12. Constructions

Exercise 12

1. Question

Divide a line segment 4.2 cm long internally in the ratio 5:3 Also, write the steps of construction.

Answer

Step1: Draw a line segment AB of length 4.2 cm

Step2: Draw a line AC at any angle below AB

Step3: take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the line AC. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting AC at X_{2}. Draw 8 ($5: 3$ given ratio $5+3=8$) such parts i.e. upto X_{8}

Thus we have made 8 equal parts on line AC
Step4: Join points X_{8} and B

Now we have to divide the segment $A B$ in ratio 5:3, i.e. 5 parts and 3 parts.
Step5: from point, X_{5} draw a line parallel to $B X_{8}$ intersecting $A B$ at D, and we have divided the segment $A B$ in ratio 5:3

2. Question

Divide a line segment of length 3.2 cm in the ratio of 3:5 internally.

Answer

Step1: Draw a line segment $A B$ of length 3.2 cm

Step2: Draw a line AC at any angle below AB

Step3: take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the line AC. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting AC at X_{2}. Draw 8 (3:5 given ratio $3+5=8$) such parts i.e. upto X_{8}

Step4: Join points X_{8} and B

Now we have to divide the segment AB in ratio 3:5, i.e. 3 parts and 5 parts.
Step5: from point, X_{3} draw a line parallel to BX_{8} intersecting AB at D , and we have divided the segment AB in ratio 3:5

3. Question

Draw a line segment of length 5.6 cm and divide it internally in the ratio 5:8. Measure the two parts.

Answer

Step1: Draw a line segment AB of length 5.6 cm

Step2: Draw a line AC at any angle below AB

Step3: take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the line $A C$. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting AC at X_{2}. Draw 13 (5:8 given ratio $5+8=13$) such parts i.e. upto X_{13}

Step4: Join points X_{13} and B

Now we have to divide the segment $A B$ in ratio 5:8, i.e. 5 parts and 8 parts.
Step5: from point, X_{5} draw a line parallel to $B X_{13}$ intersecting $A B$ at D, and we have divided the segment $A B$ in ratio 5:8

And measure the length of parts, i.e. AD and DB which are 2.2 cm and 3.4 cm respectively

4. Question

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.

Answer

Step1: Draw a line segment $A B$ of length 7.6 cm

Step2: Draw a line AC at any angle below AB

Step3: Take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the line AC. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting AC at X_{2}. Draw 13 ($5: 8$ given ratio $5+8=13$) such parts i.e. upto X_{13}

Step4: Join points X_{13} and B

Now we have to divide the segment $A B$ in ratio 5:8, i.e. 5 parts and 8 parts.
Step5: from point, X_{5} draw a line parallel to $B X_{13}$ intersecting $A B$ at D, and we have divided the segment $A B$ in ratio 5:8

And measure the length of parts, i.e. AD and DB which are 2.9 cm and 4.7 cm respectively

5 A. Question

Draw a line segment $\mathrm{AB}=2 \mathrm{~cm}$. Divide it externally in the ratio of
5:3

Answer

5:3
Step1: Draw a line segment AB of length 2 cm

Step2: draw a ray at any angle below AB from A

Now we have to divide the segment $A B$ in ratio 5:3 externally which is greater than 1 . So 5 parts will be the segment $A B$ and 3 parts will be externally added, so we have to divide the ray into $8(5+3=8)$ parts

Step3: Take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the ray drawn in step2. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting ray at X_{2}. Draw 8 such parts, i.e. upto X_{8}

Step4: Join $X_{5} B$. Extend $A B$ and draw a line parallel to $X_{5} B$ which intersects the extended $A B$ at C. Hence C divides externally the segment $A B$

5 B. Question

Draw a line segment $\mathrm{AB}=2 \mathrm{~cm}$. Divide it externally in the ratio of

3:5

Answer

3:5

Step1: Draw a line segment AB of length 2 cm

Step2: draw a ray at any angle below AB from A

Step3: Take any distance in compass and keep the needle of the compass on point A and draw an arc intersecting the ray drawn in step2. Name the intersection point as X_{1}. Keeping the distance same in compass keep the needle on point X_{1} and mark an arc intersecting ray at X_{2}. Draw 5 such parts, i.e. upto X_{5}

Step4: Join $X_{3} B\left(X_{3}\right.$ because the segment $A B$ should be 3 parts). Extend $A B$ and draw a line parallel to $X_{3} B$ which intersects the extended $A B$ at C. Hence C divides externally the segment AB

6. Question

Construct a triangle of scale $\mathrm{AB}=2.3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{AC}=2.9 \mathrm{~cm}$ and then construct a triangle similar to a given $\triangle \mathrm{ABC}$ whose sides are $\frac{2}{3}$ of the corresponding sides of the triangle. Also, write the steps of construction.

Answer

Let the triangle with sides $2.3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 2.9 cm be $\triangle \mathrm{ABC}$
Step1: construct segment AC of 2.9 cm

Step2: take distance 2.3 cm in compass keep the needle of the compass on point A and mark an arc above AC

Step3: take distance 4 cm in compass keep the needle of the compass on point C and mark an arc intersecting the arc drawn in step2. Mark intersection point as B join AB and AC

Step4: draw a ray from point A below AC at any angle

Step5: take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step4 and name that point X_{1}.
Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 3 such parts (greater of 2 and 3 in 2/3), i.e. by repeating this process mark points upto X_{3}

Step6: join X_{3} and C and from X_{2} (because X_{2} is the second point 2 being smaller in $2 / 3$) construct line parallel to $\mathrm{X}_{3} \mathrm{C}$ and mark the intersection point with AC as D

Step7: construct line parallel to BC from point D and mark the intersection point with AB as E thus $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$ is ready

7. Question

Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $2 / 3$ of the corresponding sides of the first triangle.

Answer

Let the triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm be $\triangle \mathrm{ABC}$
Step1: construct segment AC of 6 cm

Step2: take distance 4 cm in compass keep the needle of the compass on point A and mark an arc above AC

Step3: take distance 5 cm in compass keep the needle of the compass on point C and mark an arc intersecting the arc drawn in step2. Mark intersection point as B join AB and AC

Step4: draw a ray from point A below AC at any angle

Step5: take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step4 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 3 such parts (greater of 2 and 3 in 2/3), i.e. by repeating this process mark points upto X_{3}

Step6: join X_{3} and C and from X_{2} (because X_{2} is the second point 2 being smaller in 2/3) construct line parallel to $\mathrm{X}_{3} \mathrm{C}$ and mark the intersection point with AC as D

Step7: construct line parallel to $B C$ from point D and mark the intersection point with AB as E thus $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$ is ready

8. Question

Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$, and $\angle A B C=60^{\circ}$, then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.

Answer

Step1: Construct segment BC of 6 cm

Step2: construct a ray at angle 60° above $B C$ from point B

Step3: take 5 cm in compass because of $\mathrm{AB}=5 \mathrm{~cm}$, keep the needle of the compass on point B and mark an arc intersecting the ray drawn in step 2. Mark the intersection point as A and join A and C hence $\triangle \mathrm{ABC}$ is ready

Step4: draw a ray at any angle from point B below BC

Step5: take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step4 and name that point X_{1}.
Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 4 such parts (greater of 3 and 4 in $3 / 4$), i.e. by repeating this process mark points upto X_{4}

Step6: join X_{4} and C and from X_{3} (because X_{3} is the third point 3 being smaller in $3 / 4$) construct line parallel to $X_{3} \mathrm{C}$ and mark the intersection point with BC as D

$B D$ is three forth of $B C$
Step7: construct line parallel to $A C$ from point D and mark the intersection point with AB as E thus $\triangle \mathrm{BDE}$ which have sides three forth of $\triangle \mathrm{ABC}$ is ready.

9. Question

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 2.2 cm and 2.2 cm . Then construct another triangle whose sides are $5 / 3$ times the corresponding sides of the given triangle.

Answer

Step1: Construct a segment $A B$ of 2.2 cm

Step2: Construct AC of 2.2 cm at 90°. Join B and C to get right-angled triangle ABC

Step3: Draw a ray at any angle from point A below $A B$

Step4: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step3 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 5 such parts (greater of 5 and 3 in 5/3), i.e. by repeating this process mark points upto X_{5}

Step5: Join X_{3} and B (3 being smaller of 5 and 3 in $\frac{5}{3}$ and not X_{5} because the ratio $\frac{5}{3}$ is greater than 1)

Step6: Now extend $A B$ and draw a line parallel to $X_{3} B$ from X_{5} intersecting $A B$ at D

Step7: Extend AC and draw a line parallel to BC from point D intersecting AC at E and $\triangle \mathrm{ADE}$ whose sides are $\frac{5}{3}$ times $\triangle \mathrm{ABC}$ is ready

10. Question

Construct an isosceles triangle whose base is 3.2 cm and altitude 1.7 cm and then construct another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Answer

Step1: Draw the base of triangle $\mathrm{AB}=3.2 \mathrm{~cm}$

Step2: Using scale mark the centre of AB as M and from M using protractor draw a line perpendicular to AB

Step3: Take distance 1.7 cm in compass keep the needle of the compass on point M and mark an arc intersecting ray drawn in step2. Mark the intersection point as C and join AC and BC .

Step4: Draw a ray at any angle below AB from A

The scaling factor is
$\Rightarrow 1 \frac{1}{2}=\frac{2 \times 1+1}{2}=\frac{3}{2}$

Step5: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step4 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 3 such parts (greater of 3 and 2 in $3 / 2$), i.e. by repeating this process mark points upto X_{3}

Step6: Join X_{2} and B (2 being smaller of 3 and 2 in $\frac{3}{2}$ and not X_{3} because the ratio $\frac{3}{2}$ is greater than 1)

Step7: Now extend $A B$ and draw a line parallel to $X_{2} B$ from X_{3} intersecting $A B$ at D

Step8: Extend $A C$ and draw a line parallel to $B C$ from point D intersecting $A C$ at E and $\triangle \mathrm{ADE}$ whose sides are $\frac{3}{2}$ i.e. $11 / 2$ times $\Delta \mathrm{ABC}$ is ready

11. Question

Draw triangle ABC with side $\mathrm{BC}=4 \mathrm{~cm}, \angle B=45^{\circ}, \angle C=30^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides $\triangle A B C$.

Answer

Step1: Draw segment BC of 4 cm

Step2: using protractor draw a ray at angle 45° from point B and a ray at angle 30° from point C . mark intersection of both these rays as point A

Step3: Draw a ray at any angle below BC from B

Step4: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step 3 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 4 such parts (greater of 4 and 3 in $4 / 3$), i.e. by repeating this process mark points upto X_{4}

Step5: Join X_{3} and C (3 being smaller of 4 and 3 in $\frac{4}{3}$ and not X_{4} because the ratio $\frac{4}{3}$ is greater than 1)

Step6: Now extend BC and draw a line parallel to $\mathrm{X}_{3} \mathrm{C}$ from X_{4} intersecting BC at D

Step7: Draw a line parallel to $A C$ from point D intersecting BA at E and $\triangle E B D$ whose sides are $\frac{4}{3}$ times $\triangle \mathrm{ABC}$ is ready

12. Question

Construct a triangle ABC , similar to a given isosceles triangle PQR , with $\mathrm{QR}=$ $2.8 \mathrm{~cm}, \mathrm{PQ}=2.5 \mathrm{~cm}$, such that each of its side $\frac{6}{7}$ th of the corresponding sides of the $\triangle P Q R$. Also draw the circumcircle of $\triangle P B C$.

Answer

Note: we have to construct triangle PBC and not ABC
Step1: Draw PQ = 2.5 cm

As $\triangle \mathrm{PQR}$ is isosceles $\mathrm{QR}=\mathrm{PR}=2.8 \mathrm{~cm}$
Step2: Take distance 2.8 cm in compass, keep the needle on point P and mark an arc above PQ. Keeping the distance in the compass same keep the needle on point Q and mark an arc intersecting the previous arc. Mark intersection point as R

Step3: Join PR and QR and draw a ray from point P below PQ

Step4: Take any distance in compass and keeping the needle of the compass on point P cut an arc on ray constructed in step 3 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 7 such parts (greater of 6 and 7 in 6/7), i.e. by repeating this process mark points upto X_{7}

Step5: join X_{7} and Q and from X_{6} (6 being smaller in $\frac{6}{7}$) draw a line parallel to $X_{7} Q$ intersecting PQ at B

Step6: Draw a line parallel to QR from point B intersecting $P R$ at C and $\triangle P B C$ is ready

Now to construct the circumcircle of $\triangle \mathrm{PBC}$. The centre of circumcircle is the intersection of perpendicular bisectors, and the radius is the distance from the centre to any vertex of the triangle. We will draw perpendicular bisector of PC and BC

Step7: Take any distance approximately greater than half of BC in compass. Keep the needle of the compass on point B and mark arcs to both sides of BC.

Step8: Keeping the distance in the compass same keep the needle on point C and mark arcs intersecting arcs drawn in step7. Draw a line between these intersecting arcs

Step9: Repeat step7 and step8 to draw perpendicular bisector for PC and mark the intersection point of both perpendicular bisectors as 0

Step10: Keep the needle of the compass on point 0 and draw circle taking radius OC. Circumcentre of $\triangle \mathrm{PBC}$ is ready

13. Question

Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=2.6 \mathrm{~cm} \angle \mathrm{~B}=60^{\circ}$ and altitude $\mathrm{CD}=1.8 \mathrm{~cm}$. Construct a $\triangle A Q R$ similar to $\triangle A B C$, such that each side of $\triangle A Q R$ is 1.5 times that of the corresponding side of $\triangle A B C$.

Answer

Step1: Construct AB $=2.6 \mathrm{~cm}$

First, we have to make a line parallel to AB at 1.8 cm
Step2: Mark a point P at 1.8 cm from segment AB above it. Draw a line passing through point P and intersecting AB at T as shown

Step3: Take any distance in compass keep the needle on point T and mark an arc intersecting AB and PT at K and L respectively. Keeping the distance in compass same keep the needle on point P and draw an arc which intersects line TP at J

Step4: Take the distance of arc LK in compass and keep the needle on point J and draw an arc intersecting the arc passing from J at point M . Draw a line through point M and N and is parallel to AB

Step5: Draw the line at 60° from point B intersecting the line drawn in step4 at point C. Join AC and BC

Step6: draw a ray at any angle below BA from point A

Now we have to construct the triangle AQR which is 1.5 times that of the corresponding side of $\triangle \mathrm{ABC}$
$\Rightarrow 1.5=\frac{3}{2}$
The scaling factor is $\frac{3}{2}$
Step7: Take any distance in compass and keeping the needle of the compass on point A and cut an arc on ray constructed in step6 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 3 such parts (greater of 3 and 2 in $3 / 2$), i.e. by repeating this process mark points upto X_{3}

Step8: Join X_{2} and B (2 being smaller of 3 and 2 in $\frac{3}{2}$ and not X_{3} because the ratio $\frac{3}{2}$ is greater than 1)

Step9: Extend $A B$ and draw a line parallel to $X_{2} B$ from X_{3} intersecting $A B$ at R

Step10: Extend $A C$ and draw a line parallel to $B C$ from R intersecting $A C$ at Q and $\triangle A Q R$ is ready

14. Question

Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Answer

Step1: Draw the base of triangle $\mathrm{AB}=8 \mathrm{~cm}$

Step2: Using scale mark the centre of $A B$ as M and from M using protractor draw a line perpendicular to AB

Step3: Take distance 4 cm in compass keep the needle of the compass on point M and mark an arc intersecting ray drawn in step2. Mark the intersection point as C and join AC and BC .

Step4: Draw a ray at any angle below AB from A

The scaling factor is
$\Rightarrow 1 \frac{1}{2}=\frac{2 \times 1+1}{2}=\frac{3}{2}$
Step5: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step4 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 3 such parts (greater of 3 and 2 in $3 / 2$), i.e. by repeating this process mark points upto X_{3}

Step6: Join X_{2} and B (2 being smaller of 3 and 2 in $\frac{3}{2}$ and not X_{3} because the ratio $\frac{3}{2}$ is greater than 1)

Step7: Now extend $A B$ and draw a line parallel to $X_{2} B$ from X_{3} intersecting $A B$ at D

Step8: Extend AC and draw a line parallel to $B C$ from point D intersecting $A C$ at E and $\triangle \mathrm{ADE}$ whose sides are $\frac{3}{2}$ i.e. $11 / 2$ times $\triangle \mathrm{ABC}$ is ready

15. Question

Draw a right triangle in which the sides (other than hypotenuse) are the length 4 cm and 3 cm . Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Answer

Step1: Construct a segment AB of 4 cm

Step2: Construct $A C$ of 3 cm at 90°. Join B and C to get right-angled triangle ABC

Step3: Draw a ray at any angle from point A below $A B$

Step4: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step3 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 5 such parts (greater of 5 and 3 in 5/3), i.e. by repeating this process mark points upto X_{5}

Step5: Join X_{3} and B (3 being smaller of 5 and 3 in $\frac{5}{3}$ and not X_{5} because the ratio $\frac{5}{3}$ is greater than 1)

Step6: Now extend $A B$ and draw a line parallel to $X_{3} B$ from X_{5} intersecting $A B$ at D

Step7: Extend AC and draw a line parallel to BC from point D intersecting AC at E and $\triangle \mathrm{ADE}$ whose sides are $\frac{5}{3}$ times $\triangle \mathrm{ABC}$ is ready

16. Question

Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~A}=105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

Answer

Note: I think one more angle should have been given I am taking $\angle \mathrm{B}=45^{\circ}$
Sum of angles of a triangle is 180°
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 105^{\circ}+45^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=180^{\circ}-150^{\circ}$
$\Rightarrow \angle \mathrm{C}=30^{\circ}$
Step1: Draw segment BC of 7 cm

Step2: using protractor draw a ray at angle 45° from point B and a ray at angle 30° from point C. mark intersection of both these rays as point A

Step3: Draw a ray at any angle below BC from B

Step4: Take any distance in compass and keeping the needle of the compass on point A cut an arc on ray constructed in step3 and name that point X_{1}. Keeping the distance in compass same keep the needle of the compass on point X_{1} and cut an arc on the same ray and mark that point as X_{2}. Draw 4 such parts (greater of 4 and 3 in $4 / 3$), i.e. by repeating this process mark points upto X_{4}

Step5: Join X_{3} and C (3 being smaller of 4 and 3 in $\frac{4}{3}$ and not X_{4} because the ratio $\frac{4}{3}$ is greater than 1)

Step6: Now extend BC and draw a line parallel to $\mathrm{X}_{3} \mathrm{C}$ from X_{4} intersecting BC at D

Step7: Draw a line parallel to $A C$ from point D intersecting $B A$ at E and $\triangle E B D$ whose sides are $\frac{4}{3}$ times $\triangle \mathrm{ABC}$ is ready

17. Question

Draw a circle with radius 4 cm . Mark a point on it. Draw a tangent at P to the circle.

Answer

Step1: Take distance 4 cm in compass and draw a circle with centre 0

Step2: Take a point P on the circle and draw a line segment OA passing through P as shown

Step3: take any distance in compass keep the needle of the compass on point P and mark arcs to the left and right of P intersecting OA at J and K respectively

Step4: Take any distance in compass greater than JP, keep the needle on point J and mark arcs above and below OA.

Step6: Keeping the distance in the compass same as in step4, keep the needle on point K and mark arcs intersecting the arcs drawn in step4 at points R and T. Draw a line passing through R and T which is the tangent to circle at point P

18. Question

Draw a circle of radius 3cm. Draw any diameter of the circle. At the end points of the diameter of the circle, draw tangents to the circle. Any they parallel?

Answer

Step1: Take distance 3 cm in compass and draw a circle with centre 0

Step2: Draw diameter AB. We know that the radius is perpendicular to the tangent. Using protractor draw lines at 90° from point A and B

Take points C and D on tangents as shown

$\Rightarrow \angle \mathrm{BAC}=\angle \mathrm{ABD} . .$. both 90° as the radius is perpendicular to the tangent $\angle \mathrm{BAC}$ and $\angle \mathrm{ABD}$ are alternate angles for the two tangents with transversal as AB.

As alternate angles are equal the tangents are parallel.

19. Question

Draw a circle of radius 5 cm . Take a point P on the circle. Draw the tangent of the circle at point P without using the centre of the circle.

Answer

Step1: Take distance 5 cm in compass and draw a circle and take a point P on circle

Step2: Draw a chord $P Q$ and subtend an angle $\angle P R Q$ on the major arc of the circle

Using the alternate segment theorem, we will draw an \angle QPT congruent to $\angle P R Q$ so that the line passing through PT will be tangent to circle at point PStep3: Take any distance in compass keep the needle on point R and mark an arc intersecting PR and QR at J and K respectively

Step4: Keeping the distance in the compass same as that in step3 keep the needle on P and mark an arc intersecting PQ at S

Step5: Measure the distance of arc JK in compass, keep the needle on point S and mark an arc intersecting the arc drawn in step4 at point T . Draw line passing through point P and T and it is the tangent.

20. Question

Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Answer

Step1: Draw circle of radius 6 cm with centre 0

Step2: Draw segment OP of 10 cm

Step3: Using scale take midpoint of OP as M

Step4: take distance MP in compass and draw arcs intersecting the circle at points T and Q as shown

Step5: Draw lines passing through PT and PQ which are the required tangents and measure length PT and PQ them with scale

21. Question

Draw two concentric circles with centre 0 and radii 2 cm and 4 cm . From a point on the outer circle draw a tangent to the inner circle.

Answer

Step1: Draw a circle of radius 2 cm with centre 0 by taking 2 cm in compass. This is the inner circle

Step2: Now take 4 cm in compass keep the needle on point 0 and draw a circle. This is the outer circle. Take any point P on the outer circle

Now we have to draw a tangent from point P to the inner circle. This is the same as drawing tangents to circle from an external point.

Step4: Join OP and using scale mark the midpoint of OP which will lie on the inner circle

Step5: Take the distance MO in compass keep the needle on point M and mark arcs cutting the inner circle at point Q and T as shown

Step6: Construct a line passing through PQ and PT which are the required tangents

22. Question

Draw a circle of radius 4 cm form a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation.

Answer

Step1: Draw a circle of radius 4 cm with centre 0 by taking 4 cm in compass. This is the inner circle

Step2: Now take 6 cm in compass keep the needle on point 0 and draw a circle. This is the outer circle. Take any point P on the outer circle

Now we have to draw a tangent from point P to the inner circle. This is the same as drawing tangents to circle from an external point.

Step4: Join OP and using scale mark the midpoint of OP as M

Step5: Take the distance MO in compass keep the needle on point M and mark arcs cutting the inner circle at point Q and T as shown

Step6: Construct a line passing through PQ and PT which are the required tangents and measure the lengths PQ and PT using a scale

For verification
Let's join OQ
$\Rightarrow \angle \mathrm{OQP}=90^{\circ} \ldots$ radius OQ is perpendicular to tangent PQ at the point of contact Q

Consider \triangle OQP
$\Rightarrow O Q=4 \mathrm{~cm} . .$. radius of inner circle
$\Rightarrow O P=6 \mathrm{~cm}$...radius of outer circle
Using Pythagoras
$\Rightarrow \mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{PQ}^{2}$
$\Rightarrow 6^{2}=4^{2}+P Q^{2}$
$\Rightarrow 36=16+P Q^{2}$
$\Rightarrow \mathrm{PQ}^{2}=20$
$\Rightarrow P Q=\sqrt{ } 20$
$\Rightarrow P Q=\sqrt{ }(5 \times 4)$
$\Rightarrow \mathrm{PQ}=2 \sqrt{5}$
$\Rightarrow P Q=4.5 \mathrm{~cm}$
Hence verified

23. Question

Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .

Answer

Step1: Take 3 cm in compass and draw a circle with centre 0

Step2: Draw a straight line passing through the centre and mark points P and Q on both sides of 0 at 7 cm each.

Step3: Using scale mark the midpoint of OP as M. Keep the needle on M take distance MO in compass and mark arcs intersecting the circle at point Q and T as shown

Step4: Join points PT and PQ thus PT and PQ are required tangents from point P

Step5: Similarly repeat steps step3 and step4 for tangents from point Q. Take midpoint as N then centre as N and radius NO cut arcs on the circle at K , and L. QK and QL will be the required tangents from point Q

24. Question

Draw a circle of radius 5 cm . Take a point P outside the circle. Construct a pair of tangents from P to the circle without using its centre.

Answer

Step1: Take distance 5 cm in compass and draw a circle. Take any point P outside the circle and draw a straight line which cuts the circle at A and B where AB is the chord

Step2: Take distance PA in compass and keep the needle on point P and mark arc to the left of P intersecting the line at C. Hence we have $P A=P C$

Now we have to draw perpendicular bisector of BC
Step3: Take any distance in compass approximately greater than half of CB and keeping the needle on point C mark arcs above and below CB

Step4: Keeping the distance in the compass same as that of in step3 keep the needle on B and mark arcs intersecting the arcs drawn in step3. Join these intersection points we get the perpendicular bisector of $C B$ at M

Step5: Take distance MB in compass keep the needle on point M and draw a semicircle as shown

Step6: Using protractor draw a line from P perpendicular to CB intersecting the semicircle drawn in step5 at L

Step7: Take distance PL in compass, keep the needle on P and mark arc intersecting the circle at Q and T. Join PT and PQ thus PT and PQ are the required triangles

25. Question

Draw a circle of radius 4 cm . Draw two tangents to the circle such that they include an angle of 135°.

Answer

Consider a rough figure as shown DB and DC are tangents centre of circle is A

In quadrilateral ABDC
$\angle \mathrm{BDC}=135^{\circ} \ldots$ given
$\angle \mathrm{DBA}=90^{\circ} \ldots$ radius is perpendicular to tangent at point of contact
$\angle \mathrm{DCA}=90^{\circ} \ldots$ radius is perpendicular to tangent at point of contact
As the sum of angles of a quadrilateral is 360°
$\Rightarrow \angle \mathrm{BDC}+\angle \mathrm{DBA}+\angle \mathrm{DCA}+\angle \mathrm{BAC}=360^{\circ}$
$\Rightarrow 135^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{BAC}=360^{\circ}$
$\Rightarrow 315^{\circ}+\angle \mathrm{BAC}=360^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=45^{\circ}$
Now let us construct
Step1: Construct a circle of radius 4 cm mark the centre as A and draw radius AB

Step2: Using protractor draw the line at 45° to AB from point A and mark its intersection point with a circle as C join AC

Step3: Using protractor draw a line perpendicular to $A B$ from point B because tangent is perpendicular to the radius. Thus this line is tangent to circle at point B

Step4: Using protractor draw a line perpendicular to AC from point C and mark the intersection point with a line drawn in step3 as D

Hence tangents DB and DC are ready at angle 135°

26. Question

Draw a circle of radius 5 cm . Draw any line through the centre of the circle. Draw a tangent to the circle making an angle of 45° with the line. What is the length of the tangent?

Answer

Consider a rough figure as shown CB is tangent and centre of the circle is A . CA is a line passing through the centre

$\angle B C A=45^{\circ} \ldots$ given
$\angle C B A=90^{\circ}$...radius is perpendicular to the tangent
Consider $\triangle \mathrm{ABC}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ} \ldots$ sum of angles of triangle
$\Rightarrow 90^{\circ}+45^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow 135^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=45^{\circ}$
Now let us construct

Step1: Take distance 5 cm in compass and draw a circle with centre A and draw a line passing through A

Step2: Using protractor draw the line at 45° to the line drawn in step1 from point A intersecting circle at B

Step3: Using protractor draw a line perpendicular to $A B$ from point B because the radius is perpendicular to the tangent. Mark the intersection of this line with a line passing through the centre as C hence CB is the required tangent at 45°

Measure the length CB with a scale which is the length of the tangent

$C B=5 \mathrm{~cm}$ length of tangent is 5 cm

27. Question

Draw a pair of tangents to a circle of radius 2.3 cm which is inclined to each other at an angle of 60°.

Answer

Consider a rough figure as shown DB and DC are tangents centre of circle is A

In quadrilateral ABDC
$\angle B D C=60^{\circ}$...given
$\angle \mathrm{DBA}=90^{\circ}$...radius is perpendicular to tangent at point of contact
$\angle D C A=90^{\circ} \ldots$ radius is perpendicular to tangent at point of contact
As the sum of angles of a quadrilateral is 360°
$\Rightarrow \angle \mathrm{BDC}+\angle \mathrm{DBA}+\angle \mathrm{DCA}+\angle \mathrm{BAC}=360^{\circ}$
$\Rightarrow 60^{\circ}+90^{\circ}+90^{\circ}+\angle B A C=360^{\circ}$
$\Rightarrow 240^{\circ}+\angle \mathrm{BAC}=360^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=120^{\circ}$
Now let us construct
Step1: Construct a circle of radius 2.3 cm mark the centre as A and draw radius AB

Step2: Using protractor draw the line at 120° to AB from point A and mark its intersection point with a circle as C join AC

Step3: Using protractor draw a line perpendicular to $A B$ from point B because tangent is perpendicular to the radius. Thus this line is tangent to circle at point B

Step4: Using protractor draw a line perpendicular to $A C$ from point C and mark the intersection point with a line drawn in step3 as D

Hence tangents DB and DC are ready at angle 60°

