6. Statistics

Exercise 6.1

1. Question

The mean of 11 results is 30 . If the mean of the first 6 results is 28 and that of last 6 results is 32 , find the 6th result.

Answer

Let the $6^{\text {th }}$ number be x
Given that mean of 11 results $=30$
\therefore sum of 11 numbers $=11 \times 30=330$
Mean of the first 6 results $=28$
Sum of first 6 numbers $=6 \times 28=168$
Mean of the last 6 results $=32$
Sum of the last 6 results $=6 \times 32=192$
Therefore,
Sum of first 6 numbers + sum of last 6 numbers $-6^{\text {th }}$ number $=$ sum of 11 numbers
$168+192-x=330$
$\Rightarrow 360-\mathrm{x}=330$
$\Rightarrow \mathrm{x}=30$

2. Question

The mean of 17 observations is 20 . If the mean of the first 9 observation is 23 and that of last 9 observations is 18 , find the 9 th observation.

Answer

Let the $9^{\text {th }}$ observation be x
Given that mean of 17 observations $=20$
\therefore sum of 17 observations $=17 \times 20=340$

Mean of the first 9 observations $=23$
Sum of first 9 observations $=9 \times 23=207$
Mean of the last 9 observations $=18$
Sum of the last 9 observations $=9 \times 18=162$
Therefore,
Sum of first 9 observations + sum of last 9 observations $-9^{\text {th }}$ observation = sum of 17 observations
$207+162-x=340$
$\Rightarrow 369-\mathrm{x}=340$
$\Rightarrow \mathrm{x}=29$

3. Question

The mean weight of 21 students of a class is 52 kg . If the mean weight of the first 11 students of the class is 50 kg and that of the last 11 students is 54 kg , find the weight of the 11th student.

Answer

Let the weight of $11^{\text {th }}$ student be x
Given that mean weight of 21 students $=52 \mathrm{~kg}$
\therefore sum of 21 students weight $=21 \times 52=1092 \mathrm{~kg}$
Mean weight of the first 11 students $=50 \mathrm{~kg}$
Sum of first 11 students weight $=11 \times 50=550 \mathrm{~kg}$
Mean weight of the last 11 students $=54 \mathrm{~kg}$
Sum of the last 11 students weight $=11 \times 54=594 \mathrm{~kg}$
Therefore,
Sum of first 11 students weight + sum of last 11 students weight - weight of the $11^{\text {th }}$ student $=$ sum of 21 students weight
$550+594-x=1092$
$\Rightarrow 1144-\mathrm{x}=1092$
$\Rightarrow \mathrm{x}=52$
Hence, weight of $11^{\text {th }}$ student is 52 kg

4. Question

The mean weight of 25 students of a class is 60 kg . If the mean weight of the first 13 students of the class is 57 kg and that of the last 13 students is 63 kg , find the weight of the 13th student.

Answer

Let the weight of $13^{\text {th }}$ student be x
Given that mean weight of 25 students $=60 \mathrm{~kg}$
\therefore sum of 25 students weight $=25 \times 60=1500 \mathrm{~kg}$
Mean weight of the first 13 students $=57 \mathrm{~kg}$
Sum of first 13 students weight $=13 \times 57=741 \mathrm{~kg}$
Mean weight of the last 13 students $=63 \mathrm{~kg}$
Sum of the last 13 students weight $=13 \times 63=819 \mathrm{~kg}$
Therefore,
Sum of first 13 students weight + sum of last 13 students weight - weight of the $13^{\text {th }}$ student $=$ sum of 25 students weight
$741+819-x=1500$
$\Rightarrow 1560-\mathrm{x}=1500$
$\Rightarrow \mathrm{x}=60$
Hence, weight of $13^{\text {th }}$ student is 60 kg

5. Question

The mean of 23 observations is 34 . If the mean of the first 12 observations is 32 and that of the last 12 observations is 38 , find the 12 th observation.

Answer

Let the $12^{\text {th }}$ observation be x
Given that mean of 23 observations $=34$
\therefore sum of 23 observations $=23 \times 34=782$
Mean of the first 12 observations $=32$
Sum of first 12 observations $=12 \times 32=384$
Mean of the last 12 observations $=38$

Sum of the last 12 observations $=12 \times 38=456$
Therefore,
Sum of first 12 observations + sum of last 12 observations $-12^{\text {th }}$ observation = sum of 23 observations
$384+456-x=782$
$\Rightarrow 840-\mathrm{x}=782$
$\Rightarrow \mathrm{x}=58$

6. Question

The mean of 11 numbers is 35 . If the mean of first 6 numbers is 32 and that of last 6 numbers is 37 , find the 6th number.

Answer

Let the $6^{\text {th }}$ number be x
Given that mean of 11 results $=35$
\therefore sum of 11 numbers $=11 \times 35=385$
Mean of the first 6 results $=32$
Sum of first 6 numbers $=6 \times 32=192$
Mean of the last 6 results $=37$
Sum of the last 6 results $=6 \times 37=222$
Therefore,
Sum of first 6 numbers + sum of last 6 numbers $-6^{\text {th }}$ number $=$ sum of 11 numbers
$192+222-x=385$
$\Rightarrow 414-\mathrm{x}=385$
$\Rightarrow \mathrm{x}=29$

7. Question

The mean of 25 observations is 36 . If the mean of the first 13 observations is 32 and that of the last 13 observations is 39 , find the 13th observation.

Answer

Let the $13^{\text {th }}$ observation be x

Given that mean of 25 observations $=36$
\therefore sum of 25 observations $=25 \times 36=900$
Mean of the first 13 observations $=32$
Sum of first 13 observations $=13 \times 32=416$
Mean of the last 13 observations $=39$
Sum of the last 13 observations $=13 \times 39=507$
Therefore,
Sum of first 13 observations + sum of last 13 observations $-13^{\text {th }}$ observation = sum of 25 observations
$416+507-x=900$
$\Rightarrow 923-\mathrm{x}=900$
$\Rightarrow \mathrm{x}=23$

8. Question

If the mean of the following data is 25 , find the value of k .

x	5	15	25	35	45
f	3	k	3	6	2

Answer

x_{i}	f_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
5	3	15
15	K	15 k
25	3	75
35	6	210
45	2	90
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=14+\mathrm{k}$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=390+15 \mathrm{k}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 25=\frac{390+15 \mathrm{k}}{14+\mathrm{k}}$
$\Rightarrow 25(14+\mathrm{k})=390+15 \mathrm{k}$
$\Rightarrow 350+25 \mathrm{k}=390+15 \mathrm{k}$
$\Rightarrow 25 \mathrm{k}-15 \mathrm{k}=390-350$
$\Rightarrow 10 \mathrm{k}=40$
$\Rightarrow \mathrm{k}=4$

9. Question

Find the arithmetic mean of the following distribution:

Marks obtained	10	15	20	25	30
No. of students	2	4	6	8	10

Answer

Marks obtained $\left(\mathrm{x}_{\mathrm{i}}\right)$	No. of students $\left(\mathrm{f}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
10	2	20
15	4	60
20	6	120
25	8	200
30	10	300
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=30$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=700$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{700}{30}=23.33$

10. Question

The mean of the following frequency distribution is 62.8. Find the missing frequency x :

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	5	8	x	12	7	8

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$ $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class limit }+ \text { Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-20$	5	10	50
$20-40$	8	30	240
$40-60$	x	50	50 x
$60-80$	12	70	840
$80-100$	7	90	630
$100-120$	8	110	880
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=40+\mathrm{x}$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ $=2640+50 \mathrm{x}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 62.8=\frac{2640+50 \mathrm{x}}{40+\mathrm{x}}$
$\Rightarrow 62.8(40+x)=2640+50 \mathrm{x}$
$\Rightarrow 2512+62.8 \mathrm{x}=2640+50 \mathrm{x}$
$\Rightarrow 62.8 \mathrm{x}-50 \mathrm{x}=2640-2512$
$\Rightarrow 12.8 \mathrm{x}=128$
$\Rightarrow \mathrm{x}=10$

11. Question

The arithmetic mean of the following data is 14 . Find the value of p :

x	5	10	15	20	25
f	7	p	8	4	5

Answer

x_{i}	f_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
5	7	35
10	p	10 p
15	8	120
20	4	80
25	5	125
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=24+\mathrm{p}$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=360+10 \mathrm{p}$

Now, $\overline{\mathrm{X}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 14=\frac{360+10 \mathrm{p}}{24+\mathrm{p}}$
$\Rightarrow 14(24+\mathrm{p})=360+10 \mathrm{p}$
$\Rightarrow 336+14 \mathrm{p}=360+10 \mathrm{p}$
$\Rightarrow 14 \mathrm{p}-10 \mathrm{p}=360-336$
$\Rightarrow 4 \mathrm{p}=24$
$\Rightarrow \mathrm{p}=6$

12. Question

If the mean of the following data is 18 , find the missing frequency p :

x	10	15	20	25
f	5	10	p	8

Answer

x_{i}	f_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
10	5	50
15	10	150
20	p	20 p
25	8	200
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=23+\mathrm{p}$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=400+20 \mathrm{p}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 18=\frac{400+20 \mathrm{p}}{23+\mathrm{p}}$
$\Rightarrow 18(23+p)=400+20 p$
$\Rightarrow 414+18 \mathrm{p}=400+20 \mathrm{p}$
$\Rightarrow 18 \mathrm{p}-20 \mathrm{p}=400-414$
$\Rightarrow-2 \mathrm{p}=-14$
$\Rightarrow \mathrm{p}=7$

13. Question

Find the value of p if the mean of the following distribution is 7.5 :

x	3	5	7	9	11	13
f	6	8	15	p	8	4

Answer

x_{i}	f_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
3	6	18
5	8	40
7	15	105
9	p	9 p
11	8	88
13	4	52
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=41+\mathrm{p}$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=303+9 \mathrm{p}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 7.5=\frac{303+9 p}{41+p}$
$\Rightarrow 7.5(41+\mathrm{p})=303+9 \mathrm{p}$
$\Rightarrow 307.5+7.5 \mathrm{p}=303+9 \mathrm{p}$
$\Rightarrow 7.5 \mathrm{p}-9 \mathrm{p}=303-307.5$
$\Rightarrow-1.5 p=-4.5$
$\Rightarrow \mathrm{p}=3$

14. Question

Find the mean of the following data:

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	12	11	8	10	9

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark (x_{i}) $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class limit + Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-10$	12	5	60
$10-20$	11	15	165
$20-30$	8	25	200
$30-40$	10	35	350
$40-50$	9	45	405
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1180$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{1180}{50}=23.6$

15. Question

Find the mean of the following distribution:

Class	Number of students
$4-8$	2
$8-12$	12
$12-16$	15
$16-20$	25
$20-24$	18
$24-28$	12
$28-32$	13
$32-36$	3

Answer

Class	No. of students $\left(f_{i}\right)$	Class Mark ($\left.x_{i}\right)$ $x_{i}=\frac{\text { Upper class limit }+ \text { Lower class limit }}{2}$	$x_{i} f_{\mathrm{i}}$
$4-8$	2	6	12
$8-12$	12	10	120
$12-16$	15	14	210
$16-20$	25	18	450
$20-24$	18	22	396
$24-28$	12	36	312
$28-32$	13	34	390
$32-36$	3		102
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=100$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=1992$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{1992}{100}=19.92$

16. Question

The arithmetic mean of the following frequency distribution is 53 . Find the value of p :

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	12	15	32	p	13

Answer

Class	Frequency $\left(f_{i}\right)$	Class Mark $\left(x_{i}\right)$ $x_{i}=\frac{\text { Upper class limit }+ \text { Lower class limit }}{2}$	$x_{i} f_{i}$
$0-20$	12	10	120
$20-40$	15	30	450
$40-60$	32	50	1600
$60-80$	p	70	70 p
$80-100$	13	90	1170
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=72+\mathrm{p}$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ $=3340+70 \mathrm{p}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 53=\frac{1900+70 \mathrm{p}}{72+\mathrm{p}}$
$\Rightarrow 53(72+\mathrm{p})=3340+70 \mathrm{p}$
$\Rightarrow 3816+53 p=3340+70 p$
$\Rightarrow 53 \mathrm{p}-70 \mathrm{p}=3340-3816$
$\Rightarrow-17 \mathrm{p}=-476$
$\Rightarrow \mathrm{p}=28$

17. Question

If the mean of the following distribution is 5 . Find the value of f_{1} :

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	17	28	32	f_{1}	19

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark (x_{i}) $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class limit }+ \text { Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-20$	17	10	170
$20-40$	28	30	840
$40-60$	32	50	1600
$60-80$	f_{1}	70	$70 \mathrm{f}_{1}$
$80-100$	19	90	1710
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=96+\mathrm{f}_{1}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=$ $4320+70 \mathrm{f}_{1}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 5=\frac{4320+70 \mathrm{f}_{1}}{96+\mathrm{f}_{1}}$
$\Rightarrow 5\left(96+f_{1}\right)=4320+70 f_{1}$
$\Rightarrow 480+5 \mathrm{f}_{1}=4320+70 \mathrm{f}_{1}$
$\Rightarrow 5 f_{1}-70 f_{1}=4320-480$
$\Rightarrow-65 f_{1}=+3840$
$\Rightarrow \mathrm{f}_{1}=-59.07$
This is not possible as frequency can not be negative.

18. Question

Find the mean of the following frequency distribution:

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	15	18	21	29	17

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$ $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class linit }+ \text { Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-20$	15	10	150
$20-40$	18	30	540
$40-60$	21	50	1050
$60-80$	29	70	2030
$80-100$	17	90	1530
Total	$\sum \mathrm{f}_{\mathrm{i}}=100$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=5300$

Now, $\overline{\mathrm{X}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{5300}{100}=53$

19. Question

The mean of the following frequency distribution is 62.8 and the sum of all frequency is 50 . Compute the missing frequency f_{1} and f_{2} :

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$	Total
Frequency	5	f_{1}	10	f_{2}	7	8	50

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-20$	5	10	50
$20-40$	f_{1}	30	$30 \mathrm{f}_{1}$
$40-60$	10	50	500
$60-80$	f_{2}	70	$70 \mathrm{f}_{2}$
$80-100$	7	90	630
$100-120$	8	110	880
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=30+\mathrm{f}_{1}+\mathrm{f}_{2}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2060+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 62.8=\frac{2060+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}}{50}$ [given: $\sum \mathrm{f}_{\mathrm{i}}=50$]
$\Rightarrow 62.8(50)=2060+30 f_{1}+70 f_{2}$
$\Rightarrow 3140=2060+30 f_{1}+70 f_{2}$
$\Rightarrow 3140-2060=30 f_{1}+70 f_{2}$
$\Rightarrow 1080=30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$
$\Rightarrow 108=3 f_{1}+7 f_{2}$
and $30+\mathrm{f}_{1}+\mathrm{f}_{2}=50$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=50-30$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=20$
$\Rightarrow \mathrm{f}_{1}=20-\mathrm{f}_{2}$
Now, putting the value of f_{1} in eq. (i), we get
$3\left(20-f_{2}\right)+7 f_{2}=108$
$\Rightarrow 60-3 f_{2}+7 f_{2}=108$
$\Rightarrow 4 \mathrm{f}_{2}=108-60$
$\Rightarrow 4 \mathrm{f}_{2}=48$
$\Rightarrow \mathrm{f}_{2}=12$
Now, substitute the value of f_{2} in eq. (ii), we get
$\mathrm{f}_{1}=20-12$
$\Rightarrow \mathrm{f}_{1}=8$

20. Question

The mean of the following frequency distribution is 57.6 and the sum of the frequencies is 50 . Find the missing frequencies f_{1} and f_{2} :

Class interval	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	7	f_{1}	12	f_{2}	8	5

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-20$	7	10	70
$20-40$	f_{1}	30	$30 \mathrm{f}_{1}$
$40-60$	12	50	600
$60-80$	f_{2}	70	$70 \mathrm{f}_{2}$
$80-100$	8	90	720
$100-120$	5	110	550
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=32+\mathrm{f}_{1}+\mathrm{f}_{2}$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1940+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\Rightarrow 57.6=\frac{2060+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}}{50}$ [given: $\sum \mathrm{f}_{\mathrm{i}}=50$]
$\Rightarrow 57.6(50)=1940+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$
$\Rightarrow 2880=1940+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$
$\Rightarrow 2880-1940=30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$
$\Rightarrow 940=30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$
$\Rightarrow 94=3 f_{1}+7 f_{2}$
and $32+\mathrm{f}_{1}+\mathrm{f}_{2}=50$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=50-32$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=18$
$\Rightarrow \mathrm{f}_{1}=18-\mathrm{f}_{2} \ldots$ (ii)
Now, putting the value of f_{1} in eq. (i), we get
$3\left(18-f_{2}\right)+7 f_{2}=94$
$\Rightarrow 54-3 f_{2}+7 f_{2}=94$
$\Rightarrow 4 f_{2}=94-54$
$\Rightarrow 4 \mathrm{f}_{2}=40$
$\Rightarrow \mathrm{f}_{2}=10$
Now, substitute the value of f_{2} in eq. (ii), we get
$\mathrm{f}_{1}=18-10$
$\Rightarrow \mathrm{f}_{1}=8$

21. Question

Find the mean of the following data:

Class interval	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	8	6	12	11	13

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark (x_{i}) $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class linit }+ \text { Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$50-60$	8	55	440
$60-70$	6	65	390
$70-80$	12	75	900
$80-90$	11	85	935
$90-100$	13	95	1235
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=3900$

Now, $\overline{\mathrm{X}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{3900}{50}=78$

22. Question

Find the mean of the following frequency distribution:

Class interval	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Frequency	60	35	22	18	15

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark (x_{i}) $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class limit + Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$15-25$	60	20	1200
$25-35$	35	30	1050
$35-45$	22	40	880
$45-55$	18	50	900
$55-65$	15	60	900
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=150$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4930$

Now, $\overline{\mathrm{X}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{4930}{150}=32.87$

23. Question

Find the mean of the following frequency distribution:

Class interval	$50-60$	$70-90$	$90-110$	$110-130$	$130-150$	$150-170$
Frequency	18	12	13	27	8	22

Answer

Here, the class size varies, and x_{i} 's are large. Now, we apply the step deviation method with $\mathrm{a}=120$ and $\mathrm{h}=20$

Class	Frequency $\left(f_{i}\right)$	Class Mark $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{d_{i}}{20}$	$f_{i} u_{i}$
$50-70$	18	60	-60	-3	-54
$70-90$	12	80	-40	-2	-24
$90-110$	13	100	-20	-1	-13
$110-130$	27	$120=\mathrm{a}$	0	0	0
$130-150$	8	140	20	1	8
$150-170$	22	160	40	2	44
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=100$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-39$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=120+20\left(\frac{-39}{100}\right)$
$\Rightarrow \overline{\mathrm{x}}=120+\left(\frac{-78}{10}\right)$
$\Rightarrow \bar{x}=\frac{1200-78}{10}$
$\Rightarrow \overline{\mathrm{x}}=112.2$

24. Question

Find the mean of the following frequency distribution:

Class	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$550-54$	$555-59$
Frequency	14	22	16	6	5	3	4

Answer

Here, we can see that the class interval is not continuous. So, we make it continuous.

Class	Frequency $\left(f_{i}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{d}_{\mathrm{i}}}{5}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$24.5-29.5$	14	27	-15	-3	-42
$29.5-34.5$	22	32	-10	-2	-44
$34.5-39.5$	16	37	-5	-1	-16
$39.5-44.5$	6	$42=\mathrm{a}$	0	0	0
$44.5-49.5$	5	47	5	1	5
$49.5-54.5$	3	52	10	2	6
$54.5-59.5$	4	57	15	3	12
Total	$\sum \mathrm{f}_{\mathrm{i}}=70$				$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-79$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=42+5\left(\frac{-79}{70}\right)$
$\Rightarrow \overline{\mathrm{x}}=\frac{2940-395}{70}$
$\Rightarrow \overline{\mathrm{x}}=36.36$

25. Question

The following table gives the marks scored by 50 students in a class-test:

Marks	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$	$500-600$
Number of students	2	8	12	20	5	3

Find the mean marks scored by a student in the class-test.

Answer

Here, the x_{i} 's are large. Now, we apply the step deviation method with $\mathrm{a}=$ 350 and $\mathrm{h}=100$

Class	Frequency $\left(f_{i}\right)$	Class Mark $\left(x_{i}\right)$	$d_{i}=x_{i}-$ a	$u_{i}=\frac{d_{i}}{100}$	$\mathrm{f}_{\mathrm{i}} u_{\mathrm{i}}$
$0-100$	2	50	-300	-3	-6
$100-200$	8	150	-200	-2	-16
$200-300$	12	250	-100	-1	-12
$300-400$	20	$350=\mathrm{a}$	0	0	0
$400-500$	5	450	100	1	5
$500-600$	3	550	200	2	6
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$				$\sum \mathrm{f}_{\mathrm{i}} u_{i}=-23$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=350+100\left(\frac{-23}{50}\right)$
$\Rightarrow \overline{\mathrm{x}}=350-46$
$\Rightarrow \bar{x}=304$
Hence, the mean marks scored by a student in the class-test is 304

26. Question

Find the mean of the following data:

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	3	5	9	5	3

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark (x_{i}) $\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper class limit }+ \text { Lower class limit }}{2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-10$	3	5	15
$10-20$	5	15	75
$20-30$	9	25	225
$30-40$	5	35	175
$40-50$	3	45	135
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=25$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=625$

Now, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{625}{25}=25$

27. Question

Find the mean of the following data:

Classes	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
Frequency	6	9	15	12	8

Answer

Here, the x_{i} 's are large. Now, we apply the step deviation method with $\mathrm{a}=$ 250 and $\mathrm{h}=100$

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{d}_{\mathrm{i}}}{100}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-100$	6	50	-200	-2	-12
$100-200$	9	150	-100	-1	-9
$200-300$	15	$250=\mathrm{a}$	0	0	0
$300-400$	12	350	100	1	12
$400-500$	8	450	200	2	16
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$				$\Sigma \mathrm{f}_{\mathrm{i}} u_{\mathrm{i}}=7$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=250+100\left(\frac{7}{50}\right)$
$\Rightarrow \overline{\mathrm{x}}=250+14$
$\Rightarrow \bar{x}=264$

28. Question

The following table gives the marks scored by 80 students in a class-test:

Marks	$0-$ 50	$50-$ 100	$100-$ 150	$150-$ 200	$200-$ 250	$250-$ 300
Number of students	8	12	20	25	10	5

Find the mean marks scored by a student in the class-test.

Answer

Here, the x_{i} 's are large. Now, we apply the step deviation method with $\mathrm{a}=$ 175 and $\mathrm{h}=50$

Class	Frequency $\left(f_{i}\right)$	Class Mark $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{d_{i}}{50}$	$f_{i} u_{i}$
$0-50$	8	25	-150	-3	-24
$50-100$	12	75	-100	-2	-24
$100-150$	20	125	-50	-1	-20
$150-200$	25	$175=\mathrm{a}$	0	0	0
$200-250$	10	225	50	1	10
$250-300$	5	275	100	2	10
Total	$\Sigma f_{i}=50$				$\sum f_{i} u_{i}=-48$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=175+50\left(\frac{-48}{80}\right)$
$\Rightarrow \overline{\mathrm{x}}=175-30$
$\Rightarrow \bar{x}=145$
Hence, the mean marks scored by a student in the class-test is 145

29. Question

The following table gives the distribution of expenditure of different families on education. Find the mean expenditure on education of a family:

Expenditure (in Rs.)	Number of families
$1000-1500$	24
$1500-2000$	40
$2000-2500$	33
$2500-3000$	28
$3000-3500$	30
$3500-4000$	22
$4000-4500$	16
$4500-5000$	7

Answer

Here, the x_{i} 's are large. Now, we apply the step deviation method with $\mathrm{a}=$ 3250 and $\mathrm{h}=500$

Expenditure (in Rs.)	No. of families	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{d}_{\mathrm{i}}}{500}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$1000-1500$	24	1250	-2000	-4	-96
$1500-2000$	40	1750	-1500	-3	-120
$2000-2500$	33	2250	-1000	-2	-66
$2500-3000$	28	2750	-500	-1	-28
$3000-3500$	30	$3250=\mathrm{a}$	0	0	0
$3500-4000$	22	3750	500	1	22
$4000-4500$	16	4250	1000	2	32
$4500-5000$	7	4750	1500	3	21
Total	$\sum \mathrm{f}_{\mathrm{i}}=$ 200				$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=$ -235

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=3250+500\left(\frac{-235}{200}\right)$
$\Rightarrow \overline{\mathrm{x}}=3250-587.5$
$\Rightarrow \bar{x}=2662.5$
Hence, the mean expenditure on education of a family is Rs 2662.5

Exercise 6.2

1. Question

Find mode of the following data:
$64,61,62,62,63,61,63,64,64,60,65,63,64,65,66,64$

Answer

Value(x)	60	61	62	63	64	65	66
Frequency	1	2	2	3	5	2	1

Here, we can see that 64 observation has the maximum frequency.
Hence, Mode $=64$

2. Question

Find the mode of the following distribution:

Marks	4	5	6	7	8	9	10
Frequency	3	8	10	12	16	12	10

Answer

Here, the marks 8 has the maximum frequency ' 16 '.
\therefore Mode $=8$

3. Question

Find the mode of the following data:

Class interval	11	12	13	14	15	16	17	18
Frequency	2	9	3	4	8	7	8	3

Answer

Here, the class interval 12 has the maximum frequency ' 9 '.
\therefore Mode $=12$

4. Question

A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household.

Family size	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$
Number of families	7	8	2	2	1

Find the mode of this data.

Answer

Here, the maximum class frequency is 8 , and the class corresponding to this frequency is $3-5$.

So, the modal class is $3-5$.
Now, modal class $=3-5$, lower limit (1) of modal class $=3$, class size $(h)=$ 2
frequency $\left(f_{1}\right)$ of the modal class $=8$
frequency (f_{0}) of class preceding the modal class $=7$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=2$
Now, let us substitute these values in the formula

Mode $=1+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=3+\left(\frac{8-7}{2 \times 8-7-2}\right) \times 2$
$=3+\frac{2}{7} \times 2$
$=3.286$

5. Question

Find the mode of the following distribution:

Marks	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70	$70-$ 80
Number of students	15	20	24	24	12	31	71	52

Answer

Here, the maximum number of students i.e. 71 have got marks in the interval 60-70.

So, the modal class is 60-70.
Now, modal class $=60-70$, lower limit (1) of modal class $=60$, class $\operatorname{size}(\mathrm{h})=10$
frequency (f_{1}) of the modal class $=71$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=31$
frequency (f_{2}) of class succeeding the modal class $=52$
Now, let us substitute these values in the formula

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h} \\
& =60+\left(\frac{71-31}{2 \times 71-31-52}\right) \times 10 \\
& =60+\frac{40}{59} \times 10 \\
& =60+6.78 \\
& =66.78
\end{aligned}
$$

6. Question

Find the mode of the following distribution:

Age in (years)	$0-$	10	$10-$	$20-$	$30-$	$40-$	$50-$
30	40	50	60	70			
Frequency	8	14	25	28	25	10	5

Answer

Here, the maximum class frequency is 28 , and the class corresponding to this frequency is $30-40$.

So, the modal class is $30-40$.
Now, modal class $=30-40$, lower limit (l) of modal class $=30$, class $\operatorname{size}(\mathrm{h})=10$
frequency (f_{1}) of the modal class $=28$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=25$
frequency (f_{2}) of class succeeding the modal class $=25$
Now, let us substitute these values in the formula
Mode $=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$=30+\left(\frac{28-25}{2 \times 28-25-25}\right) \times 10$
$=30+\frac{3}{6} \times 10$
$=30+5$
$=35$

7. Question

The given distribution shows the number of runs scored by some top batsman of the world in one-day international cricket matches.

Runs scored	Number of batsman
$3000-4000$	4
$4000-5000$	18
$5000-6000$	9
$6000-7000$	7
$7000-8000$	6
$8000-9000$	3
$9000-10000$	1
$10000-11000$	1

Find the mode of the data.

Answer

Here, the maximum number of batsman i.e. 18 have scored the runs in the interval 4000-5000.

So, the modal class is 4000-5000.
Now, modal class $=4000-5000$,
lower limit (1) of modal class $=4000$,
class size(h) $=1000$
frequency (f_{1}) of the modal class $=18$
frequency (f_{0}) of class preceding the modal class $=4$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=9$
Now, let us substitute these values in the formula

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h} \\
& =4000+\left(\frac{18-4}{2 \times 18-4-9}\right) \times 1000 \\
& =4000+\frac{14}{36-13} \times 1000 \\
& =4000+608.7 \\
& =4608.7
\end{aligned}
$$

8. Question

A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given
below. Find the mode of the data:

Number of cars	$0-$ 10	$10-$						
20	$20-$	$30-$	$40-$	$50-$	$60-$	$70-$		
40	50	60	70	80				
Frequency	7	14	13	12	20	11	15	8

Answer

Here, the maximum class frequency is 20 , and the class corresponding to this frequency is $40-50$.

So, the modal class is $40-50$.
Now, modal class $=40-50$, lower limit (1) of modal class $=40$, class $\operatorname{size}(\mathrm{h})=10$
frequency (f_{1}) of the modal class $=20$
frequency (f_{0}) of class preceding the modal class $=12$
frequency (f_{2}) of class succeeding the modal class $=11$
Now, let us substitute these values in the formula
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=40+\left(\frac{20-12}{2 \times 20-12-11}\right) \times 10$
$=40+\frac{8}{17} \times 10$
$=40+4.7$
$=44.7$

9. Question

Find the mode of the following distribution:

Class interval	$6-$ 10	$11-$			
15	$16-$	$21-$	$26-$		
25	30				
Frequency	20	30	50	40	10

Answer

Here, the maximum class frequency is 50 , and the class corresponding to this frequency is $16-20$.

So, the modal class is $16-20$.

Now, modal class $=16-20$, lower limit (1) of modal class $=16$, class $\operatorname{size}(\mathrm{h})=4$
frequency $\left(\mathrm{f}_{1}\right)$ of the modal class $=50$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=30$
frequency (f_{2}) of class succeeding the modal class $=40$
Now, let us substitute these values in the formula
Mode $=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$=16+\left(\frac{50-30}{2 \times 50-30-40}\right) \times 4$
$=16+\frac{20}{30} \times 4$
$=16+2.67$
$=18.67$

10. Question

Find the mode of the following distribution:

Income (in rupees)	$500-$ 600	$400-$ 500	$300-$ 400	$200-$ 300	$100-$ 200
Number of persons	17	20	30	18	15

Answer

Income (in rupees)	$100-$ 200	$200-$ 300	$300-$ 400	$400-$ 500	$500-$ 600
No. of persons	15	18	30	20	17

Here, the maximum number of persons i.e. 30 have income in the interval 300-400.

So, the modal class is $300-400$.
lower limit (l) of modal class $=300$,
class size(h) $=100$
frequency (f_{1}) of the modal class $=30$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=18$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=20$
Now, let us substitute these values in the formula
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=300+\left(\frac{30-18}{2 \times 30-20-18}\right) \times 100$
$=300+\frac{12}{60-38} \times 100$
$=300+54.54$
= Rs. 354.54

11. Question

Find the mode of the following data:

Marks below	10	20	30	40	50
Number of students	3	8	17	20	22

Answer

Marks Below	No. of students f_{i}	CF
$0-10$	3	3
$10-20$	$8-3=5$	8
$20-30$	$17-8=9$	17
$30-40$	$20-17=3$	20
$40-50$	$22-20=2$	22
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=22$	

Here, the maximum no. of students is 9 , and the class corresponding to the frequency is $20-30$.

So, the modal class is $20-30$.
lower limit (1) of modal class $=20$,
class size(h) $=10$
frequency $\left(f_{1}\right)$ of the modal class $=9$
frequency (f_{0}) of class preceding the modal class $=5$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=3$
Now, let us substitute these values in the formula
Mode $=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$=20+\left(\frac{9-5}{2 \times 9-5-3}\right) \times 10$
$=20+\frac{4}{10} \times 10$
$=20+4$
$=24$

12. Question

Find the mode of the following distribution:

Marks more than	0	10	20	30	40	50
Number of students	50	46	40	20	10	3

Answer

Marks	No. of Students	Class Interval	Frequency
More than 0	50	$0-10$	4
More than 10	46	$10-20$	6
More than 20	40	$20-30$	20
More than 30	20	$30-40$	10
More than 40	10	$40-50$	7
More than 50	3	$50-60$	3
			$\sum \mathrm{f}_{\mathrm{i}}=50$

Here, the maximum no. of students is 20, and the class corresponding to this frequency is $20-30$

So, the modal class is $20-30$.
lower limit (l) of modal class $=20$,
class size(h) $=10$
frequency (f_{1}) of the modal class $=20$
frequency (f_{0}) of class preceding the modal class $=6$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=10$
Now, let us substitute these values in the formula
Mode $=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$=20+\left(\frac{20-6}{2 \times 20-6-10}\right) \times 10$
$=20+\frac{14}{24} \times 10$
$=20+5.83$
$=25.83$

13. Question

Find the mode of the following distribution:

Class mark	15	25	35	45	55	65
Frequency	5	10	12	25	10	4

Answer

Class Mark $x_{i}=\frac{\text { Upper limit }+ \text { lower limit }}{2}$	Frequency	Class Interval
15	5	$10-20$
25	10	$20-30$
35	12	$30-40$
45	25	$40-50$
55	10	$50-60$
65	4	$60-70$

Here, the maximum frequency is 25 , and the class corresponding to this frequency is $40-50$

So, the modal class is $40-50$.
lower limit (1) of modal class $=40$,
class size(h) $=10$
frequency $\left(\mathrm{f}_{1}\right)$ of the modal class $=25$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=12$
frequency (f_{2}) of class succeeding the modal class $=10$
Now, let us substitute these values in the formula

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h} \\
& =40+\left(\frac{25-12}{2 \times 25-12-10}\right) \times 10 \\
& =40+\frac{13}{28} \times 10 \\
& =40+4.64 \\
& \text { Mode }=44.64 \text { (approx.) }
\end{aligned}
$$

14. Question

If the mode of the following distribution is Rs. 24 , find the missing frequency:

Expenditure	$\begin{aligned} & 0- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	Total
Number of families	14	?	27	?	15	100

Answer

Given: Mode $=$ Rs. 24
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)=100$
Class size $=10$
Let frequency of the class $10-20$ be f_{0}. Then, the frequency of the class $30-40$ will be equal to $100-14-\mathrm{f}_{0}-27-15=44-\mathrm{f}_{0}$.

It is given that mode $=24$, therefore, modal class is $20-30$.
Thus, lower limit of the modal class $(1)=20$
frequency (f_{0}) of class preceding the modal class $=\mathrm{f}_{0}$
frequency (f_{2}) of class succeeding the modal class $=44-\mathrm{f}_{0}$
Mode $=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$\Rightarrow 24=20+\left(\frac{27-f_{0}}{2 \times 27-f_{0}-44+f_{0}}\right) \times 10$
$\Rightarrow 24-20=\left(\frac{27-\mathrm{f}_{0}}{10}\right) \times 10$
$\Rightarrow 4=27-\mathrm{f}_{0}$
$\Rightarrow-23=-f_{0}$
$\Rightarrow \mathrm{f}_{0}=23$
$\therefore \mathrm{f}_{2}=44-23=21$
Hence, the missing frequencies are 23 and 21 .

15. Question

The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret, the two measures:

Number of students per teacher	$15-$ 20	$20-$ 25	$25-$ 30	$30-$ 35	$35-$ 40	$40-$ 45	$45-$ 50	$50-$ 55
Number of States/UT	3	8	9	10	3	0	0	2

Answer

No. of students per teacher	No. of States/UT $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$u_{i}=\frac{d_{i}}{5}$	uif $_{\mathrm{i}}$
$15-20$	3	17.5	-20	-4	-12
$20-25$	8	22.5	-15	-3	-24
$25-30$	9	27.5	-10	-2	-18
$30-35$	10	32.5	-5	-1	-10
$35-40$	3	$37.5=\mathrm{a}$	0	0	0
$40-45$	0	42.5	5	1	0
$45-50$	0	47.5	10	2	0
$50-55$	2	52.5	15	3	6
Total	$\Sigma f_{\mathrm{i}}=35$				$\sum f_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=-58$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=37.5+5\left(\frac{-58}{35}\right)$
$\Rightarrow \overline{\mathrm{x}}=37.5-8.28$
$\Rightarrow \overline{\mathrm{x}}=29.22$
\therefore Mean $=29.22$
Here, the maximum no. of students per teacher i.e. 10 , and the class corresponding to this frequency is $30-35$

So, the modal class is $30-35$.
lower limit (l) of modal class $=30$,
class size(h) $=5$
frequency (f_{1}) of the modal class $=10$
frequency (f_{0}) of class preceding the modal class $=9$
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=3$
Now, let us substitute these values in the formula

$$
\begin{aligned}
& \text { Mode }=\mathrm{l}+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h} \\
& =30+\left(\frac{10-9}{2 \times 10-9-3}\right) \times 5 \\
& =30+\frac{1}{8} \times 5 \\
& =30+0.625 \\
& \text { Mode }=30.625 \text { (approx.) }
\end{aligned}
$$

Exercise 6.3

1. Question

Find the median of the following data:

Value of the variate	11	12	13	14	15	16	17	18	
Frequency	5	7	11	9	8	7	3	2	

Answer

Value of the variate	Frequency	Cumulative frequency
11	5	5
12	7	$5+7=12$
13	11	$12+11=23$
14	9	$23+9=32$
15	8	$32+8=40$
16	7	$40+7=47$
17	3	$47+3=50$
18	2	$50+2=52$
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=52$	

Median $=$ size of $\frac{(\text { cumulative frequency }+1)^{\text {th }}}{2}$ item or $\frac{(\mathrm{n}+1)^{\text {th }}}{2}$
Median $=\frac{(52+1)^{\text {th }}}{2}$ item
$=\frac{53}{2}=26.5^{\text {th }}$ item
Now, items from 23 to 32 have value of variate 14 as shown by cumulative frequency.
\therefore Median $=14$

2. Question

Find the median of the following distribution:

Daily wages (in rupees)	25	26	27	28	29	30	31	32
No. of persons	25	15	20	40	10	30	35	25

Answer

Daily Wages	No. of Persons	Cumulative Frequency
25	25	25
26	15	$25+15=40$
27	20	$40+20=60$
28	40	$60+40=100$
29	10	$100+10=110$
30	30	$110+30=140$
31	35	$140+35=175$
32	25	$175+25=200$
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=200$	

Median $=$ size of $\frac{(\text { cumulative frequency }+1)^{\text {th }}}{2}$ item or $\frac{(\mathrm{n}+1)^{\text {th }}}{2}$
Median $=\frac{(200+1)^{\text {th }}}{2}$ observation
$=\frac{201}{2}=100.5^{\text {th }}$ observation
Now, persons from 100 to 110 have daily wages 29 as shown by cumulative frequency.
\therefore Median $=29$

3. Question

Find the median of the following data:

Class- interval	$0-$ 5	$5-$ 10	$10-$ 15	$15-$ 20	$20-$	25	25
30	$30-$						
35							

Class- interval	$0-$	$5-$	$10-$	$15-$	$20-$	$25-$	$30-$
15	20	25	30	35			
Frequency	26	34	32	28	20	16	34

Answer

Class Interval	Frequency	Cumulative frequency
$0-5$	26	26
$5-10$	34	$26+34=60$
$10-15$	32	$60+32=92$ (F)
$15-20$	28 (f)	$92+28=120$
$20-25$	20	$120+20=140$
$25-30$	16	$140+16=156$
$30-35$	34	$156+34=190$

We have $\mathrm{n}=190$
So, $\frac{\mathrm{n}}{2}=\frac{190}{2}=95$

The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 120 then the median class is $15-20$ such that
the lower limit $(1)=15$
cumulative frequency of the class preceding $15-20(c f)=92$
the frequency of the median class $15-20=28$,
class size (h) $=5$
Using the formula, Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=15+\frac{95-92}{28} \times 5$
$=15+0.53$
$=15.53$

4. Question

The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Weight (in kg)	$40-$ 45	$45-$ 50	$50-$ 55	$55-$ 60	$60-$ 65	$65-$ 70	$70-$ 75
No. of students	2	3	8	6	6	3	2

Answer

Weight (in kg)	No. of Students	Cumulative frequency
$40-45$	2	2
$45-50$	3	$2+3=5$
$50-55$	8	$5+8=13(\mathrm{~F})$
$55-60$	6 (f)	$13+6=19$
$60-65$	6	$19+6=25$
$65-70$	3	$25+3=28$
$70-75$	2	$28+2=30$

We have $\mathrm{n}=30$
So, $\frac{\mathrm{n}}{2}=\frac{30}{2}=15$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 19 then the median class is 55-60 such that
the lower limit $(\mathrm{l})=55$
cumulative frequency of the class preceding $55-60(c f)=13$
frequency of the median class $55-60=6$,
class size (h) $=5$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=55+\frac{15-13}{6} \times 5$
$=55+1.66$
$=56.66$
So, the median weight of the students is 56.66 kg

5. Question

Find the median of the following distribution:

Class interval	$9.3-$ 9.7	$9.8-$ 10.2	$10.3-$	10.8	11.2			
$11.3-$								
11.7						$	$	Frequency
:---	2							

Answer

Class Interval	Class interval	Frequency	Cumulative frequency
$9.3-9.7$	$9.25-9.75$	2	2
$9.8-10.2$	$9.75-10.25$	5	$2+5=7$
$10.3-10.7$	$10.25-10.75$	12	$7+12=19(\mathrm{~F})$
$10.8-11.2$	$10.75-11.25$	17 (f)	$19+17=36$
$11.3-11.7$	$11.25-11.75$	14	$36+14=50$

We have $\mathrm{n}=50$
So, $\frac{\mathrm{n}}{2}=\frac{50}{2}=25$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 36 then the median class is $10.75-11.25$ such that
the lower limit $(\mathrm{l})=10.75$
cumulative frequency of the class preceding 10.75-11.25 (cf) $=19$
frequency of the median class $10.75-11.25=17$,
class size (h) $=0.5$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=10.75+\frac{25-19}{17} \times 0.5$
$=10.75+0.176$
$=10.93$

6. Question

Find the median from the following table:

Marks below	10	20	30	40	50	60	70	80
Number of students	5	11	22	37	56	68	75	80

Answer

Marks Below	No. of Students	Class Interval	Frequency	Cumulative Frequency
10	5	$0-10$	5	5
20	11	$10-20$	6	$5+6=11$
30	22	$20-30$	11	$11+11=22$
40	37	$30-40$	15	$22+15=37(\mathrm{~F})$
50	56	$40-50$	$19(\mathrm{f})$	$37+19=56$
60	68	$50-60$	12	$56+12=68$
70	75	$60-70$	7	$68+7=75$
80	80	$70-80$	5	$75+5=80$

We have $\mathrm{n}=80$
So, $\frac{\mathrm{n}}{2}=\frac{80}{2}=40$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 56 then the median class is $40-50$ such that
the lower limit $(\mathrm{l})=40$
cumulative frequency of the class preceding $40-50(c f)=37$
the frequency of the median class $40-50=19$,
class size (h) = 10

Using the formula, Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=40+\frac{40-37}{19} \times 10$
$=40+1.58$
$=41.58$

7. Question

A life insurance agent found the following data for the distribution of ages of 100 policy holders. Calculate the median age, if policies are only given to persons having age 18 years onwards but less than 60 years.

Age (in years)	Number of policy holders
Below 20	2
Below 25	6
Below 30	24
Below 35	45
Below 40	78
Below 45	89
Below 50	92
Below 55	98
Below 60	100

Answer

Age (in yrs.)	No. of policy holders	Class Interval	Frequency	Cumulative Frequency
Below 20	2	$18-20$	2	2
Below 25	6	$20-25$	4	$2+4=6$
Below 30	24	$25-30$	18	$6+18=24$
Below 35	45	$30-35$	21	$24+$ $21=45(\mathrm{~F})$
Below 40	78	$35-40$	$33(\mathrm{f})$	$45+33=78$
Below 45	89	$40-45$	11	$78+11=89$
Below 50	92	$45-50$	3	$89+3=92$
Below 55	98	$50-55$	6	$92+6=98$
Below 60	100	$55-60$	2	$98+2=100$

We have $\mathrm{n}=100$
So, $\frac{\mathrm{n}}{2}=\frac{100}{2}=50$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 78 then the median class is $35-40$ such that
the lower limit $(\mathrm{l})=35$
cumulative frequency of the class preceding $35-40(c f)=45$
frequency of the median class $35-40=33$,
class size (h) $=5$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=35+\frac{50-45}{33} \times 5$
$=35+0.757$
$=35.76$
So, the median age of the policy holders is $35.76 y$ years

8. Question

A survey regarding the heights (in cm) of 51 girls of Class X of a school was conducted, and the following data was obtained:

Height (in cm)	Number of girls
Less than 140	4
Less than 145	11
Less than 150	29
Less than 155	40
Less than 160	46
Less than 165	51

Find the median height.

Answer

Height (in cm)	No. of girls	Class Interval	Frequency	Cumulative Frequency
Less than 140	4	Below 140	4	4
Less than 145	11	$140-145$	7	$4+7=11(\mathrm{~F})$
Less than 150	29	$145-150$	$18(\mathrm{f})$	$11+18=29$
Less than 155	40	$150-155$	11	$29+11=40$
Less than 160	46	$155-160$	6	$40+6=46$
Less than 165	51	$160-165$	5	$46+5=51$

We have $\mathrm{n}=51$
So, $\frac{\mathrm{n}}{2}=\frac{51}{2}=25.5$
The cumulative Frequency just greater than $\frac{n}{2}$ is 29 then the median class is $145-150$ such that
the lower limit $(\mathrm{l})=145$
cumulative frequency of the class preceding 145-150 (cf) $=11$
frequency of the median class $145-150=18$,
class size (h) = 5
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=145+\frac{25.5-11}{18} \times 5$
$=145+4.027$
$=149.03$
So, the median height of the girls is 149.03 cm

9. Question

The following table gives the distribution of the life time of 400 neon lamps:

Life time (in hours)	Number of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Answer

Life time (in hours)	Number of lamps	Cumulative Frequency
$1500-2000$	14	14
$2000-2500$	56	$14+56=70$
$2500-3000$	60	$70+60=130$ (F)
$3000-3500$	$86(\mathrm{f})$	$130+86=216$
$3500-4000$	74	$216+74=290$
$4000-4500$	62	$290+62=352$
$4500-5000$	48	$352+48=400$

We have $\mathrm{n}=400$
So, $\frac{\mathrm{n}}{2}=\frac{400}{2}=200$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 216 then the median class is 3000-3500 such that
the lower limit $(\mathrm{l})=3000$
cumulative frequency of the class preceding 3000-3500 (cf) $=130$
frequency of the median class $3000-3500=86$,
class size (h) $=500$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=3000+\frac{200-130}{86} \times 500$
$=3000+\frac{70}{86} \times 500$
$=3000+406.98$
$=3406.98$
So, median life time of lamps is 3406.98 hours

10. Question

Find the median life time of a lamp. 10. The frequency distribution of the number of letters in the English alphabets in the names of 100 students is as given below:

No. of letters	$1-$ 5	$6-$ 10	$11-$ 15	$16-$ 20	$21-$ 25	$26-$ 30	$31-$ 35
No. of names	7	10	13	32	14	18	6

Determine the median numbers of letters in the names.

Answer

No. of Letters	Class Interval (inclusive)	No. of Names	Cumulative frequency
$1-5$	$0.5-5.5$	7	7
$6-10$	$5.5-10.5$	10	$7+10=17$
$11-15$	$10.5-15-5$	13	$17+13=30(\mathrm{~F})$
$16-20$	$15.5-20.5$	32 (f)	$30+32=62$
$21-25$	$20.5-25.5$	14	$62+14=76$
$26-30$	$25.5-30.5$	18	$76+18=94$
$31-35$	$30.5-35.5$	6	$94+6=100$

We have $\mathrm{n}=100$
So, $\frac{n}{2}=\frac{100}{2}=50$

The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 62 then the median class is 15.5 - 20.5 such that
the lower limit $(\mathrm{l})=15.5$
cumulative frequency of the class preceding 15.5-20.5 (cf) $=30$
frequency of the median class $15.5-20.5=32$,
class size (h) $=5$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=15.5+\frac{50-30}{32} \times 5$
$=15.5+\frac{20}{32} \times 5$
$=15.5+3.125$
$=18.625=18.63$
So, the median numbers of letters in the names is 18.63

11. Question

The length of 40 leaves of a plant are measured correct to the nearest milli-metre and the date obtained is represented in the following table:

Length (in $\mathrm{mm})$	Number of leaves
$118-126$	3
$127-135$	5
$136-144$	9
$145-153$	12
$154-162$	5
$163-171$	4
$172-180$	2

Find the median length of the leaves.
Answer

Length (in mm)	Class Interval (inclusive)	Number of leaves	Cumulative Frequency
$118-126$	$117.5-126.5$	3	3
$127-135$	$126.5-135.5$	5	$3+5=8$
$136-144$	$135.5-144.5$	9	$8+9=17(F)$
$145-153$	$144.5-153.5$	$12(\mathrm{f})$	$17+12=29$
$154-162$	$153.5-162.5$	5	$29+5=34$
$163-171$	$162.5-171.5$	4	$34+4=38$
$172-180$	$171.5-180.5$	2	$38+2=40$

We have $\mathrm{n}=40$
So, $\frac{\mathrm{n}}{2}=\frac{40}{2}=20$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 29 then the median class is 144.5 - 153.5 such that
the lower limit $(\mathrm{l})=144.5$
cumulative frequency of the class preceding 144.5-153.5 (cf) = 17
frequency of the median class 144.5-153.5 = 12,
class size (h) $=9$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=144.5+\frac{20-17}{12} \times 9$
$=144.5+\frac{3}{12} \times 9$
$=144.5+2.25$
$=146.75$
So, the median length of the leaves is 146.75 mm

12. Question

Find the median of the following data:

Class marks	35	45	55	65	75	85
Frequency	20	26	7	12	15	10

Answer

Class Marks	Frequency	Class Interval	Cumulative Frequency
35	20	$30-40$	$20(\mathrm{~F})$
45	$26(\mathrm{f})$	$40-50$	$20+26=46$
55	7	$50-60$	$46+7=53$
65	12	$60-70$	$53+12=65$
75	15	$70-80$	$65+15=80$
85	10	$80-90$	$80+10=90$

Here, the class mark is given.
\therefore Class size $=45-35=10$
If a is a class mark and h is the size of the class interval, then the lower limit and upper limit of the class interval are $a-\frac{h}{2}$ and $a+\frac{h}{2}$ repectively.
\therefore, we have $\mathrm{h}=10$
\therefore Lower Limit of first class interval $=35-\frac{10}{2}=35-5=30$
The upper limit of first class interval $=35+\frac{10}{2}=35+5=40$
\therefore The first class interval is $30-40$
Hence, the class intervals are $30-40,40-50,50-60,60-70,70-80$, 80-90.

Now, We find the median
We have $\mathrm{n}=90$
So, $\frac{\mathrm{n}}{2}=\frac{90}{2}=45$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 46 then the median class is $40-50$ such that
the lower limit $(\mathrm{l})=40$
cumulative frequency of the class preceding $40-50(c f)=20$
frequency of the median class $40-50=26$,
class size (h) = 10
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=40+\frac{45-20}{26} \times 10$
$=40+\frac{25}{26} \times 10$
$=40+9.61$
$=49.61$

13. Question

Find the median from the following table:

Class mark	$0-5$	$5-6$	$6-9$	$9-12$	$12-14$	$14-18$	$18-20$	$20-24$
Frequency	3	2	7	5	16	12	15	20

Answer

Here, we can see that the intervals are unequal.

Class mark	$\underset{5}{0-5}$	$\left\lvert\, \begin{gathered} 5-6 \\ 1 \end{gathered}\right.$	$\underset{\substack{6-9 \\ 3 \\ \hline \\ \hline}}{ }$	$\underbrace{9-12}_{3}$	$\underbrace{12-14}_{2}$	$\underbrace{14-18}_{4}$	$\underset{2}{18-20}$	$\underbrace{20-24}_{4}$
Frequency	3	2	7	5	16	12	15	20

Firstly, we convert the unequal class intervals into equal class intervals.

Class Interval	Frequency	Cumulative Frequency
Combining both the interval $\begin{gathered} (0-5) \&(5-6) \\ \mathbf{0}-\mathbf{6} \end{gathered}$	Combining frequencies of both the interval $3+2=\mathbf{5}$	5
Combining both the interval $\begin{gathered} (6-9) \&(9-12) \\ \mathbf{6}-\mathbf{1 2} \end{gathered}$	$7+5=12$	$5+12=17$
Combining both the interval $\begin{gathered} (12-14) \&(14-18) \\ 12-18 \end{gathered}$	$16+12=\mathbf{2 8}$	$\begin{gathered} 17+ \\ 28=45 \\ \hline \end{gathered}$
Combining both the interval $\begin{gathered} (18-20) \&(20-24) \\ \mathbf{1 8}-\mathbf{2 4} \end{gathered}$	$15+20=35$	$\begin{gathered} 45+ \\ 35=80 \end{gathered}$

We have $\mathrm{n}=80$
So, $\frac{\mathrm{n}}{2}=\frac{80}{2}=40$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 45 then the median class is $12-18$ such that
the lower limit $(\mathrm{l})=12$
cumulative frequency of the class preceding $12-18(c f)=17$
frequency of the median class $12-18=28$,
class size (h) $=6$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$,we have
Median $=12+\frac{40-17}{28} \times 6$
$=12+4.928$
$=14.93$

14. Question

Find the missing frequency of the following incomplete frequency distribution if the median is 46 and find the mean of the complete distribution.

Class- interval	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70	$70-$ 80	Total
Total Frequency	12	30	x	65	y	25	18	229

Answer

Class Interval	Frequency	Cumulative Frequency
$10-20$	12	12
$20-30$	30	$12+30=42$
$30-40$	x	$42+\mathrm{x}(\mathrm{F})$
$40-50$	$65(\mathrm{f})$	$42+\mathrm{x}+65=107+\mathrm{x}$
$50-60$	y	$107+\mathrm{x}+\mathrm{y}$
$60-70$	18	$107+\mathrm{x}+\mathrm{y}+25=132$ $+\mathrm{x}+\mathrm{y}$
$70-80$	$132+\mathrm{x}+\mathrm{y}+18=150$ $+\mathrm{x}+\mathrm{y}$	
Total	$150+\mathrm{x}+\mathrm{y}$	

Given Median $=46$
Then, median Class $=40-50$
the lower limit $(\mathrm{l})=40$
cumulative frequency of the class preceding $40-50(c f)=42+x$
frequency of the median class $40-50=65$,
class size (h) $=10$
Total frequencies (n) $=229$
So, $150+\mathrm{x}+\mathrm{y}=229$
$\Rightarrow \mathrm{x}+\mathrm{y}=229-150$
$\Rightarrow \mathrm{x}+\mathrm{y}=79$...(i)
and $\frac{\mathrm{n}}{2}=\frac{229}{2}=114.5$
Using the formula, Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$,we have
$46=40+\frac{114.5-(42+x)}{65} \times 10$
$\Rightarrow 46-40=\frac{114.5-42-\mathrm{x}}{65} \times 10$
$\Rightarrow \frac{6 \times 65}{10}=72.5-\mathrm{x}$
$\Rightarrow 39=72.5-\mathrm{x}$
$\Rightarrow \mathrm{x}=33.5$
Putting the value of x in eq. (i), we get
$\Rightarrow 33.5+y=79$
$\Rightarrow \mathrm{y}=79-33.5$
$\Rightarrow \mathrm{y}=45.5$

15. Question

If the median of the distribution given below is 28.5 , find the values of x and y.

Class-interval	Frequency
$0-10$	5
$10-20$	X
$20-30$	20
$30-40$	15
$40-50$	Y
$50-60$	5
Total	60

Answer

Class-interval	Frequency	Cumulative Frequency
$0-10$	5	5
$10-20$	X	$5+\mathrm{x}(\mathrm{F})$
$20-30$	$20(\mathrm{f})$	$5+\mathrm{x}+20=25+\mathrm{x}$
$30-40$	15	$25+\mathrm{x}+15=40+\mathrm{x}$
$40-50$	Y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$40+\mathrm{x}+\mathrm{y}+5=45+$ $\mathrm{x}+\mathrm{y}$
Total	$45+\mathrm{x}+\mathrm{y}$	

Given Median $=28.5$

Then, median Class $=20-30$
the lower limit $(\mathrm{l})=20$
cumulative frequency of the class preceding $20-30(c f)=5+x$
frequency of the median class $20-30=20$,
class size (h) = 10
Total frequencies (n) $=60$
So, $45+x+y=60$
$\Rightarrow x+y=60-45$
$\Rightarrow \mathrm{x}+\mathrm{y}=15 \ldots$... i$)$
and $\frac{\mathrm{n}}{2}=\frac{60}{2}=30$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
$28.5=20+\frac{30-(5+x)}{20} \times 10$
$\Rightarrow 28.5-20=\frac{30-5-x}{2}$
$\Rightarrow 8.5 \times 2=25-x$
$\Rightarrow 17=25-\mathrm{x}$
$\Rightarrow \mathrm{x}=8$
Putting the value of x in eq. (i), we get
$\Rightarrow 8+y=15$
$\Rightarrow \mathrm{y}=15-8$
$\Rightarrow \mathrm{y}=7$

16. Question

The median of the following data is 525 . Find the values of x and y, if the total frequency is 100 :

Class-interval	Frequency
$0-100$	2
$100-200$	5
$200-300$	X
$300-400$	12
$400-500$	17
$500-600$	20
$600-700$	Y
$700-800$	9
$800-900$	7
$900-1000$	4

Answer

Class-interval	Frequency	Cumulative Frequency			
$0-100$	2	2			
$100-200$	5	$2+5=7$			
$200-300$	x	$7+x$	$	$	$7+x+12=19+x$
:---:					
$300-400$					
$400-500$					
$500-600$					
$600-700$					
$700-800$					
9					

Given Median =525
Then, median Class $=500-600$
the lower limit $(1)=500$
cumulative frequency of the class preceding 500-600(cf) $=36+x$
frequency of the median class $500-600=20$,
class size (h) $=100$
Total frequencies (n) $=100$
So, $76+x+y=100$
$\Rightarrow \mathrm{x}+\mathrm{y}=100-76$
$\Rightarrow \mathrm{x}+\mathrm{y}=24 \ldots$... i$)$
and $\frac{\mathrm{n}}{2}=\frac{100}{2}=50$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
$525=500+\frac{50-(36+x)}{20} \times 100$
$\Rightarrow 525-500=\frac{14-\mathrm{x}}{20} \times 100$
$\Rightarrow 25=(14-\mathrm{x}) \times 5$
$\Rightarrow 5=14-\mathrm{x}$
$\Rightarrow \mathrm{x}=9$
Putting the value of x in eq. (i), we get
$\Rightarrow 9+y=24$
$\Rightarrow \mathrm{y}=24-9$
$\Rightarrow \mathrm{y}=15$

17. Question

Find the mean and median of the following data:

Marks	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70	$70-$ 80
No. of students	15	20	24	24	12	31	71	52

Answer

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$u_{i}=\frac{d_{i}}{10}$	$u_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-10$	15	5	-40	-4	-60
$10-20$	20	15	-30	-3	-60
$20-30$	24	25	-20	-2	-48
$30-40$	25	35	-10	-1	-25
$40-50$	12	$45=\mathrm{a}$	0	0	0
$50-60$	31	55	10	1	31
$60-70$	71	65	20	2	142
$70-80$	52	75	30	3	156
Total	$\Sigma f_{\mathrm{i}}=250$				$\Sigma f_{i} x_{\mathrm{i}}$
$=136$					

Now, Mean $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{x}}=45+10\left(\frac{136}{250}\right)$
$\Rightarrow \bar{x}=45+5.44$
$\Rightarrow \overline{\mathrm{x}}=50.44$

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency
$0-10$	15	15
$10-20$	20	$15+20=35$
$20-30$	24	$35+24=59$
$30-40$	25	$59+25=84$
$40-50$	12	$84+12=96(\mathrm{~F})$
$50-60$	$31(\mathrm{f})$	$96+31=127$
$60-70$	71	$127+71=198$
$70-80$	52	$198+52=250$
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=250$	

We have $\mathrm{n}=250$
So, $\frac{\mathrm{n}}{2}=\frac{250}{2}=125$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 127 then the median class is 50-60 such that
the lower limit $(\mathrm{l})=50$
cumulative frequency of the class preceding 50-60(cf) =96
frequency of the median class $50-60=31$,
class size (h) = 10

Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=50+\frac{125-96}{31} \times 10$
$=50+9.35$
$=59.35$

18. Question

Find the mean, median and mode from the following table:

Class interval	$0-$ 7	$7-$ 14	14 -21	$21-$ 28	$28-$ 35	$35-$ 42	42 -49
Frequency	19	25	36	72	51	43	28

Answer

Class Interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$u_{i}=\frac{d_{i}}{7}$	$\mathrm{u}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$0-7$	19	3.5	-21	-3	-57
$7-14$	25	10.5	-14	-2	-50
$14-21$	36	17.5	-7	-1	-36
$21-28$	72	$24.5=\mathrm{a}$	0	0	0
$28-35$	51	31.5	7	1	51
$35-42$	43	38.5	14	2	86
$42-49$	28	45.5	21	3	84
Total	$\Sigma f_{\mathrm{i}}=274$				$\sum f_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$ $=78$

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{X}}=24.5+7\left(\frac{78}{274}\right)$
$\Rightarrow \overline{\mathrm{x}}=24.5+1.99$
$\Rightarrow \bar{x}=26.5$
Now, we calculate the median

Class Interval	Frequency $\left(f_{i}\right)$	Cumulative Frequency
$0-7$	19	19
$7-14$	25	$19+25=44$
$14-21$	36	$44+36=80(\mathrm{~F})$
$21-28$	$72(\mathrm{f})$	$80+72=152$
$28-35$	51	$152+51=203$
$35-42$	43	$203+43=246$
$42-49$	28	$246+28=274$
Total	$\Sigma f_{\mathrm{i}}=274$	

We have $\mathrm{n}=274$
So, $\frac{\mathrm{n}}{2}=\frac{274}{2}=137$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 152 then the median class is 21-28 such that
the lower limit $(\mathrm{l})=21$
cumulative frequency of the class preceding $21-28(c f)=80$
frequency of the median class $21-28=72$,
class size (h) = 7
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=21+\frac{137-80}{72} \times 7$
$=21+5.57$
$=26.57$
Now, we have to find the mode
Here, the maximum class frequency is 72 , and the class corresponding to this frequency is $21-28$.

So, the modal class is $21-28$.
Now, modal class $=21-28$, lower limit (1) of modal class $=21$, class size(h) $=7$
frequency (f_{1}) of the modal class $=72$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=36$
frequency (f_{2}) of class succeeding the modal class $=51$

Now, let us substitute these values in the formula
Mode $=1+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=21+\left(\frac{72-36}{2 \times 72-36-51}\right) \times 7$
$=21+\frac{36}{57} \times 7$
$=21+4.42$
$=25.42$

19. Question

100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surname was obtained as follows:

Number of letters	$1-$ 4	$4-$ 7	$7-$ 10	$10-$ 13	$13-$ 16	$16-$ 19
Number of surnames	6	30	40	16	4	4

Determine the median number of letters in the surnames. Find the mean number of letter in the surnames? Also, find the modal size of the surnames.

Answer

Class Interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency
$1-4$	6	6
$4-7$	30	$6+30=36(\mathrm{~F})$
$7-10$	$40(\mathrm{f})$	$36+40=76$
$10-13$	16	$76+16=92$
$13-16$	4	$92+4=96$
$16-19$	4	$96+4=100$
Total	$\sum f_{\mathrm{i}}=100$	

We have $\mathrm{n}=100$
So, $\frac{n}{2}=\frac{100}{2}=50$
The cumulative Frequency just greater than $\frac{n}{2}$ is 36 then the median class is $7-10$ such that
the lower limit $(1)=7$
cumulative frequency of the class preceding $7-10(c f)=36$
frequency of the median class $7-10=40$,
class size (h) $=3$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=7+\frac{50-36}{40} \times 3$
$=7+1.05$
$=8.05$
Now, we calculate the Mean

Class Interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$u_{i}=\frac{d_{i}}{3}$	uif $_{\mathrm{i}}$
$1-4$	6	2.5	-9	-3	-18
$4-7$	30	5.5	-6	-2	-60
$7-10$	40	8.5	-3	-1	-40
$10-13$	16	$11.5=\mathrm{a}$	0	0	0
$13-16$	4	14.5	3	1	4
$16-19$	4	17.5	6	2	8
Total	$\sum \mathrm{f}_{\mathrm{i}}=100$				$f_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$=-106$					

Now, $\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)$
$\Rightarrow \overline{\mathrm{X}}=11.5+3\left(\frac{-106}{100}\right)$
$\Rightarrow \overline{\mathrm{x}}=11.5-3.18$
$\Rightarrow \overline{\mathrm{x}}=8.32$
Now, we have to find the mode
Here, the maximum class frequency is 40 , and the class corresponding to this frequency is $7-10$.

So, the modal class is $7-10$.
Now, modal class = $7-10$, lower limit (l) of modal class $=7$, class size (h) $=3$
frequency (f_{1}) of the modal class $=40$
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=30$
frequency (f_{2}) of class succeeding the modal class $=16$
Now, let us substitute these values in the formula
Mode $=1+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=7+\left(\frac{40-30}{2 \times 40-30-16}\right) \times 3$
$=7+\frac{10}{34} \times 3$
$=7+0.88$
$=7.88$

Exercise 6.4

1. Question

The following distribution gives the daily income of 50 workers of a factory:

Daily income (in Rs.)	$100-$ 120	$120-$ 140	$140-$ 160	$160-$ 180	$180-$ 200
Number of workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.

Answer

Daily Income (in Rs.)	No. of workers	Cumulative Frequency
Less than 120	12	12
Less than 140	14	$12+14=26$
Less than 160	8	$26+8=34$
Less than 180	6	$34+6=40$
Less than 200	10	$40+10=50$
Total	$\sum \mathrm{f}_{\mathrm{i}}=50$	

Now, taking upper class limits on x - axis and their respective frequencies on y-axis we can draw its ogive as follows:

2. Question

Draw 'more than' ogive of the following distribution:

Wages (in Rs.)	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70
Number of workers	40	50	60	30	20

Answer

Wages (in Rs.)	No. of workers	Cumulative Frequency
More than 20	20	200
More than 30	30	160
More than 40	60	110
More than 50	50	50
More than 60	40	20

Now, taking lower class limits on x - axis and their respective frequencies on y-axis we can draw its ogive as follows:

3. Question

Draw a less than type cumulative frequency curve for the following data and from the graph find the median:

Monthly Income	Number of workers
$0-100$	12
$100-200$	28
$200-300$	35
$300-400$	65
$400-500$	30
$500-600$	20
$600-700$	20
$700-800$	17
$800-900$	13
$900-1000$	10

Answer

Monthly Income	Number of workers	Monthly Income	Cumulative Frequency
$0-100$	12	Less than 100	12
$100-200$	28	Less than 200	$12+28=40$
$200-300$	35	Less than 300	$40+35=75(\mathrm{~F})$
$300-400$	65 (f)	Less than 400	$75+65=140$
$400-500$	30	Less than 500	$140+30=170$
$500-600$	20	Less than 600	$170+20=190$
$600-700$	20	Less than 700	$190+20=210$
$700-800$	17	Less than 800	$210+17=227$
$800-900$	13	Less than 900	$227+13=240$
$900-1000$	10	Less than 1000	$240+10=250$

Now, taking upper class limits on x - axis and their respective frequencies on y-axis we can draw its ogive as follows:

Now, we have $\mathrm{n}=250$
$\Rightarrow \frac{\mathrm{n}}{2}=\frac{250}{2}=125$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 140 then the median class is 300-400 such that
the lower limit $(1)=300$
cumulative frequency of the class preceding 300-400 (cf) $=75$
frequency of the median class $300-400=65$,
class size (h) $=100$
Using the formula,Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$,we have
Median $=300+\frac{125-75}{65} \times 100$
$=300+76.9$
$=376.9$
=377 (approx.)

4. Question

Convert the following distribution into 'more than' frequency distribution and draw more than' ogive. Also find the median from it.

Weekly wages less than (in Rs.)	Number of workers
20	41
40	92
60	156
80	201
100	

Answer

Weekly wages (in Rs.)	No. of workers (Cumulative Frequency)	Frequency	Weekly Wages (in Rs.)	Cumulative frequency
$0-20$	41	41	More than 0	201
$20-40$	92 (F)	51	More than 20	160
$40-60$	156	$64(f)$	More than 40	109
$60-80$	194	38	More than 60	45
$80-100$	201	7	More than 80	7

Now, taking lower class limits on x -axis and their respective frequencies on y-axis we can draw its ogive as follows:

Now, we have n = 201
$\Rightarrow \frac{\mathrm{n}}{2}=\frac{201}{2}=100.5$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 156 then the median class is $40-60$ such that
the lower limit $(\mathrm{l})=40$
cumulative frequency of the class preceding 40-60(cf) $=92$
frequency of the median class $40-60=64$,
class size (h) $=20$
Using the formula, Median $=1+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$, we have
Median $=40+\frac{100.5-92}{64} \times 20$
$=40+2.65$
$=42.65$
$=42.7$

5. Question

The annual profits earned by 30 shops of a shopping complex in a locality give the following distribution:

Profit (in lakhs of Rs.)	Number shops (frequency)
More than or equal to 5	30
More than or equal to 10	28
More than or equal to 15	16
More than or equal to 20	14
More than or equal to 25	10
More than or equal to 30	7
More than or equal to 35	3

Draw both ogives for the data given above and hence obtain the median profit.

Answer

Class	Frequency	Profit	Cumulative Frequency
$5-10$	2	Less than 10	2
$10-15$	12	Less than 15	$2+12=14(\mathrm{~F})$
$15-20$	$2(\mathrm{f})$	Less than 20	$14+2=16$
$20-25$	4	Less than 25	$16+4=20$
$25-30$	3	Less than 30	$20+3=23$
$30-35$	4	Less than 35	$23+4=27$
$35-40$	3	Less than 40	$27+3=30$

Now, taking upper-class limits on x -axis and their respective frequencies on y-axis we can draw its ogive as follows:

Now, we have $\mathrm{n}=30$
$\Rightarrow \frac{\mathrm{n}}{2}=\frac{30}{2}=15$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 16 then the median class is $15-20$ such that
the lower limit $(\mathrm{l})=15$
cumulative frequency of the class preceding $15-20(c f)=14$
the frequency of the median class $15-20=2$,
class size (h) $=5$
Using the formula, Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$, we have
Median $=15+\frac{15-14}{2} \times 5$
$=15+2.5$
$=17.5$
So, the median profit is Rs. 17.5

6. Question

The following table gives the distribution of the monthly income of 600 families in a certain city:

Monthly income	No. of families
Below 75	60
$75-150$	170
$150-225$	200
$225-300$	60
$300-375$	50
$375-450$	40
450 and above 20	20

Draw a 'less than' and 'more than' ogive curve for the above data on the same graph and from these find the median.

Answer

Monthly income	No. of families	Monthly income Less than	Cumulative Frequency (CF)	Monthly income More than	(CF)
Below 75	60	75	60	0	600
$75-150$	170	150	$60+170=230$	75	540
$150-225$	200	225	$230+200=430$	150	370
$225-300$	60	300	$430+60=490$	225	170
$300-375$	50	375	$490+50=540$	300	110
$375-450$	40	450	$540+40=580$	375	60
450 above	20	525	$580+20=600$	450	20

Now, taking monthly income on x -axis and their respective frequencies on y-axis we can draw its ogive as follows:

Now, we have $\mathrm{n}=600$
$\Rightarrow \frac{\mathrm{n}}{2}=\frac{600}{2}=300$
The cumulative Frequency just greater than $\frac{\mathrm{n}}{2}$ is 430 then the median class is $150-225$ such that
the lower limit $(\mathrm{l})=150$
cumulative frequency of the class preceding 150-225 (cf) $=230$
frequency of the median class $150-225=200$,
class size (h) $=75$
Using the formula, Median $=1+\frac{\frac{n}{2}-c f}{f} \times h$,we have
Median $=150+\frac{300-230}{200} \times 75$
$=150+\frac{70}{200} \times 75$
$=150+26.25$
$=176.25$
= 176(approx.)

