightarrow(\mathrm{AB})^{2}=25$
$\Rightarrow \mathrm{AB}= \pm 5$
$\Rightarrow \mathrm{AB}=5$ [taking positive square root]
Hence, the distance of the foot of the ladder from base of the wall is 5 m

7. Question

Two vertical poles of height 9 m and 14 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

Answer

Let BC and AD be the two poles of height 14 m and 9 m respectively. Again, let CD be the distance between tops of the poles.

Then, $C E=B C-A D=14-9=5 m[\because A D=B E]$
Also, $\mathrm{AB}=12 \mathrm{~m}$
In \triangle CED, using Pythagoras theorem, we get
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{CE})^{2}+(\mathrm{DE})^{2}=(\mathrm{CD})^{2}$
$\Rightarrow(5)^{2}+(12)^{2}=(C D)^{2}$
$\Rightarrow(C D)^{2}=25+144$
$\Rightarrow(C D)^{2}=169$
$\Rightarrow C D=\sqrt{ } 169$
$\Rightarrow \mathrm{CD}= \pm 13$
$\Rightarrow \mathrm{CD}=13$ [taking positive square root]

Hence, the distance between the tops of the poles is 13 m

8. Question

A man goes 10 m due south and then 24 m due west. How far is he from the starting point?

Answer

Let $\mathrm{AB}=10 \mathrm{~m}$ and $\mathrm{AC}=24 \mathrm{~m}$
In $\triangle \mathrm{CAB}$, using Pythagoras Theorem,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(24)^{2}+(10)^{2}=(B C)^{2}$
$\Rightarrow(B C)^{2}=576+100$
$\Rightarrow(B C)^{2}=676$
$\Rightarrow \mathrm{BC}= \pm 26$
$\Rightarrow \mathrm{BC}=26$ [taking positive square root]
Hence, the man is 26 m far from the starting point.

9. Question

A man goes 80 m due east and then 150 m due north. How far is he from the starting point?

Answer

Let $\mathrm{AB}=80 \mathrm{~m}$ and $\mathrm{AC}=150 \mathrm{~m}$
In $\triangle \mathrm{CAB}$, using Pythagoras Theorem,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AB})^{2}=(\mathrm{BC})^{2}$
$\Rightarrow(150)^{2}+(80)^{2}=(B C)^{2}$
$\Rightarrow(B C)^{2}=22500+6400$
$\Rightarrow(\mathrm{BC})^{2}=28900$
$\Rightarrow \mathrm{BC}= \pm 170$
$\Rightarrow B C=170$ [taking positive square root]
Hence, the man is 170 m far from the starting point.

10. Question

$\Delta \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$, prove that $\Delta \mathrm{ABC}$ is a right triangle.

Answer

Given an isosceles triangle ABC with $\mathrm{AC}=\mathrm{BC}$, and $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
To Prove: $\triangle \mathrm{ABC}$ is a right triangle
Proof: $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$ (given)
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}[\because \mathrm{AC}=\mathrm{BC}]$
$\Rightarrow \triangle \mathrm{ABC}$ is a right triangle right angled at C .

11. Question

Find the length of each side of a rhombus whose diagonals are 24 cm and 10 cm long.

Answer

Let $A B C D$ be a rhombus where $A C=10 \mathrm{~cm}$ and $B D=24 \mathrm{~cm}$
Let AC and BD intersect each other at 0 .
Now, we know that diagonals of rhombus bisect each other at 90°
Thus, we have
$\mathrm{AO}=\frac{1}{2} \times \mathrm{AC} \Rightarrow \frac{1}{2} \times 10=5 \mathrm{~cm}$
$\mathrm{BO}=\frac{1}{2} \times \mathrm{BD}=\frac{1}{2} \times 24=12 \mathrm{~cm}$
Since, AOB is a right angled triangle
So, by Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AO})^{2}+(\mathrm{BO})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(5)^{2}+(12)^{2}=(A B)^{2}$
$\Rightarrow(\mathrm{AB})^{2}=25+144$
$\Rightarrow(\mathrm{AB})^{2}=169$
$\Rightarrow \mathrm{AB}=\sqrt{ } 169$
$\Rightarrow \mathrm{AB}= \pm 13$
$\Rightarrow \mathrm{AB}=13$ [taking positive square root]
Hence, $\mathrm{AB}=13 \mathrm{~cm}$
Thus, length of each side of rhombus is 13 cm

12. Question

$\Delta \mathrm{ABC}$ is an isosceles triangle right angled at C . Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$.

Answer

Given: ABC is an isosceles triangle right angled at C .
Let $\mathrm{AC}=\mathrm{BC}$
In $\triangle A C B$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{BC})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{AC})^{2}=(\mathrm{AB})^{2}$
$[\because \mathrm{ABC}$ is an isosceles triangle, $\mathrm{AC}=\mathrm{BC}]$
$\Rightarrow 2(\mathrm{AC})^{2}=(\mathrm{AB})^{2}$
Hence Proved

13. Question

$\Delta \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$. The length of altitude from A on $B C$ is 5 cm . Find $B C$.

Answer

Given: $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$
Suppose the altitude from A on Bc meets BC at M.
$\therefore \mathrm{M}$ is the midpoint of $\mathrm{BC} . \mathrm{AM}=5 \mathrm{~cm}$
In $\triangle \mathrm{AMB}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AM})^{2}+(\mathrm{BM})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(5)^{2}+(\mathrm{BM})^{2}=(13)^{2}$
$\Rightarrow(\mathrm{BM})^{2}=(13)^{2}-(5)^{2}$
$\Rightarrow(B M)^{2}=(13-5)(13+5)$
$\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$\Rightarrow(\mathrm{BM})^{2}=(8)(18)$
$\Rightarrow(\mathrm{BM})^{2}=144$
$\Rightarrow \mathrm{BM}= \pm 12$
$\Rightarrow \mathrm{BM}=12$ [taking positive square root]
$\therefore \mathrm{BC}=2 \mathrm{BM}$ or $2 \mathrm{MC}=2 \times 12=24 \mathrm{~cm}$

14. Question

In an equilateral triangle $\mathrm{ABC}, \mathrm{AD}$ is drawn perpendicular to BC , meeting BC in D. Prove that $\mathrm{AD}^{2}=3 \mathrm{BD}^{2}$.

Answer

Given: ABC is an equilateral triangle
$\therefore \mathrm{AB}=\mathrm{AC}=\mathrm{BC}$
and $\mathrm{AD} \perp \mathrm{BC}$

Now, In $\triangle A D B$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=(\mathrm{BC})^{2}[\because \mathrm{AB}=\mathrm{BC}]$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=(2 \mathrm{BD})^{2}[$ as $\mathrm{AD} \perp \mathrm{BC}]$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=4 \mathrm{BD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=3 \mathrm{BD}^{2}$

15. Question

Find the length of altitude AD of an isosceles $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}=2 \mathrm{a}$ units and $\mathrm{BC}=\mathrm{a}$ units.

Answer

Given: ABC is an isosceles triangle
$\therefore \mathrm{AB}=\mathrm{AC}=2 \mathrm{a}$ and $\mathrm{BC}=\mathrm{a}$
and $A D$ is the altitude on $B C$. Therefore, $B C=2 B D$
Now, In $\triangle \mathrm{ADB}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$

$$
\begin{aligned}
& \Rightarrow(A D)^{2}+(B D)^{2}=(A B)^{2} \\
& \Rightarrow(A D)^{2}+\left(\frac{a}{2}\right)^{2}=(2 a)^{2} \\
& \Rightarrow(A D)^{2}=(2 a)^{2}-\left(\frac{a}{2}\right)^{2} \\
& \Rightarrow(A D)^{2}=4 a^{2}-\frac{a^{2}}{4} \\
& \Rightarrow(A D)^{2}=\frac{16 \mathrm{a}^{2}-\mathrm{a}^{2}}{4} \\
& \Rightarrow(\mathrm{AD})^{2}=\frac{15 \mathrm{a}^{2}}{4} \\
& \Rightarrow \mathrm{AD}=\sqrt{\frac{15 \mathrm{a}^{2}}{4}} \\
& \Rightarrow \mathrm{AD}=\frac{\sqrt{15}}{2} \mathrm{a} \text { [taking positive square root] }
\end{aligned}
$$

16. Question

$\Delta \mathrm{ABC}$ is an equilateral triangle of side 2 a units. Find each of its altitudes.

Answer

Given: $A B C$ is an equilateral triangle
$\therefore A B=A C=B C=2 a$
And let AD is an altitude on BC . Therefore, $\mathrm{BD}=\frac{1}{2} \times \mathrm{BC}=\mathrm{a}$
Now, In $\triangle A D B$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{a})^{2}=(2 \mathrm{a})^{2}$
$\Rightarrow(\mathrm{AD})^{2}=4 \mathrm{a}^{2}-\mathrm{a}^{2}$
$\Rightarrow(\mathrm{AD})^{2}=3 \mathrm{a}^{2}$
$\Rightarrow \mathrm{AD}=\mathrm{a} \sqrt{3}$ units

17. Question

Find the height of an equilateral triangle of side 12 cm .

Answer

Given: ABC is an equilateral triangle
$\therefore \mathrm{AB}=\mathrm{AC}=\mathrm{BC}=12 \mathrm{~cm}$
And let AD is an altitude on BC . Therefore, $\mathrm{BD}=\frac{1}{2} \times \mathrm{BC}=6 \mathrm{~cm}$
Now, In $\triangle \mathrm{ADB}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(6)^{2}=(12)^{2}$
$\Rightarrow(\mathrm{AD})^{2}=144-36$
$\Rightarrow(\mathrm{AD})^{2}=108$
$\Rightarrow \mathrm{AD}=\sqrt{ } 108$
$\Rightarrow \mathrm{AD}=6 \sqrt{3}$
Hence, the height of an equilateral triangle is $6 \sqrt{3} \mathrm{~cm}$
18. Question
L and M are the mid-points of $A B$ and $B C$ respectively of $\triangle A B C$, right-angled at B. Prove that $4 L C^{2}=A B^{2}+4 B C^{2}$

Answer

Given: $A B C$ is a right triangle right angled at B
and L and M are the mid-points of $A B$ and $B C$ respectively.
$\Rightarrow \mathrm{AL}=\mathrm{LB}$ and $\mathrm{BM}=\mathrm{MC}$
In $\triangle \mathrm{LBC}$, using Pythagoras theorem we have,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{LB})^{2}+(\mathrm{BC})^{2}=(\mathrm{LC})^{2}$
$\Rightarrow\left(\frac{\mathrm{AB}}{2}\right)^{2}+(\mathrm{BC})^{2}=(\mathrm{LC})^{2}$
$\Rightarrow(\mathrm{AB})^{2}+4(\mathrm{BC})^{2}=4(\mathrm{LC})^{2}$
Hence Proved

19. Question

Find the length of the second diagonal of a rhombus, whose side is 5 cm and one of the diagonals is 6 cm .

Answer

Let ABCD be a rhombus having $\mathrm{AD}=5 \mathrm{~cm}$ and $\mathrm{AC}=6 \mathrm{~cm}$
Now, we know that diagonals of rhombus bisect each other at 90°

Thus, we have
$\mathrm{AO}=\frac{1}{2} \times \mathrm{AC} \Rightarrow \frac{1}{2} \times 6=3 \mathrm{~cm}$
Since, AOD is a right angled triangle
So, by Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AO})^{2}+(\mathrm{BO})^{2}=(\mathrm{AD})^{2}$
$\Rightarrow(3)^{2}+(\mathrm{BO})^{2}=(5)^{2}$
$\Rightarrow(\mathrm{BO})^{2}=25-9$
$\Rightarrow(\mathrm{BO})^{2}=16$
$\Rightarrow \mathrm{BO}=\sqrt{ } 16$
$\Rightarrow \mathrm{BO}= \pm 4$
$\Rightarrow \mathrm{BO}=4$ [taking positive square root]
Hence, $B O=4 \mathrm{~cm}$
$\Rightarrow \mathrm{BC}=2 \mathrm{BO}=2 \times 4=8 \mathrm{~cm}$
Thus, length of each side of rhombus is 13 cm .

20. Question

In $\triangle A B C, \angle B=90^{\circ}$ and D is the midpoint of $B C$. Prove that $A C^{2}=A D^{2}+3 C D^{2}$.
Answer

Given: $\angle \mathrm{B}=90^{\circ}$ and D is the midpoint of BC .i.e. $\mathrm{BD}=\mathrm{DC}$
To Prove: $\mathrm{AC}^{2}=\mathrm{AD}^{2}+3 \mathrm{CD}^{2}$
In $\triangle \mathrm{ABC}$, using Pythagoras theorem we have,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(A B)^{2}+(2 C D)^{2}=(A C)^{2}$
$\Rightarrow(\mathrm{AB})^{2}+4(\mathrm{CD})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow\left(\mathrm{AD}^{2}-\mathrm{BD}^{2}\right)+4\left(\mathrm{CD}^{2}\right)=\mathrm{AC}^{2}$
$\left[\because\right.$ In right triangle $\triangle A B D, \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$]
$\Rightarrow \mathrm{AD}^{2}-\mathrm{BD}^{2}+4 \mathrm{CD}^{2}=\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AD}^{2}-\mathrm{CD}^{2}+4 \mathrm{CD}^{2}=\mathrm{AC}^{2}$
$[\because \mathrm{D}$ is the midpoint of $\mathrm{BC}, \mathrm{BD}=\mathrm{DC}]$
$\Rightarrow \mathrm{AD}^{2}+3 \mathrm{CD}^{2}=\mathrm{AC}^{2}$
or $\mathrm{AC}^{2}=\mathrm{AD}^{2}+3 \mathrm{CD}^{2}$
Hence Proved

21. Question

In $\triangle A B C, \angle C=90^{\circ}$ and D is the midpoint of $B C$. Prove that $A B^{2}=4 A D^{2}-$ $3 A C^{2}$.

Answer

Given: $\angle \mathrm{C}=90^{\circ}$ and D is the midpoint of BC .i.e. $\mathrm{BC}=2 \mathrm{CD}$
To Prove: $A B^{2}=4 A D^{2}-3 A^{2}$
In $\triangle \mathrm{ABC}$, using Pythagoras theorem we have,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{BC})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(A C)^{2}+(2 C D)^{2}=(A B)^{2}$
$\Rightarrow(\mathrm{AC})^{2}+4(\mathrm{CD})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AC})^{2}+4\left(\mathrm{AD}^{2}-\mathrm{AC}^{2}\right)=\mathrm{AB}^{2}$
$\left[\because\right.$ In right triangle $\left.\triangle \mathrm{ACD}, \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}\right]$
$\Rightarrow \mathrm{AC}^{2}+4 \mathrm{AD}^{2}-4 \mathrm{AC}^{2}=\mathrm{AB}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}-3 \mathrm{AC}^{2}=\mathrm{AB}^{2}$
or $A B^{2}=4 A^{2}-3 A C^{2}$
Hence Proved

22. Question

In an isosceles $\triangle A B C, A B=A C$ and $B D \perp A C$. Prove that $B D^{2}-C D^{2}=2 C D A D$.

Answer

Given: $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{BD} \perp \mathrm{AC}$
To Prove: $\mathrm{BD}^{2}-\mathrm{CD}^{2}=2 \mathrm{CD} \times \mathrm{AD}$
In $\triangle \mathrm{BDC}$, using Pythagoras theorem we have,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(B D)^{2}+(C D)^{2}=(B C)^{2}$
In $\triangle \mathrm{BDA}$, using Pythagoras theorem we have,
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{BD})^{2}+(\mathrm{AD})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{BD})^{2}+(\mathrm{AD})^{2}=(\mathrm{AC})^{2}[\because \mathrm{AB}=\mathrm{AC}]$
Multiply this eq. by 2 , we get
$\Rightarrow 2(\mathrm{BD})^{2}+2(\mathrm{AD})^{2}=2(\mathrm{AC})^{2}$
Subtracting Eq. (ii) from (i), we get
$\Rightarrow \mathrm{CD}^{2}-\mathrm{BD}^{2}=\mathrm{BC}^{2}-2 \mathrm{AC}^{2}+2 \mathrm{AD}^{2}$
$=\mathrm{BC}^{2}-2(\mathrm{AD}+\mathrm{CD})^{2}+2 \mathrm{AD}^{2}$
$=B C^{2}-2 C D^{2}-4 A D \times C D$
$=\mathrm{BD}^{2}+\mathrm{CD}^{2}-2 \mathrm{CD}^{2}-4 \mathrm{AD} \times \mathrm{CD}$
$=B D^{2}-C D^{2}-4 A D \times C D$
$\Rightarrow \mathrm{CD}^{2}-\mathrm{BD}^{2}-\mathrm{BD}^{2}+\mathrm{CD}^{2}=-4 \mathrm{AD} \times \mathrm{CD}$
$\Rightarrow-2\left(B D^{2}-C^{2}\right)=-4 A D \times C D$
$\Rightarrow \mathrm{BD}^{2}-\mathrm{CD}^{2}=2 \mathrm{CD} \times \mathrm{AD}$
Hence Proved

23. Question

In a quadrilateral, $\triangle B C D, \angle B=90^{\circ}$. If $A D^{2}=A B^{2}+B C^{2}+C D^{2}$, prove that $\angle A C D$ $=90^{\circ}$.

Answer

Given: ABCD is a quadrilateral and $\angle \mathrm{B}=90^{\circ}$
and $\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
To Prove: $\angle \mathrm{ACD}=90^{\circ}$
In right triangle $\triangle \mathrm{ABC}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=(\mathrm{AC})^{2}$
Given: $\mathrm{AD}^{2}=A B^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
$\Rightarrow A D^{2}=A C^{2}+C^{2}[$ from (i)]
In $\triangle A C D$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}$
$\therefore \angle \mathrm{ACD}=90^{\circ}$ [converse of Pythagoras theorem]
Hence Proved

24. Question

In a rhombus ABCD , prove that: $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

Answer

In rhombus $\mathrm{ABCD}, \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
We know that diagonals bisect each other at 90°
And $O A=O C=\frac{1}{2} \times A C, O B=O D=\frac{1}{2} \times B C$
Consider right triangle AOB
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{OA})^{2}+(\mathrm{OB})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AC}^{2}+\mathrm{BD}^{2}=4 \mathrm{AB}^{2}$
$\Rightarrow \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AB}^{2}+\mathrm{AB}^{2}+\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}$
Hence Proved

25. Question

In an equilateral triangle $\mathrm{ABC}, \mathrm{AD}$ is the altitude drawn from A on side BC .
Prove that $3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$.

Answer

Given: $A B C$ is an equilateral triangle
and $A D$ is the altitude on side $B C$
To Prove: $3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
In right triangle $\triangle \mathrm{ADB}$, using Pythagoras theorem
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow \mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}=\mathrm{AB}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}+\mathrm{BC}^{2}=4 \mathrm{AB}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}=4 \mathrm{AB}^{2}-\mathrm{BC}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}=4 \mathrm{AB}^{2}-\mathrm{AB}^{2}[\because \mathrm{ABC}$ is an equilateral triangle $]$
$\Rightarrow 4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$
Hence Proved

26. Question

In $\triangle A B C, A B=A C$. Side $B C$ is produced to D. Prove that $\left(A D^{2}-A C^{2}\right)=B D . C D$

Answer

Construction: Draw an altitude from A on BC and named it 0 .

Given: ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$
To Prove: $\mathrm{AD}^{2}-\mathrm{AC}^{2}=\mathrm{BD} \times \mathrm{CD}$
In right triangle $\triangle A O D$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow \mathrm{AO}^{2}+\mathrm{OD}^{2}=\mathrm{AD}^{2}$
Now, in right triangle $\triangle A O B$, using Pythagoras theorem, we have
$\Rightarrow \mathrm{AO}^{2}+\mathrm{BO}^{2}=\mathrm{AB}^{2}$
Subtracting eq (ii) from (i), we get
$\mathrm{AD}^{2}-\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2}-\mathrm{AO}^{2}-\mathrm{BO}^{2}$
$\Rightarrow \mathrm{AD}^{2}-\mathrm{AB}^{2}=\mathrm{OD}^{2}-\mathrm{BO}^{2}$
$\Rightarrow A D^{2}-A B^{2}=(O D+B O)(O D-O B)$
$\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$\Rightarrow A D^{2}-A B^{2}=(B D)(O D-O C)[\because O B=O C]$
$\Rightarrow \mathrm{AD}^{2}-\mathrm{AB}^{2}=(\mathrm{BD})(\mathrm{CD})$
$\Rightarrow \mathrm{AD}^{2}-\mathrm{AC}^{2}=(\mathrm{BD})(\mathrm{CD})[\because \mathrm{AB}=\mathrm{AC}]$
Hence Proved
27. Question

In $\triangle A B C, D$ is the mid-point of $B C$ and $A E \perp B C$. If $A C>A B$, show that $A^{2}=$ $A D^{2}-B C . D E+1 / 4 C^{2}$

Answer

Given: In $\triangle \mathrm{ABC}, \mathrm{D}$ is the mid-point of BC and $\mathrm{AE} \perp \mathrm{BC}$
and $\mathrm{AC}>\mathrm{AB}$
In right triangle $\triangle \mathrm{AEB}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{BE})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(A E)^{2}+(B D-E D)^{2}=(A B)^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{ED})^{2}+(\mathrm{BD})^{2}-2(\mathrm{ED})(\mathrm{BD})=(\mathrm{AB})^{2}$
$\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$\Rightarrow\left(A E^{2}+E D^{2}\right)+(B D)^{2}-2(E D)(B D)=(A B)^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}-2(\mathrm{ED})(\mathrm{BD})=(\mathrm{AB})^{2}$
$\left[\because\right.$ In right angled $\left.\triangle A E D, \mathrm{AE}^{2}+\mathrm{ED}^{2}=\mathrm{AD}^{2}\right]$
$\Rightarrow(\mathrm{AD})^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}-2 \mathrm{ED}\left(\frac{\mathrm{BC}}{2}\right)=(\mathrm{AB})^{2}$
$[\because \mathrm{D}$ is the midpoint of BC , so $2 \mathrm{DC}=\mathrm{BC}]$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4}$
Hence Proved

28. Question

$A B C$ is an isosceles triangle, right angled at B. Similar triangles ACD and ABE are constructed on sides $A C$ and $A B$. Find the ratio between the areas of $\triangle A B E$ and $\triangle \mathrm{ACD}$.

Answer

Given $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\angle \mathrm{B}$ is right angled i.e. 90°
$\Rightarrow \mathrm{AB}=\mathrm{BC}$
In right angled $\triangle A B C$, by Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AB})^{2}+(\mathrm{AB})^{2}=(\mathrm{AC})^{2}$
$[\because \mathrm{ABC}$ is an isosceles triangle, $\mathrm{AB}=\mathrm{BC}]$
$\Rightarrow 2(\mathrm{AB})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AC})^{2}=2(\mathrm{AB})^{2}$
It is also given that $\triangle \mathrm{ABE} \sim \triangle \mathrm{ADC}$
And we also know that, the ratio of similar triangles is equal to the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{\mathrm{AB}^{2}}{2 \mathrm{AB}^{2}}$ [from (i)]
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ADC})}=\frac{1}{2}$
$\therefore \operatorname{ar}(\triangle \mathrm{ABE}): \operatorname{ar}(\triangle \mathrm{ADC})=1: 2$

29. Question

In the given figure, 0 is a point inside a $\angle \mathrm{PQR}$ such that $\angle \mathrm{POR}=90^{\circ}, \mathrm{OP}=6$ cm and $\mathrm{OR}=8 \mathrm{~cm}$. If $\mathrm{PQ}=24 \mathrm{~cm}$ and $\mathrm{QR}=26 \mathrm{~cm}$, prove that $\triangle \mathrm{PQR}$ is right angled. P

Answer

Given: $\angle \mathrm{POR}=90^{\circ}, \mathrm{OP}=6 \mathrm{~cm}$ and $\mathrm{OR}=8 \mathrm{~cm}$
and $P Q=24 \mathrm{~cm}$ and $\mathrm{QR}=26 \mathrm{~cm}$
To Prove: $\triangle \mathrm{PQR}$ is right angled at P
In \triangle POR, using Pythagoras theorem, we get
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{PO})^{2}+(\mathrm{OR})^{2}=(\mathrm{PR})^{2}$
$\Rightarrow(6)^{2}+(8)^{2}=(\mathrm{PR})^{2}$
$\Rightarrow 36+64=(\mathrm{PR})^{2}$
$\Rightarrow(\mathrm{PR})^{2}=100$
$\Rightarrow \mathrm{PR}=\sqrt{ } 100$
$\Rightarrow \mathrm{PR}=10$ [taking positive square root]
In $\triangle P Q R$
Using Pythagoras theorem, i.e. if the square of the hypotenuse is equal to the sum of the other two sides. Then, the given triangle is a right angled triangle, otherwise not.

Here, $(P R)^{2}+(P Q)^{2}$
$\Rightarrow(10)^{2}+(24)^{2}$
$=100+576$
$=676$
$=(26)^{2}=(Q R)^{2}$
\therefore given sides $10 \mathrm{~cm}, 24 \mathrm{~cm}$ and 26 cm make a right triangle right angled at P .
Hence Proved

30. Question

In the given figure, D is the mid-point of side $B C$ and $A E \perp B C$. If $B C=a, A C=$ $b, A B=c, E D=x, A D=p$ and $A E=h$, prove that
(i) $b^{2}=p^{2}+a x+a^{2} / 4$
(ii) $\left(b^{2}+c^{2}\right)=2 p^{2}+1 / 2 a^{2}$
(iii) $\left(b^{2}-c^{2}\right)=2 a x$

Answer

Given: D is the mid-point of side BC and $\mathrm{AE} \perp \mathrm{BC}$
and $\mathrm{BC}=\mathrm{a}, \mathrm{AC}=\mathrm{b}, \mathrm{AB}=\mathrm{c}, \mathrm{ED}=\mathrm{x}, \mathrm{AD}=\mathrm{p}$ and $\mathrm{AE}=\mathrm{h}$
To Prove: (i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
or $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4}$
Proof: In right triangle $\triangle \mathrm{AEC}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{EC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{ED}+\mathrm{DC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{ED})^{2}+(\mathrm{DC})^{2}+2(\mathrm{ED})(\mathrm{DC})=(\mathrm{AC})^{2}$
$\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$\Rightarrow\left(A E^{2}+E D^{2}\right)+(D C)^{2}+2(E D)(D C)=(A C)^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{DC})^{2}+2(\mathrm{ED})(\mathrm{DC})=(\mathrm{AC})^{2}$
$\left[\because\right.$ In right angled $\left.\triangle A E D, \mathrm{AE}^{2}+\mathrm{ED}^{2}=\mathrm{AD}^{2}\right]$
$\Rightarrow(\mathrm{AD})^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+2 \mathrm{ED}\left(\frac{\mathrm{BC}}{2}\right)=(\mathrm{AC})^{2}$
$[\because D$ is the midpoint of $B C$, so $2 D C=B C]$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4} \ldots$ (i)
$\Rightarrow \mathrm{b}^{2}=\mathrm{p}^{2}+\mathrm{ax}+\frac{\mathrm{a}^{2}}{4}$
To Prove: (ii) $b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
or $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{2}$
Proof: In right triangle $\triangle \mathrm{AEB}$, using Pythagoras theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{BE})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{BD}-\mathrm{ED})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AE})^{2}+(\mathrm{ED})^{2}+(\mathrm{BD})^{2}-2(\mathrm{ED})(\mathrm{BD})=(\mathrm{AB})^{2}$
$\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$\Rightarrow\left(\mathrm{AE}^{2}+\mathrm{ED}^{2}\right)+(\mathrm{BD})^{2}-2(\mathrm{ED})(\mathrm{BD})=(\mathrm{AB})^{2}$
$\Rightarrow(\mathrm{AD})^{2}+(\mathrm{BD})^{2}-2(\mathrm{ED})(\mathrm{BD})=(\mathrm{AB})^{2}$
$\left[\because\right.$ In right angled $\left.\triangle \mathrm{AED}, \mathrm{AE}^{2}+\mathrm{ED}^{2}=\mathrm{AD}^{2}\right]$
$\Rightarrow(\mathrm{AD})^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}-2 \mathrm{ED}\left(\frac{\mathrm{BC}}{2}\right)=(\mathrm{AB})^{2}$
$[\because D$ is the midpoint of $B C$, so $2 D C=B C]$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4}$..
On adding eq. (i) and (ii), we get
$\mathrm{AC}^{2}+\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{AD}^{2}-\mathrm{BC} \times E D+\frac{\mathrm{BC}^{2}}{4}$
$\Rightarrow \mathrm{AC}^{2}+\mathrm{AB}^{2}=\mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{2}$
$\Rightarrow \mathrm{b}^{2}+\mathrm{c}^{2}=2 \mathrm{p}^{2}+\frac{\mathrm{a}^{2}}{2}$
To Prove: (iii) $\left(b^{2}-c^{2}\right)=2 a x$
or $(\mathrm{AC})^{2}-(\mathrm{AB})^{2}=2(\mathrm{BC})(\mathrm{ED})$
Proof: Subtracting Eq. (ii) from (i), we get
$\Rightarrow \mathrm{AC}^{2}-\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{ED}+\frac{\mathrm{BC}^{2}}{4}-\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{ED}-\frac{\mathrm{BC}^{2}}{4}$
$\Rightarrow(\mathrm{AC})^{2}-(\mathrm{AB})^{2}=2(\mathrm{BC})(\mathrm{ED})$
Hence Proved

31. Question

P and Q are the mid-points of the sides $C A$ and $C B$ respectively of $\triangle A B C$ right angled at C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$

Answer

Given: $\triangle \mathrm{ABC}$ ia right triangle right angled at C
P and Q are the mid-points of the sides CA and CB respectively.
$\Rightarrow \mathrm{AP}=\mathrm{PC}$ and $\mathrm{CQ}=\mathrm{QB}$
In $\triangle \mathrm{ACB}$, using Pythagoras Theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{BC})^{2}=(\mathrm{AB})^{2}$
Now, In $\triangle A C Q$ using Pythagoras Theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$
$\Rightarrow(\mathrm{AC})^{2}+(\mathrm{CQ})^{2}=(\mathrm{AQ})^{2}$
$\Rightarrow(\mathrm{AC})^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}=(\mathrm{AQ})^{2}$
$\Rightarrow 4(\mathrm{AC})^{2}+(\mathrm{BC})^{2}=4(\mathrm{AQ})^{2}$
$\Rightarrow(\mathrm{BC})^{2}=4(\mathrm{AQ})^{2}-4(\mathrm{AC})^{2}$

Now, In \triangle PCB, using Pythagoras Theorem, we have
$(\text { Perpendicular })^{2}+(\text { Base })^{2}=(\text { Hypotenuse })^{2}$

$$
\begin{align*}
& \Rightarrow(\mathrm{PC})^{2}+(\mathrm{BC})^{2}=(\mathrm{BP})^{2} \\
& \Rightarrow\left(\frac{\mathrm{AC}}{2}\right)^{2}+(\mathrm{BC})^{2}=(\mathrm{BP})^{2} \\
& \Rightarrow(\mathrm{AC})^{2}+4(\mathrm{BC})^{2}=4(\mathrm{BP})^{2} \\
& \Rightarrow(\mathrm{AC})^{2}=4(\mathrm{BP})^{2}-4(\mathrm{BC})^{2} \ldots \tag{ii}
\end{align*}
$$

Putting the value of $(\mathrm{AC})^{2}$ and $(\mathrm{BC})^{2}$ in eq. (i), we get
$4(\mathrm{BP})^{2}-4(\mathrm{BC})^{2}+4(\mathrm{AQ})^{2}-4(\mathrm{AC})^{2}=(\mathrm{AB})^{2}$
$\Rightarrow 4\left(\mathrm{BP}^{2}+\mathrm{AQ}^{2}\right)-4\left(\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)=(\mathrm{AB})^{2}$
$\Rightarrow 4\left(\mathrm{BP}^{2}+A Q^{2}\right)-4\left(\mathrm{AB}^{2}\right)=(\mathrm{AB})^{2}[$ from eq(i)]
$\Rightarrow 4\left(\mathrm{BP}^{2}+\mathrm{AQ}^{2}\right)=5(\mathrm{AB})^{2}$
Hence Proved

