11. Circles

Exercise 11.1

1. Question

The length of a tangent from a point A at a distance 5 cm from the centre of a circle is 4 cm . Find the radius of the circle.

Answer

Let the centre of circle be 0 so that $\mathrm{AO}=5 \mathrm{~cm}$
Tangent is AB whose length is 4 cm
OB is radius as shown

Now we know that radius is perpendicular to point of contact
Hence $O B$ is perpendicular to $A B$
Hence $\angle A B O=90^{\circ}$
Consider $\triangle \mathrm{ABO}$
Using Pythagoras theorem
$\Rightarrow \mathrm{AB}^{2}+\mathrm{OB}^{2}=\mathrm{AO}^{2}$
$\Rightarrow 4^{2}+\mathrm{OB}^{2}=5^{2}$
$\Rightarrow 16+\mathrm{OB}^{2}=25$
$\Rightarrow \mathrm{OB}^{2}=25-16$
$\Rightarrow \mathrm{OB}^{2}=9$
$\Rightarrow \mathrm{OB}= \pm 3$
As length cannot be negative
$\Rightarrow \mathrm{OB}=3 \mathrm{~cm}$
Hence length of radius is 3 cm

2. Question

Rajesh is 29 m away from the centre of a circular flower bed. Find the distance he has to cover to reach the flower bed along the tangential path if the radius of the flower bed is 20 m .

Answer

Let the centre of circular flower bed be 0 and radius $\mathrm{OB}=20 \mathrm{~m}$
Let Rajesh is at point A, and he has to travel tangential path to reach flower bed which is AB as shown

Now we know that radius is perpendicular to point of contact
Hence $O B$ is perpendicular to $A B$
Hence $\angle A B O=90^{\circ}$
Consider $\triangle \mathrm{ABO}$
Using Pythagoras theorem
$\Rightarrow \mathrm{AB}^{2}+\mathrm{OB}^{2}=\mathrm{AO}^{2}$
$\Rightarrow A B^{2}+20^{2}=29^{2}$
$\Rightarrow \mathrm{AB}^{2}=29^{2}-20^{2}$
Using $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
$\Rightarrow \mathrm{AB}^{2}=(29-20)(29+20)$
$\Rightarrow \mathrm{AB}^{2}=9 \times 49$
$\Rightarrow \mathrm{AB}=\sqrt{ }(9 \times 49)$
$\Rightarrow \mathrm{AB}= \pm(3 \times 7)$
$\Rightarrow \mathrm{AB}= \pm 21$
As length cannot be negative
$\Rightarrow \mathrm{AB}=21 \mathrm{~m}$
Hence Rajesh has to cover 21 m to reach the flower bed along the tangential path.

3. Question

Find the length of the tangent drawn from a point, whose distance from the centre of a circle is 5 c , and the radius of the circle is 3 cm .

Answer

Let A be the point at distance of 5 cm from the centre as $\mathrm{AO}=5 \mathrm{~cm}$
$A B$ is the tangent at point B as shown
$O B$ is the radius which is 3 cm

Now we know that radius is perpendicular to point of contact
Hence OB is perpendicular to AB
Hence $\angle A B O=90^{\circ}$
Consider $\triangle \mathrm{ABO}$
Using Pythagoras theorem
$\Rightarrow \mathrm{AB}^{2}+\mathrm{OB}^{2}=\mathrm{AO}^{2}$
$\Rightarrow \mathrm{AB}^{2}+3^{2}=5^{2}$
$\Rightarrow \mathrm{AB}^{2}+9=25$
$\Rightarrow \mathrm{AB}^{2}=25-9$
$\Rightarrow A B^{2}=16$
$\Rightarrow \mathrm{AB}= \pm 4$
As length cannot be negative
$\Rightarrow \mathrm{AB}=4 \mathrm{~cm}$
Hence length of tangent is 4 cm

4. Question

A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12 cm . Find the radius of the circle.

Answer

Let the centre of circle be 0 so that $\mathrm{PO}=13 \mathrm{~cm}$
Tangent is PB whose length is 12 cm
OB is radius as shown

Now we know that radius is perpendicular to point of contact
Hence OB is perpendicular to PB
Hence $\angle \mathrm{PBO}=90^{\circ}$
Consider \triangle PBO
Using Pythagoras theorem
$\Rightarrow \mathrm{PB}^{2}+\mathrm{OB}^{2}=\mathrm{PO}^{2}$
$\Rightarrow 12^{2}+\mathrm{OB}^{2}=13^{2}$
$\Rightarrow \mathrm{OB}^{2}=13^{2}-12^{2}$
$\Rightarrow O B^{2}=169-144$
$\Rightarrow \mathrm{OB}^{2}=25$
$\Rightarrow \mathrm{OB}= \pm 5$
As length cannot be negative
$\Rightarrow \mathrm{OB}=5 \mathrm{~cm}$
Hence length of radius is 5 cm

5. Question

If $d_{1}, d_{2}\left(d_{2}<d_{1}\right)$ are the diameters of two concentric circles and chord of one circle of length C is tangent to other circle, then prove that $d_{2}{ }^{2}=C^{2}+d_{1}{ }^{2}$.

Answer

Let the two concentric circles have the centre 0 and let $A B$ be the chord of an outer circle whose length is D and which is also tangent to the inner circle at point D as shown

The diameters are given as d_{1} and d_{2} hence the radius will be $\frac{\mathrm{d}_{1}}{2}$ and $\frac{\mathrm{d}_{2}}{2}$
In $\triangle \mathrm{OAB}$
$\Rightarrow \mathrm{OA}=\mathrm{OB} .$. radius of the outer circle
Hence $\triangle \mathrm{OAB}$ is an isosceles triangle
As radius is perpendicular to tangent $O C$ is perpendicular to $A B$
OC is altitude from the apex, and in an isosceles triangle, the altitude is also the median

Hence $\mathrm{AD}=\mathrm{DB}=\frac{\mathrm{C}}{2}$
Consider \triangle ODB
$\Rightarrow \angle \mathrm{ODB}=90^{\circ} \ldots$ radius perpendicular to tangent
Using Pythagoras theorem
$\Rightarrow \mathrm{OD}^{2}+\mathrm{BD}^{2}=\mathrm{OB}^{2}$
$\Rightarrow \frac{\mathrm{d}_{2}^{2}}{2^{2}}+\frac{\mathrm{C}^{2}}{2^{2}}=\frac{\mathrm{d}_{1}^{2}}{2^{2}}$
Multiply the whole by 2^{2}
$\Rightarrow \mathrm{d}_{2}{ }^{2}+\mathrm{C}^{2}=\mathrm{d}_{1}{ }^{2}$
Hence proved

6. Question

Prove that the line segment joining the point of contact of two parallel tangents to a circle is a diameter of the circle.

Answer

Let lines AP and BR are parallel tangents to circle having centre 0
We have to prove that $A B$ is the diameter
To prove $A B$ as diameter, we have to prove that $A B$ passes through 0 which means that points A, O and B are on the same line or collinear

OA is perpendicular to PA at A because the line from the centre is perpendicular to the tangent at the point of contact

PA || RB
Hence OA is also perpendicular to RB
\Rightarrow OA perpendicular to PA and RB
Similarly, OB is perpendicular to RB at B because the line from the centre is perpendicular to the tangent at the point of contact

PA || RB
Hence OB is also perpendicular to PA
\Rightarrow OB perpendicular to PA and RB

From (i) and (ii) we can say that OA and OB can be same line or parallel lines, but we have a common point 0 which implies that $O A$ and $O B$ are same lines

Hence A, O, B lies on the same line, i.e. A, O and B are collinear
Thus AB passes through 0
Hence $A B$ is the diameter
Hence, the line segment joining the point of contact of two parallel tangents to a circle is a diameter of the circle.

7. Question

Prove that the perpendicular at the point of contact of the tangent to a circle passes through the centre.

Answer

Let there be a circle with centre 0 and $B R$ as tangent with the point of contact as B

Let $A B$ be the line perpendicular to $B R$
$\Rightarrow \angle \mathrm{ABR}=90^{\circ}$
As $O B$ is the radius of the circle and we know that radius is perpendicular to the tangent at the point of contact
$O B$ is perpendicular to $B R$
$\Rightarrow \angle O B R=90^{\circ}$
Equation (i) and (ii) implies that
$\Rightarrow \angle \mathrm{ABR}=\angle \mathrm{OBR}$
This is only possible iff A and O lie on the same line or A and O are the same points

Case 1: Suppose A and 0 are on the same line

If A and O are on the same line, then the perpendicular $A B$ to tangent $B R$ has passed through the centre

Case 2: suppose A and 0 are the same points
As 0 itself is the centre of the circle, and A and O are the same points hence the perpendicular to the tangent at the point of contact passes through the circle

In any scenario, the line has to pass through the centre.
Hence, the perpendicular at the point of contact of the tangent to a circle passes through the centre

8. Question

Two concentric circles are of radii 10 cm , and 6 cm Find the length of the chord of the larger circle which touches the smaller circle.

Answer

Let the two concentric circles have the centre 0 and let AB be the chord of an outer circle whose length is D and which will also be tangent to the inner circle at point D because it is given that the chord touches the inner circle.

The radius of inner circle $O D=6 \mathrm{~cm}$ and the radius of outer circle $O B=10 \mathrm{~cm}$

In $\triangle \mathrm{OAB}$
$\Rightarrow O A=O B$...radius of outer circle
Hence $\triangle \mathrm{OAB}$ is isosceles triangle
As radius is perpendicular to tangent $O C$ is perpendicular to $A B$
OC is altitude from apex and in isosceles triangle the altitude is also the median

Hence AD = DB

Hence $\mathrm{AB}=2 \mathrm{DB}$
Consider Δ ODB
$\Rightarrow \angle \mathrm{ODB}=90^{\circ}$...radius perpendicular to tangent
Using Pythagoras theorem
$\Rightarrow \mathrm{OD}^{2}+\mathrm{BD}^{2}=\mathrm{OB}^{2}$
$\Rightarrow 6^{2}+\mathrm{BD}^{2}=10^{2}$
$\Rightarrow 36+\mathrm{BD}^{2}=100$
$\Rightarrow \mathrm{BD}^{2}=100-36$
$\Rightarrow \mathrm{BD}^{2}=64$
$\Rightarrow \mathrm{BD}= \pm 8$
As length cannot be negative
$\Rightarrow \mathrm{BD}=8 \mathrm{~cm}$
$\Rightarrow A B=2 \times 8 \ldots$ since $A B=2 B D$
$\Rightarrow \mathrm{AB}=16 \mathrm{~cm}$

9. Question

(i) A circle is inscribed in a $\triangle \mathrm{ABC}$ having sides BC, CA and $\mathrm{AB} 16 \mathrm{~cm}, 20 \mathrm{~cm}$ and 24 cm respectively as shown in the figure Find AD, BE and CF .
(ii) If $\mathrm{AF}=4 \mathrm{~cm}, \mathrm{BE}=3 \mathrm{~cm}, \mathrm{AC}=11 \mathrm{~cm}$, then find BC .

Answer

i) Tangents drawn from external point are equal

AD and AF are tangents from point A
$\Rightarrow \mathrm{AD}=\mathrm{AF}=\mathrm{a}$

BF and BE are tangents from point B
$\Rightarrow \mathrm{BD}=\mathrm{BE}=\mathrm{b}$
$C D$ and $C E$ are tangents from point C
$\Rightarrow \mathrm{CF}=\mathrm{CE}=\mathrm{c}$

From figure
We have $\mathrm{AC}=\mathrm{AF}+\mathrm{FC}$
$\Rightarrow 20=a+c$.
Also, $\mathrm{AB}=\mathrm{AD}+\mathrm{DB}$
$\Rightarrow 24=\mathrm{a}+\mathrm{b}$
And $C B=C E+E B$
$\Rightarrow 16=\mathrm{c}+\mathrm{b}$
Add (i), (ii) and (iii)
$\Rightarrow 20+24+16=a+c+a+b+c+b$
$\Rightarrow 60=2(a+b+c)$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=30$...(iv)
Substitute (i) in (iv)
$\Rightarrow 20+\mathrm{b}=30$
$\Rightarrow \mathrm{b}=10$
Substitute (ii) in (iv)
$\Rightarrow 24+\mathrm{c}=30$
$\Rightarrow \mathrm{c}=6$

Substitute (iii) in (iv)
$\Rightarrow 16+\mathrm{a}=30$
$\Rightarrow \mathrm{a}=14$
Hence $\mathrm{AD}=\mathrm{a}=14 \mathrm{~cm}, \mathrm{BE}=\mathrm{b}=10 \mathrm{~cm}$ and $\mathrm{CF}=\mathrm{c}=6 \mathrm{~cm}$
ii)

Tangents drawn from external point are equal
CF and CE are tangents from point C
$\Rightarrow \mathrm{CF}=\mathrm{CE}=\mathrm{c}$
From figure
$A C=A F+F C$
$\Rightarrow 11=4+c$
$\Rightarrow \mathrm{c}=7 \mathrm{~cm}$
Hence EC = c $=7 \mathrm{~cm}$
We have $\mathrm{BC}=\mathrm{BE}+\mathrm{EC}$
$\Rightarrow \mathrm{BC}=3+7$
$\Rightarrow \mathrm{BC}=10 \mathrm{~cm}$
Hence $B C$ is 10 cm

10. Question

In the given figure, $A B C D$ is a quadrilateral in which $\angle D=90^{\circ}$. A circle $C(0, r)$ touches the sides $A B, B C, C D$ and $D A$ at P, Q, R, S respectively, If $B C=38 \mathrm{~cm}$, $C D=25 \mathrm{~cm}$ and $B P=27 \mathrm{~cm}$, find the value of r.

Answer
r is the radius which is $\mathrm{OR}=\mathrm{r}$
Consider quadrilateral DROS
$\Rightarrow \angle \mathrm{RDS}=90^{\circ} \ldots$ given
$\Rightarrow \angle \mathrm{DRO}=90^{\circ}$...radius is perpendicular to the tangent
$\Rightarrow \mathrm{DR}=\mathrm{DS}$...tangents drawn from the same point are equal
As the adjacent angles are 90° and adjacent sides are same hence DROS is a square

Hence $\mathrm{OR}=\mathrm{DR}=\mathrm{r} . . .(\mathrm{i})$
As tangents drawn from the same point are equal
$B Q$ and $B P$ are tangents drawn from B
$\Rightarrow \mathrm{BQ}=\mathrm{BP} \Rightarrow \mathrm{BQ}=27 \mathrm{~cm} \ldots \mathrm{BP}$ is 27 cm given
From figure
$\Rightarrow \mathrm{BC}=\mathrm{BQ}+\mathrm{QC}$
$\Rightarrow 38=27+\mathrm{QC} \ldots \mathrm{BC}$ is 38 cm given
$\Rightarrow Q C=11 \mathrm{~cm}$
CQ and CR are tangents drawn from C
$\Rightarrow C Q=C R$...tangents from same point
$\Rightarrow C R=11 \mathrm{~cm}$
Again from figure
$\Rightarrow \mathrm{CD}=\mathrm{CR}+\mathrm{RD}$
$\Rightarrow 25=11+\mathrm{r} \ldots \mathrm{CD}$ is 25 given and $\mathrm{RD}=\mathrm{r}$ from (i)
$\Rightarrow \mathrm{r}=14 \mathrm{~cm}$

Hence r radius is 14 cm

11. Question

In the given figure, 0 is the centre of two concentric circles of radii 4 cm and 6 cm respectively. PA and PB are tangents to the outer and inner circle respectively. If $\mathrm{PA}=10 \mathrm{~cm}$, find the length of PB up to one place of decimal.

Answer

Consider $\triangle \mathrm{POA}$
$\mathrm{OA}=6 \mathrm{~cm}$...radius of the outer circle
$P A=10 \mathrm{~cm}$...given
$\angle \mathrm{OAP}=90^{\circ}$...radius is perpendicular to the tangent
Hence $\triangle \mathrm{POA}$ is right-angled triangle
Using Pythagoras $\Rightarrow \mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
$\Rightarrow 6^{2}+10^{2}=\mathrm{OP}^{2}$
$\Rightarrow 36+100=\mathrm{OP}^{2}$
$\Rightarrow \mathrm{OP}^{2}=136$
Consider \triangle PBO
$\mathrm{OB}=4 \mathrm{~cm}$...radius of inner circle
$\angle O B P=90^{\circ}$...radius is perpendicular to the tangent
Hence $\triangle \mathrm{POB}$ is right-angled triangle
Using Pythagoras $\Rightarrow \mathrm{OB}^{2}+\mathrm{BP}^{2}=\mathrm{OP}^{2}$
Using (i)
$\Rightarrow 4^{2}+\mathrm{BP}^{2}=136$
$\Rightarrow 16+\mathrm{BP}^{2}=136$
$\Rightarrow \mathrm{BP}^{2}=120$
$\Rightarrow \mathrm{BP}=10.9 \mathrm{~cm}$
Hence length of PB is 10.9 cm

12. Question

Show that the tangents at the extremities of any chord of a circle make equal angles with the chord.

Answer

Let the circle with centre 0 and chord $P Q$ with tangents from point A as AP and $A Q$ as shown

We have to prove that $\angle \mathrm{APQ}=\angle \mathrm{AQP}$
Consider $\triangle \mathrm{OPQ}$
$\Rightarrow O P=O Q \ldots$..radius
Hence $\triangle \mathrm{OPQ}$ is an isosceles triangle
$\Rightarrow \angle \mathrm{OPQ}=\angle \mathrm{OQP} . .$. base angles of isosceles triangle ...(a)
As radius OP is perpendicular to tangent AP at point of contact P
$\Rightarrow \angle \mathrm{APO}=90^{\circ}$
From figure $\angle \mathrm{APO}=\angle \mathrm{APQ}+\angle \mathrm{OPQ}$
$\Rightarrow 90^{\circ}=\angle \mathrm{APQ}+\angle \mathrm{OPQ}$
$\Rightarrow \angle A P Q=90^{\circ}-\angle O P Q$
As radius $O Q$ is perpendicular to tangent $A Q$ at point of contact Q
$\Rightarrow \angle \mathrm{AQO}=90^{\circ}$
From figure $\angle \mathrm{AQO}=\angle \mathrm{APQ}+\angle \mathrm{OPQ}$
$\Rightarrow 90^{\circ}=\angle A Q P+\angle O Q P$
$\Rightarrow \angle \mathrm{AQP}=90^{\circ}-\angle \mathrm{OQP}$
Using (a)
$\Rightarrow \angle \mathrm{AQP}=90^{\circ}-\angle \mathrm{OPQ}$

Using (i) and (ii), we can say that
$\Rightarrow \angle \mathrm{APQ}=\angle \mathrm{AQP}$
Hence proved
Hence, the tangents at the extremities of any chord of a circle make equal angles with the chord

13. Question

In the given figure, a circle touches all the four sides of a quadrilateral $A B C D$ whose three sides are $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$, and $C D=4 \mathrm{~cm}$. Find $A D$.

Answer

Mark the touching points as $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown

As tangents from a point are of equal length we have
$\mathrm{AQ}=\mathrm{AR}=\mathrm{a}$
$\mathrm{BR}=\mathrm{BS}=\mathrm{b}$
$\mathrm{CP}=\mathrm{CS}=\mathrm{c}$
$D P=D Q=d$
From figure
$\Rightarrow \mathrm{BC}=\mathrm{BS}+\mathrm{SC}$
$\Rightarrow 7=\mathrm{b}+\mathrm{c}$
$\Rightarrow \mathrm{b}=7-\mathrm{c} \ldots \mathrm{BC}$ is 7 cm given ...(i)

Also,
$\Rightarrow \mathrm{DC}=\mathrm{DP}+\mathrm{PC}$
$\Rightarrow 4=\mathrm{d}+\mathrm{c}$
$\Rightarrow \mathrm{c}=4-\mathrm{d} \ldots \mathrm{DC}$ is 4 cm given
And
$\Rightarrow \mathrm{AB}=\mathrm{AR}+\mathrm{RB}$
$\Rightarrow 6=\mathrm{a}+\mathrm{b} \ldots \mathrm{AB}$ is 6 cm given
$\Rightarrow \mathrm{a}=6-\mathrm{b}$
Using (i)
$\Rightarrow \mathrm{a}=6-(7-\mathrm{c})$
Using (ii)
$\Rightarrow \mathrm{a}=6-(7-(4-\mathrm{d}))$
$\Rightarrow \mathrm{a}=6-(7-4+\mathrm{d})$
$\Rightarrow \mathrm{a}=6-7+4-\mathrm{d}$
$\Rightarrow \mathrm{a}+\mathrm{d}=3$
$\Rightarrow A Q+Q D=3 .$. since $A Q=a$ and $Q D=d$
From figure $A Q+Q D=A D$
$\Rightarrow \mathrm{AD}=3 \mathrm{~cm}$
Hence $A D$ is 3 cm

14. Question

(i) From an external point P, tangents PA and PB are drawn to a circle with centre O. If CD is the tangent to the circle at the point E and $P A=14 \mathrm{~cm}$, find the perimeter of \triangle PCD.
(ii) If $\mathrm{PA}=11 \mathrm{~cm}, \mathrm{PD}=7 \mathrm{~cm}$, then $\mathrm{DE}=$?

Answer
i) From P we have tangents PA and PB

Hence $\mathrm{PA}=\mathrm{PB}$...tangents from same point are equal ...(a)
Point C is on PA
From C we have tangents CA and CE
$\Rightarrow \mathrm{CA}=\mathrm{CE}$...tangents from same point are equal
Point D is on PB
From D we have two tangents DE and DB
$\Rightarrow \mathrm{DE}=\mathrm{DB} . .$. tangents from same point are equal
Consider \triangle PCD
\Rightarrow perimeter of $\triangle \mathrm{PCD}=\mathrm{PC}+\mathrm{CD}+\mathrm{PD}$
From figure $C D=C E+E D$
\Rightarrow perimeter of $\triangle \mathrm{PCD}=\mathrm{PC}+\mathrm{CE}+\mathrm{ED}+\mathrm{PD}$
Using (i) and (ii)
\Rightarrow perimeter of $\triangle P C D=P C+C A+D B+P D$
From figure we have
$P C+C A=P A$ and $D B+P D=P B$
\Rightarrow perimeter of $\triangle \mathrm{PCD}=\mathrm{PA}+\mathrm{PB}$
Using (a)
\Rightarrow perimeter of $\triangle \mathrm{PCD}=\mathrm{PA}+\mathrm{PA}$
\Rightarrow perimeter of $\triangle \mathrm{PCD}=2(\mathrm{PA})$
PA is 14 cm given
\Rightarrow perimeter of $\triangle \mathrm{PCD}=2 \times 14$
\Rightarrow perimeter of $\triangle \mathrm{PCD}=28 \mathrm{~cm}$
ii) $\mathrm{PA}=11 \mathrm{~cm}$...given
using (a)
$\mathrm{PB}=11 \mathrm{~cm}$
From figure
$\Rightarrow \mathrm{PB}=\mathrm{PD}+\mathrm{DB}$
Using (ii)
$\Rightarrow \mathrm{PB}=\mathrm{PD}+\mathrm{DE}$
$\Rightarrow 11=7+\mathrm{DE} . . . \mathrm{PD}$ is 7 cm given
$\Rightarrow \mathrm{DE}=5 \mathrm{~cm}$
Hence DE $=5 \mathrm{~cm}$

15. Question

In two concentric circles, prove that all chords of the outer circle which touch the inner arc of equal length.

Answer

Let 0 be the centre of concentric circles with radius ' r ' and ' R ' ($R>r$) and $A B$ be the chord which touches the inner circle at point D

We have to prove that $A B$ has a fixed length

Consider $\triangle \mathrm{OAB}$
$\mathrm{OA}=\mathrm{OB}$...radius
Hence $\triangle \mathrm{OAB}$ is an isosceles triangle
Radius OD is perpendicular to tangent $A B$ at the point of contact D
Hence OD is the altitude, and we know that the altitude from the apex of the isosceles triangle is also the median
$\Rightarrow \mathrm{AD}=\mathrm{BD}$
Now consider \triangle ODB
$\Rightarrow \angle \mathrm{ODB}=90^{\circ}$...radius is perpendicular to tangent
$\Rightarrow \mathrm{OD}^{2}+\mathrm{BD}^{2}=\mathrm{OB}^{2}$
The radius are $\mathrm{OB}=\mathrm{R}$ and $\mathrm{OD}=\mathrm{r}$
$\Rightarrow \mathrm{r}^{2}+\mathrm{BD}^{2}=\mathrm{R}^{2}$
$\Rightarrow \mathrm{BD}^{2}=\mathrm{R}^{2}-\mathrm{r}^{2}$
$\Rightarrow \mathrm{BD}=\sqrt{ }\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
From figure
$\Rightarrow \mathrm{AB}=\mathrm{AD}+\mathrm{BD}$

Using (a)
$\Rightarrow \mathrm{AB}=\mathrm{BD}+\mathrm{BD}$
$\Rightarrow A B=2 B D$
Using (i)
$\Rightarrow A B=2 \sqrt{ }\left(R^{2}-r^{2}\right)$
Here observe that $A B$ only depends on R and r which are fixed radius of inner circle and outer circle.

And as the radius of both the circle will not change however one may draw the chord the radius will always be fixed.

And hence $A B$ won't change $A B$ is fixed length
Hence proved
Hence, in two concentric circles, all chords of the outer circle which touch the inner circle are of equal length.

Exercise 11.2

1. Question

From a point P, the length of the tangent to a circle is 15 cm , and the distance of P from the centre of the circle is 17 cm . Then what is the radius of the circle?

Answer

Let the centre of circle be 0 so that $\mathrm{PO}=17 \mathrm{~cm}$
Tangent is PB whose length is 15 cm

OB is radius as shown

Now we know that radius is perpendicular to point of contact
Hence OB is perpendicular to PB
Hence $\angle \mathrm{PBO}=90^{\circ}$
Consider \triangle PBO
Using Pythagoras theorem
$\Rightarrow \mathrm{PB}^{2}+\mathrm{OB}^{2}=\mathrm{PO}^{2}$
$\Rightarrow 15^{2}+\mathrm{OB}^{2}=17^{2}$
$\Rightarrow O B^{2}=17^{2}-15^{2}$
$\Rightarrow \mathrm{OB}^{2}=289-225$
$\Rightarrow \mathrm{OB}^{2}=64$
$\Rightarrow \mathrm{OB}= \pm 8$
As length cannot be negative
$\Rightarrow \mathrm{OB}=8 \mathrm{~cm}$
Hence length of radius is 8 cm

2. Question

What is the distance between two parallel tangents of a circle of radius 10 cm ?

Answer

O is the centre of circle and tangents from point A and B are parallel
We know that the line joining point of contacts of two parallel tangents (here AB) passes through the centre

And as a line from the centre is perpendicular to tangent, hence that line(AB) will be the distance between parallel tangents
$A B$ passes through centre 0 hence $A B$ is also the diameter of the circle
Hence the distance between the two parallel tangents will be the diameter of the circle

Radius is given 10 cm
Hence diameter of circle $=2 \times$ radius
Hence $\mathrm{AB}=2 \times 10$
$\Rightarrow \mathrm{AB}=20 \mathrm{~cm}$
Hence distance between parallel tangents is 20 cm

3. Question

If the distance between two parallel tangents of a circle is 10 cm , what is the radius of the circle?

Answer

O is the centre of circle and tangents from point A and B are parallel

We know that the line joining point of contacts of two parallel tangents (here AB) passes through the centre

And as a line from the centre is perpendicular to tangent, hence that line $(A B)$ will be the distance between parallel tangents
$A B$ passes through centre 0 hence $A B$ is also the diameter of the circle
Hence the distance between the two parallel tangents will be the diameter of the circle

The distance $\mathrm{AB}=10 \mathrm{~cm}$ in diameter of the circle
Hence radius will be half of the diameter which is 5 cm

4. Question

The length of the tangent from a point A at a distance of 13 cm from the centre of the circle is 12 cm . What is the radius of the circle?

Answer

Let the centre of circle be 0 so that $\mathrm{A} 0=13 \mathrm{~cm}$
Tangent is AB whose length is 12 cm
OB is radius as shown

Now we know that radius is perpendicular to point of contact
Hence $O B$ is perpendicular to $A B$
Hence $\angle A B O=90^{\circ}$
Consider $\triangle \mathrm{ABO}$
Using Pythagoras theorem
$\Rightarrow \mathrm{AB}^{2}+\mathrm{OB}^{2}=\mathrm{AO}^{2}$
$\Rightarrow 12^{2}+\mathrm{OB}^{2}=13^{2}$
$\Rightarrow \mathrm{OB}^{2}=13^{2}-12^{2}$
$\Rightarrow O B^{2}=169-144$
$\Rightarrow \mathrm{OB}^{2}=25$
$\Rightarrow \mathrm{OB}= \pm 5$
As length cannot be negative
$\Rightarrow \mathrm{OB}=5 \mathrm{~cm}$
Hence length of radius is 5 cm

5 A. Question

In the given figure if $\mathrm{PA}=20 \mathrm{~cm}$, what is the perimeter of $\triangle \mathrm{PQR}$.

Answer

From P we have tangents PA and PB
Hence $\mathrm{PA}=\mathrm{PB}$...tangents from same point are equal ...(a)
Point Q is on PA
From Q we have tangents QA and QC
$\Rightarrow Q A=Q C$...tangents from same point are equal ...(i)
Point R is on PB
From R we have two tangents RC and RB
$\Rightarrow \mathrm{RC}=\mathrm{RB}$... tangents from same point are equal
Consider $\triangle \mathrm{PQR}$
\Rightarrow perimeter of $\triangle P Q R=P Q+Q R+P R$
From figure $\mathrm{QR}=\mathrm{QC}+\mathrm{CR}$
\Rightarrow perimeter of $\triangle P Q R=P Q+Q C+C R+P R$
Using (i) and (ii)
\Rightarrow perimeter of $\triangle P Q R=P Q+Q A+R B+P R$
From figure we have
$P Q+Q A=P A$ and $R B+P R=P B$
\Rightarrow perimeter of $\triangle \mathrm{PQR}=\mathrm{PA}+\mathrm{PB}$
Using (a)
\Rightarrow perimeter of $\triangle \mathrm{PQR}=\mathrm{PA}+\mathrm{PA}$
\Rightarrow perimeter of $\triangle \mathrm{PQR}=2(\mathrm{PA})$
PA is 20 cm given
\Rightarrow perimeter of $\triangle \mathrm{PQR}=2 \times 20$
\Rightarrow perimeter of $\triangle \mathrm{PQR}=40 \mathrm{~cm}$

5 B. Question

In the given figure if $\angle \mathrm{ATO}=40^{\circ}$, find $\angle \mathrm{AOB}$.

Answer

$\angle \mathrm{ATO}=40^{\circ}$...given
From T we have two tangents TA and TB
We know that if we join point T and centre of circle 0 then the line TO divides the angle between tangents
$\Rightarrow \angle \mathrm{ATO}=\angle \mathrm{OTB}=40^{\circ}$
$\angle \mathrm{OAT}=\angle \mathrm{OBT}=90^{\circ} \ldots$ radius is perpendicular to tangent
Consider quadrilateral OATB
$\Rightarrow \angle \mathrm{OAT}+\angle \mathrm{ATB}+\angle \mathrm{TBO}+\angle \mathrm{AOB}=360^{\circ} \ldots$..sum of angles of quadrilateral
From figure $\angle \mathrm{ATB}=\angle \mathrm{ATO}+\angle \mathrm{OTB}$
$\Rightarrow \angle \mathrm{OAT}+\angle \mathrm{ATO}+\angle \mathrm{OTB}+\angle \mathrm{TBO}+\angle \mathrm{AOB}=360^{\circ}$
Using (i) and (ii)
$\Rightarrow 90^{\circ}+40^{\circ}+40^{\circ}+90^{\circ}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow 260^{\circ}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=100^{\circ}$

6. Question

in the figure PA and PB are tangents to the circle. If $\angle \mathrm{APO}=30^{\circ}$, find $\angle \mathrm{AOB}$

Answer

$\angle \mathrm{APO}=30^{\circ} \ldots$ given
From P we have two tangents PA and PB
We know that if we join point P and centre of circle 0 then the line PO divides the angle between tangents
$\Rightarrow \angle \mathrm{APO}=\angle \mathrm{OPB}=30^{\circ}$
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} \ldots$ radius is perpendicular to tangent \ldots (ii)
Consider quadrilateral OAPB
$\Rightarrow \angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{AOB}=360^{\circ} \ldots$ sum of angles of quadrilateral
From figure $\angle \mathrm{APB}=\angle \mathrm{APO}+\angle \mathrm{OPB}$
$\Rightarrow \angle \mathrm{OAP}+\angle \mathrm{APO}+\angle \mathrm{OPB}+\angle \mathrm{PBO}+\angle \mathrm{AOB}=360^{\circ}$
Using (i) and (ii)
$\Rightarrow 90^{\circ}+30^{\circ}+30^{\circ}+90^{\circ}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow 240^{\circ}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=120^{\circ}$
Hence $\angle \mathrm{AOB}$ is 120°

7. Question

$A B$ and $C D$ are two common tangents of two circles which touch each other at C . If D lies on AB and $\mathrm{CD}=5 \mathrm{~cm}$, then what is the length of AB .

Answer

DC and AB are tangents given to both circle
Point D is on AB which means DA and DB are also tangents to both circle
Now from point D, we have two tangents to bigger circle which are DA and DC
$\Rightarrow \mathrm{DA}=\mathrm{DC}$...tangents from a point to a circle are equal
$\Rightarrow D A=5 \mathrm{~cm} . . . \mathrm{DC}$ is 5 cm given...(i)
Also from point D, we have two tangents to smaller circle which are DB and DC
$\Rightarrow \mathrm{DB}=\mathrm{DC} . .$. tangents from a point to a circle are equal
$\Rightarrow \mathrm{DB}=5 \mathrm{~cm} . . \mathrm{DC}$ is 5 cm given..
Now as point D is on $A B$ from the figure we can say that $D A+D B=A B$
$\Rightarrow \mathrm{AB}=\mathrm{DA}+\mathrm{DB}$
Using (i) and (ii)
$\Rightarrow \mathrm{AB}=5+5$
$\Rightarrow \mathrm{AB}=10 \mathrm{~cm}$
Hence the length of tangent $A B$ is 10 cm

8. Question

In the given figure, $\angle \mathrm{BPT}=50^{\circ}$. What is the measure of $\angle \mathrm{OPB}$?

Answer

PT is tangent to circle and OP is radius
$\Rightarrow \angle \mathrm{OPT}=90^{\circ} \ldots$ radius is perpendicular to tangent
From figure
$\Rightarrow \angle \mathrm{OPT}=\angle \mathrm{OPB}+\angle \mathrm{BPT}$
$\Rightarrow 90^{\circ}=\angle \mathrm{OPB}+50^{\circ} \ldots \angle \mathrm{BPT}$ is 50° given
$\Rightarrow \angle \mathrm{OPB}=40^{\circ}$
Hence $\angle O P B$ is 40°

9. Question

In the given figure, a measure of $\angle P O Q$ is.....

Answer
PQ is tangent to circle and OP is radius
$\Rightarrow \angle \mathrm{OPQ}=90^{\circ}$...radius is perpendicular to tangent
$\Rightarrow \angle \mathrm{PQO}=30^{\circ} \ldots$ given
Consider $\triangle \mathrm{OPQ}$
$\Rightarrow \angle \mathrm{OPQ}+\angle \mathrm{PQO}+\angle \mathrm{POQ}=180^{\circ} \ldots$ sum of angles of triangle
$\Rightarrow 90^{\circ}+30^{\circ}+\angle \mathrm{POQ}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle \mathrm{POQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=60^{\circ}$
Hence $\angle \mathrm{POQ}$ is 60°

10. Question

If all sides of a parallelogram touch a circle, then that parallelogram is....

Answer

Consider ABCD as a parallelogram touching the circle at points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown

As ABCD is a parallelogram opposites sides are equal
$\Rightarrow \mathrm{AB}=\mathrm{CD}$
$\Rightarrow \mathrm{AD}=\mathrm{BC}$
AP and AS are tangents from point $\mathrm{A} \Rightarrow \mathrm{AP}=\mathrm{AS}$...tangents from point to a circle are equal...(i)
$B P$ and $B Q$ are tangents from point $B \Rightarrow B P=B Q$...tangents from point to a circle are equal...(ii)
$C Q$ and $C R$ are tangents from point $C \Rightarrow C R=C Q$...tangents from point to a circle are equal...(iii)

DR and DS are tangents from point $\mathrm{D} \Rightarrow \mathrm{DR}=\mathrm{DS}$...tangents from point to a circle are equal...(iv)

Add equation (i) $+(\mathrm{ii})+(\mathrm{iii})+(\mathrm{iv})$
$\Rightarrow \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{DS}+\mathrm{BQ}+\mathrm{CQ}$
From figure $\mathrm{AP}+\mathrm{BP}=\mathrm{AB}, \mathrm{CR}+\mathrm{DR}=\mathrm{CD}, \mathrm{AS}+\mathrm{DS}=\mathrm{AD}$ and $\mathrm{BQ}+\mathrm{CQ}=\mathrm{BC}$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
Using (a) and (b)
$\Rightarrow A B+A B=A D+A D$
$\Rightarrow 2 \mathrm{AB}=2 \mathrm{AD}$
$\Rightarrow \mathrm{AB}=\mathrm{AD}$
$A B$ and $A D$ are adjacent sides of parallelogram which are equal hence parallelogram $A B C D$ is a rhombus

Hence if all sides of a parallelogram touch a circle then that parallelogram is a rhombus

11. Question

From an external point. \qquad tangents can be drawn to a circle.

Answer

We can see that only 2 tangents can be drawn from an external point (here A) to a circle

Every other line either don intersects the circle or intersects at two points hence there can be only 2 tangents from external point to a circle

12. Question

From an external point P two tangents PA and PB have been drawn. IFPA $=$ 6 cm , then what is the length of PB.

Answer

From P we have two tangents PA and PB
The tangents from an external point to a circle are equal
Hence PA = PB
$P A=6 \mathrm{~cm}$ given
Hence PB is also 6 cm

13. Question

How many tangents can be drawn at a point on a circle?

Answer

Only one tangent can be drawn from a point on the circle
Every other line will intersect the circle at two points which won't be a tangent

14. Question

What is the name of the circle touching the three sides of a triangle internally?

Answer

Touching three sides internally of a triangle which means the circle is inside the triangle hence it is called incircle of triangle

15. Question

How many excircles can be drawn to a triangle?

Answer

A circle is lying outside the triangle having one side of the triangle as tangent and also other two sides as tangent when they are extended.

There are three sides of a triangle hence there can be three excircles.

16. Question

What is the relation between the tangents at the extremities of a diameter of a circle?

Answer

The tangents at the extremities of diameter are parallel to each other

Proof:

Consider a circle with centre O and diameter AB having tangents as PA and RB as shown
$\angle \mathrm{OAP}=90^{\circ}$...radius is perpendicular to the tangent at the point of contact $\angle \mathrm{RBO}=90^{\circ} \ldots$ radius is perpendicular to the tangent at the point of contact
$\Rightarrow \angle O A P=\angle R B O$
$\angle O A P$ and $\angle \mathrm{RBO}$ are alternate angles between lines PA and RB having transversal as AB

As alternate angles are equal lines, PA and RB are parallel

17. Question

0 is the centre of a circle. From an external point, P two tangents PM and PN have been drawn which touch the circle at M and N . If $\angle P O N=50^{\circ}$, then find the value of $\angle M P N$.

Answer

From P we have two tangents PM and PN
We know that if we join point P and centre of circle O then the line PO divides the angle between tangents
$\Rightarrow \angle \mathrm{MPO}=\angle \mathrm{NPO}$

Consider \triangle PNO
$\Rightarrow \angle \mathrm{PON}=50^{\circ}$...given
As radius ON is perpendicular to tangent PN
$\Rightarrow \angle \mathrm{PNO}=90^{\circ}$

Now
$\Rightarrow \angle \mathrm{PON}+\angle \mathrm{PNO}+\angle \mathrm{NPO}=180^{\circ} \ldots$...sum of angles of triangle
$\Rightarrow 50^{\circ}+90^{\circ}+\angle \mathrm{NPO}=180^{\circ}$
$\Rightarrow 140^{\circ}+\angle \mathrm{NPO}=180^{\circ}$
$\Rightarrow \angle \mathrm{NPO}=40^{\circ}$

From figure
$\Rightarrow \angle \mathrm{MPN}=\angle \mathrm{MPO}+\angle \mathrm{NPO}$
Using (a)
$\Rightarrow \angle \mathrm{MPN}=\angle \mathrm{NPO}+\angle \mathrm{NPO}$
$\Rightarrow \angle \mathrm{MPN}=2 \angle \mathrm{NPO}$

Using (i)
$\Rightarrow \angle \mathrm{MPN}=2 \times 40^{\circ}$
$\Rightarrow \angle \mathrm{MPN}=80^{\circ}$
Hence $\angle \mathrm{MPN}$ is 80°

18 A. Question

In the given figure, two radii $O P$ and $O Q$ of a circle are mutually perpendicular. What is the degree measure of the angle between tangents drawn to the circle at P and Q ?

Answer

a) we have to find $\angle \mathrm{PTQ}$ which is the angle between the tangents TP and TQ $\angle \mathrm{OPT}=\angle \mathrm{OQT}=90^{\circ} \ldots$ radius is perpendicular to tangent at point of contact
$\angle P O Q=90^{\circ} \ldots$ given
Consider quadrilateral POQT
$\Rightarrow \angle \mathrm{OPT}+\angle \mathrm{OQT}+\angle \mathrm{POQ}+\angle \mathrm{PTQ}=360^{\circ} \ldots$ sum of angles of quadrilateral
$\Rightarrow 90^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow 270^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=90^{\circ}$
Hence angle between tangents is 90°

18 B. Question

Centre of the circle is 0 and $A P$, and $A Q$ is tangent of the circle. If $\angle O P Q=20^{\circ}$, then what is the value of $\angle \mathrm{PAQ}$?

Answer

$\angle O P Q=20^{\circ} \ldots$ given
Radius OP is perpendicular to tangent PA at point of contact A
$\Rightarrow \angle \mathrm{APO}=90^{\circ}$
From figure $\angle \mathrm{APO}=\angle \mathrm{APQ}+\angle \mathrm{OPQ}$
$\Rightarrow 90^{\circ}=\angle \mathrm{APQ}+20^{\circ}$
$\Rightarrow \angle \mathrm{APQ}=70^{\circ}$
Consider $\triangle \mathrm{APQ}$
AP and AQ are tangents to circle from A
Tangents from a point to a circle are equal
$\Rightarrow \mathrm{AP}=\mathrm{AQhence} \triangle \mathrm{APQ}$ is a isosceles triangle
$\Rightarrow \angle \mathrm{APQ}=\angle \mathrm{AQP}$
Using (a)
$\Rightarrow \angle \mathrm{AQP}=70^{\circ}$
Now
$\Rightarrow \angle \mathrm{APQ}+\angle \mathrm{AQP}+\angle \mathrm{PAQ}=180^{\circ} \ldots$..sum of angles of triangle
$\Rightarrow 70^{\circ}+70^{\circ}+\angle \mathrm{PAQ}=180^{\circ}$
$\Rightarrow 140^{\circ}+\angle \mathrm{PAQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PAQ}=40^{\circ}$
Hence $\angle \mathrm{PAQ}$ is 40°

