13. Areas Related to Circles

Exercise 13

1. Question

The circumference of a circle exceeds its diameter by 16.8 cm . Find the circumference of the circle.

Answer

We know that, circumference of a circle, $\mathrm{C}=2 \pi r$
and diameter, $\mathrm{D}=2 \mathrm{r}$
According to the question,
$\mathrm{C}=\mathrm{D}+16.8$
$\Rightarrow 2 \pi r=2 r+16.8$
$\Rightarrow 2 \pi r-2 r=16.8$
$\Rightarrow 2 \mathrm{r}(\mathrm{\pi}-1)=16.8$
$\Rightarrow \mathrm{r}\left(\frac{22}{7}-1\right)=\frac{16.8}{2}\left[\because \pi=\frac{22}{7}\right]$
$\Rightarrow r\left(\frac{22-7}{7}\right)=8.4$
$\Rightarrow 15 \mathrm{r}=8.4 \times 7$
$\Rightarrow \mathrm{r}=3.92 \mathrm{~cm}$
\therefore Circumference of circle $=2 \pi r$
$=2 \times \frac{22}{7} \times 3.92$
$=24.64 \mathrm{~cm}$

2. Question

A sector is cut from a circle of radius 42 cm . The central angle of the sector is 150°. Find the length of the arc.

Given: Radius of a circle, $r=42 \mathrm{~cm}$
Central Angle of the sector, $\theta=150^{\circ}$
To find: Length of the arc i.e. AB
Now,
Length of an arc of a sector of angle $\theta=\frac{\theta}{360} \times 2 \pi r$
\Rightarrow Length of an arc of a sector of angle $\theta=\frac{150}{360} \times 2 \times \frac{22}{7} \times 42$
$\left[\because \pi=\frac{22}{7}\right]$
\Rightarrow Length of an arc of a sector of angle $\theta=\frac{5}{12} \times 2 \times 22 \times 6$
\Rightarrow Length of an arc of a sector of angle $\theta=5 \times 22=110 \mathrm{~cm}$

3. Question

A pendulum swings through an angle 60° and describes an arc 8.8 cm in length. Find the length of the pendulum $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$

Answer

Pendulum Swing

Given: Length of the $\operatorname{arc}=8.8 \mathrm{~cm}$
Central Angle of the sector, $\theta=60^{\circ}$
To find: Radius of a circle
Now,

Length of an arc of a sector of angle $\theta=\frac{\theta}{360} \times 2 \pi r$
$\Rightarrow 8.8=\frac{60}{360} \times 2 \times \frac{22}{7} \times \mathrm{r}\left[\because \pi=\frac{22}{7}\right]$
$\Rightarrow 8.8=\frac{1}{6} \times 2 \times \frac{22}{7} \times r$
$\Rightarrow 8.8=\frac{1}{3} \times \frac{22}{7} \times r$
$\Rightarrow r=\frac{8.8 \times 21}{22}$
$\Rightarrow \mathrm{r}=8.4 \mathrm{~cm}$

4. Question

A wire made of silver is looped in the form of circular ear ring of radius 5.6 cm . It is rebent into a square form. Determine the length of the side of the square.

Answer

Given: Radius of the circle $=5.6 \mathrm{~cm}$
So, the circumference of the circle $=2 \pi r$
$=2 \times \frac{22}{7} \times 5.6$
$=35.2 \mathrm{~cm}$
Now,
The perimeter of square = Circumference of a circle
$=35.2 \mathrm{~cm}$
Therefore,
Side of a square $=\frac{\text { The perimeter of a square }}{4}$
$=\frac{35.2}{4}$
$=8.8 \mathrm{~cm}$
Hence, the side of a square $=8.8 \mathrm{~cm}$

5. Question

An arc of a circle of radius 42 cm has a length 35.2 cm . Find the angle subtended by the arc at the centre of the circle.

Answer

Given: Length of the $\operatorname{arc}=35.2 \mathrm{~cm}$
Radius of a circle, $\mathrm{r}=42 \mathrm{~cm}$
To find: Central Angle of the sector
Now,
Length of an arc of a sector of angle $\theta=\frac{\theta}{360} \times 2 \pi r$
$\Rightarrow 35.2=\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 42$
$\left[\because \pi=\frac{22}{7}\right]$
$\Rightarrow 35.2=\frac{\theta}{360} \times 2 \times 22 \times 6$
$\Rightarrow \theta=\frac{35.2 \times 360}{12 \times 22}$
$\Rightarrow \theta=48^{\circ}$
Hence, the angle subtended by the arc at the centre of the circle is 48°

6. Question

A car has wheels which are 80 cm in diameter. How many complete revolutions does each wheel make in 10 minutes when the car is moving at a speed of 80 km per hour?

Answer

Circumference $=2 \pi r$

Diameter of a car wheel $=80 \mathrm{~cm}$
\therefore radius $=\mathrm{r}=\frac{80}{2}=40 \mathrm{~cm}$
Distance covered in 1 revolution = Circumference of wheel
$=2 \pi r$
$=2 \times \pi \times 40$
$=80 \pi \mathrm{~cm}$
Now, we find total distance covered
We know that,
Speed $=\frac{\text { Distance }}{\text { Time }}$
Here, Speed $=80 \mathrm{~km} / \mathrm{hr}$
Time $=10$ minutes
$=\frac{10}{60}$ hour $=\frac{1}{6}$ hour
Putting a value in the formula, we get
$80=\frac{\text { Distance }}{\frac{1}{6}}$
\Rightarrow Distance $=\frac{80}{6}$
\Rightarrow Distance $=13.33 \mathrm{~km}$
$=13.33 \times 1000 \mathrm{~m}$
$=1333.3 \mathrm{~m}$
$=1333.3 \times 100 \mathrm{~cm}$
$=1333333.3 \mathrm{~cm}$

Now,
Number of revolutions $=\frac{\text { Total distance }}{\text { Distance covered in } 1 \text { revolution }}$
$=\frac{1333333.3}{80 \pi}$
$=\frac{1333333.3 \times 7}{80 \times 22}$
= 5303.02
= 5303 (approx.)
Hence, number of revolutions $=5303$

7. Question

Rajeev walks around a circular park of area 88704 sq. m How long will he take to walk 10 rounds at the speed of 4.5 km per hour?

Answer

Area of circular park $=88704 \mathrm{~m}^{2}$
and Area of circle $=\pi r^{2}=88704$
$\Rightarrow \frac{22}{7} \mathrm{r}^{2}=88704$
$\Rightarrow \mathrm{r}^{2}=\frac{88704 \times 7}{22}$
$\Rightarrow r^{2}=28224$
$\Rightarrow r=\sqrt{ } 28224$
$\Rightarrow \mathrm{r}=168 \mathrm{~m}$
[taking positive root, because radius can't be negative]
Perimeter of circle $=2 \pi r$
$=2 \times \frac{22}{7} \times 168$
$=1056 \mathrm{~m}$
$=1.056 \mathrm{~km}$
So, total distance after 10 rounds $=1.056 \times 10=10.56 \mathrm{~km}$

Now, we know that
Speed $=\frac{\text { Distance }}{\text { Time }}$
Here, Speed $=4.5 \mathrm{~km} / \mathrm{hr}$
Distance $=10.56 \mathrm{~km}$
Putting value in formula, we get
$4.5=\frac{10.56}{\text { Time }}$
\Rightarrow Time $=\frac{10.56}{4.5}$
$=2.34$ hour
$=2$ hours 20 minutes 24 seconds
Hence, Rajeev will take 2 hours 20 minutes and 24 seconds to walk 10 rounds.

8. Question

The diameter of the wheels of a bus is 140 cm . How many revolutions per minute must a wheel make to move at a speed of 66 km per hour?

Answer

Circumference $=2 \pi r$
Diameter of a bus wheel $=140 \mathrm{~cm}$
\therefore radius $=\mathrm{r}=\frac{140}{2}=70 \mathrm{~cm}$
Distance covered in 1 revolution = Circumference of wheel
$=2 \pi r$
$=2 \times \pi \times 70$
$=140 \pi \mathrm{~cm}$
Now, we find total distance covered

We know that,
Speed $=\frac{\text { Distance }}{\text { Time }}$
Here, Speed $=66 \mathrm{~km} / \mathrm{hr}$
Time = 1 minutes
$=\frac{1}{60}$ hour $=\frac{1}{60}$ hour
Putting a value in the formula, we get
$66=\frac{\text { Distance }}{\frac{1}{60}}$
\Rightarrow Distance $=\frac{66}{60}$
\Rightarrow Distance $=1.1 \mathrm{~km}$
$=1.1 \times 1000 \mathrm{~m}$
$=1100 \mathrm{~m}$
$=1100 \times 100 \mathrm{~cm}$
$=110000 \mathrm{~cm}$
Now,
Number of revolutions $=\frac{\text { Total distance }}{\text { Distance covered in } 1 \text { revolution }}$
$=\frac{110000}{140 \pi}$
$=\frac{110000 \times 7}{140 \times 22}$
Number of revolutions $=250$

9. Question

Find the area of the sector of a circle with radius 4 cm and angle 30°. Also, find the area of the corresponding major sector [use $\pi=3.14$].

Answer

Given: Radius of circle $=4 \mathrm{~cm}$
And Central angle, $\theta=30^{\circ}$
To find: Area of the sector
Now, Area of the sector of angle $\theta=\frac{\theta}{360} \times \pi r^{2}$
\Rightarrow Area of the sector of angle $\theta=\frac{30}{360} \times 3.14 \times(4)^{2}[\because \pi=3.14]$
\Rightarrow Area of the sector of angle $\theta=\frac{1}{12} \times 3.14 \times 4 \times 4$
$=\frac{3.14 \times 4}{3}$
$=4.19 \mathrm{~cm}^{2}$
Now, we have to find the area of major sector (unshaded region)
$=$ Area of circle - Area of sector OAPBO
$=\pi r^{2}-4.19$
$=\left\{3.14 \times(4)^{2}\right\}-4.19$
$=\{3.14 \times 16\}-4.19$
$=50.24-4.19$
$=46.05 \mathrm{~cm}^{2}$
Hence, the area of sector $=4.19 \mathrm{~cm}^{2}$ and area of the major sector $=46.05 \mathrm{~cm}^{2}$

10. Question

Find the area of a quadrant of a circle whose circumference is 22 cm .

Answer

Given: Circumference of a circle $=22 \mathrm{~cm}$
$\Rightarrow 2 \pi r=22$
$\Rightarrow 2 \times \frac{22}{7} \times r=22$
$\Rightarrow 2 \mathrm{r}=7$
$\Rightarrow \mathrm{r}=\frac{7}{2} \mathrm{~cm}$
Now, we have to find the area of Quadrant
Area of Quadrant $=\frac{1}{4} \pi r^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$
$=\frac{11 \times 7}{8}$
$=9.625 \mathrm{~cm}^{2}$

11. Question

The minute hand of a clock is 12 cm long. Find the area of the face of the clock described by the minute hand in 35 minutes.

Answer

Given: Length of minute hand $=12 \mathrm{~cm}$
Let us look at a clock:

So, minute hand covers a total of 60 minutes in one round of the clock.
So, 60 minutes $=360^{\circ}$
1 minute $=\frac{360^{\circ}}{60}=6^{\circ}$

35 minutes $=(35 \times 6)^{\circ}=210^{\circ}$
So in 35 minutes, minute hand subtends an angle of 210°.
Now Area of segment $=\frac{\theta}{360^{\circ}} \pi r^{2}$
Where θ is the angle subtended.
Therefore, the area covered by minute hand $=\frac{210^{\circ}}{360^{\circ}} \pi r^{2}$
The radius of the circle $=$ Length of the minute hand $=12 \mathrm{~cm}$
The area covered by minute hand $=\frac{7}{12} \times \frac{22}{7} \times 12^{2}$
The area covered by minute hand $=(22 \times 12) \mathrm{cm}^{2}$
Area $=264 \mathrm{~cm}^{2}$
Hence, The area covered by minute hand in 35 minutes is $264 \mathrm{~cm}^{2}$.

12. Question

The perimeter of a sector of a circle of radius 5.6 cm is 27.2 cm . Find the area of the sector.

Answer

Let $O A B$ be a the given sector with perimeter 27.2 cm
Let $\operatorname{arc} \mathrm{AB}=1$
Perimeter of sector $\mathrm{OAB}=27.2 \mathrm{~cm}$
$\Rightarrow \mathrm{OA}+\mathrm{AB}+\mathrm{OB}=27.2$
$\Rightarrow 5.6+1+5.6=27.2$
$\Rightarrow \mathrm{l}=27.2-11.2$
$\Rightarrow \mathrm{l}=16 \mathrm{~cm}$

Now, we know that
Length of the arc $=\frac{\theta}{360} \times 2 \pi r$
$\Rightarrow 16=\frac{\theta}{360} \times 2 \pi \mathrm{r}$
$\Rightarrow \frac{16}{2 \pi r}=\frac{\theta}{360} \ldots$ (i)
Area of sector $\mathrm{OAB}=\frac{\theta}{360} \times \pi \mathrm{r}^{2}$
$=\frac{16}{2 \pi r} \times \pi r^{2}[$ from (i)]
$=8 \mathrm{r}$
$=8 \times 5.6$
$=44.8 \mathrm{~cm}^{2}$

13. Question

A chord of a circle of radius 14 cm makes a right angle at the centre. Find the areas of the minor and the major segments of the circle.

Answer

Given: Radius of circle $=14 \mathrm{~cm}$
and $\angle \mathrm{AOB}=90^{\circ}$
\therefore Area of minor sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{90}{360} \times \frac{22}{7} \times 14 \times 14$
$=\frac{1}{4} \times 22 \times 2 \times 14$
$=154 \mathrm{~cm}^{2}$
and Area of major sector $=$ Area of circle - Area of minor sector
$=\pi r^{2}-154$
$=\frac{22}{7} \times 14 \times 14-154$
$=22 \times 2 \times 14-154$
$=462 \mathrm{~cm}^{2}$

14. Question

The area of a circle is 78.5 sq.cm. Calculate the circumference of the circle [Taken $\pi=3.14$].

Answer

Given: Area of circle $=78.5 \mathrm{~cm}^{2}$
$\pi r^{2}=78.5$
$\Rightarrow 3.14 \mathrm{r}^{2}=78.5$
$\Rightarrow \mathrm{r}^{2}=\frac{78.5}{3.14}$
$\Rightarrow r^{2}=25$
$\Rightarrow \mathrm{r}= \pm 5$
$\Rightarrow \mathrm{r}=5 \mathrm{~cm}$
[taking positive root, because radius can't be negative]
Now, circumference of circle $=2 \pi r$
$=2 \times 3.14 \times 5$
$=31.4 \mathrm{~cm}$

15. Question

Find the area of the shaded region in the given figure if radii of the two concentric circles with centre 0 are 7 cm and 14 cm respectively and $\angle A O C=40^{\circ}$.

Answer

Given: Radius of the small circle, $\mathrm{OB}=7 \mathrm{~cm}$
Radius of second circle, $O A=14 \mathrm{~cm}$
and $\angle \mathrm{AOC}=40^{\circ}$
\therefore Area of minor sector $O B D=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{40}{360} \times \frac{22}{7} \times 7 \times 7$
$=\frac{1}{9} \times 22 \times 7$
$=17.11 \mathrm{~cm}^{2}$
\therefore Area of minor sector $O A C=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{40}{360} \times \frac{22}{7} \times 14 \times 14$
$=\frac{1}{9} \times 22 \times 2 \times 14$
$=68.4 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of sector OAC

- Area of sector OBD
$=68.4-17.1$
$=51.3 \mathrm{~cm}^{2}$

16. Question

A circular park, 42 m is a diameter, has a path 3.5 wide running round it on the outside. Find the cost of gravelling the path at Rs. 4 per m^{2}

Answer

The diameter of a circular park $=42 \mathrm{~m}$
\Rightarrow the radius of a circular park, $r=\frac{42}{2}=21 \mathrm{~m}$
Width of path $=3.5 \mathrm{~m}$
\Rightarrow radius of the park with path, $\mathrm{R}=21+3.5=24.5 \mathrm{~m}$
\therefore Area of path $=$ Area of outer circle - Area of the inner circle
$=\pi R^{2}-\pi r^{2}$
$=\pi\left(R^{2}-r^{2}\right)$
$=\pi(R-r)(R+r)$
$=\frac{22}{7}(24.5-21)(24.5+21)$
$=\frac{22}{7}(3.5)(45.5)$
$=22 \times 0.5 \times 45.5$
$=500.5 \mathrm{~m}^{2}$
Now, the cost of gravelling the path of $1 \mathrm{~m}^{2}=$ Rs 4
the cost of gravelling the path of $500.5 \mathrm{~m}^{2}=$ Rs 4×500.5
= Rs 2002

17. Question

The diameter of a circular pond is 17.5 m . It is surrounded by a path of width 3.5 m . Find the area of the path.

Answer

The diameter of a circular park $=17.5 \mathrm{~m}$
\Rightarrow the radius of a circular park, $r=\frac{17.5}{2}$
Width of path $=3.5 \mathrm{~m}$
\Rightarrow radius of the park with path, $\mathrm{R}=\frac{17.5}{2}+3.5=\frac{17.5+7}{2}=12.25 \mathrm{~m}$
\therefore Area of path $=$ Area of outer circle - Area of inner circle
$=\pi R^{2}-\pi r^{2}$
$=\pi\left(R^{2}-r^{2}\right)$
$=\pi(R-r)(R+r)$
$=\frac{22}{7}\left(\frac{24.5}{2}-\frac{17.5}{2}\right)\left(\frac{24.5}{2}+\frac{17.5}{2}\right)$
$=\frac{22}{7}\left(\frac{24.5-17.5}{2}\right)\left(\frac{24.5+17.5}{2}\right)$
$=\frac{22}{7} \times \frac{7}{2} \times \frac{42}{2}$
$=231 \mathrm{~m}^{2}$

18. Question

The area enclosed between two concentric circles is $770 \mathrm{~cm}^{2}$. If the radius of the outer circle is 21 cm , find the radius of the inner circle.

Answer

Given: Let the radius of the inner circle $=r$
Area enclosed between two concentric circles $=770 \mathrm{~cm}^{2}$
and Radius of the outer circle, $\mathrm{R}=21 \mathrm{~cm}$
\therefore The area enclosed between two concentric circles
= Area of the Outer circle - Area of the inner circle
$770=\pi R^{2}-\pi r^{2}$
$770=\pi\left(21^{2}-r^{2}\right)$
$770=\frac{22}{7}\left(441-r^{2}\right)$
$\frac{770 \times 7}{22}=441-r^{2}$
$245=441-r^{2}$
$\Rightarrow r^{2}=441-245$
$\Rightarrow r^{2}=196$
$\Rightarrow r=\sqrt{196}$
$\Rightarrow \mathrm{r}= \pm 14$
$\Rightarrow r=14 \mathrm{~cm}$ [taking positive square root, because radius can't be negative]
Hence, the radius of the inner circle is 14 cm .

19. Question

The difference between circumference and diameter of circular plot is 105 m . Find the area of the circular plot.

Answer

Given: Difference between circumference and diameter of circular plot = 105m

We know that,
The circumference of a circle $=2 \pi r$
and diameter of circle $=2 r$
According to the question
$2 \pi r-2 r=105$
$\Rightarrow 2 \mathrm{r}(\mathrm{\pi}-1)=105$
$\Rightarrow \mathrm{r}=\frac{105}{2(\pi-1)}$
Now, Area of circular path $=\pi r^{2}$
$=\pi\left(\frac{105}{2(\pi-1)}\right)^{2}$
$=\frac{22 \times 105 \times 105}{7 \times 4\left(\frac{22}{7}-1\right)^{2}}$
$=\frac{11 \times 15 \times 105}{2 \times\left(\frac{22-7}{7}\right)^{2}}$
$=\frac{11 \times 15 \times 105 \times 49}{2 \times 15 \times 15}$
$=\frac{11 \times 7 \times 49}{2}$
$=1886.5 \mathrm{~m}^{2}$

20. Question

The cost of fencing a circular field at the rate of Rs. 24 per metre is Rs. 5280. The field is to be ploughed at the rate of Rs. 0.50 per m^{2}. Find the cost of ploughing the field $\left[\right.$ Take $\left.\pi=\frac{22}{7}\right]$

Answer

Total cost of fencing a circular field = Rs 5280
Cost of fencing per meter $=$ Rs 24
So,
The total length of the field $=\frac{\text { The total cost of fencing }}{\text { cost of fencing per meter }}$
$=\frac{5280}{24}$
$=220 \mathrm{~m}$
Here, the total length of the field would be the circumference of the circular field.
\therefore Total length $=$ Circumference of circular field
$\Rightarrow 220=2 \pi r$
$\Rightarrow \frac{220}{2 \pi}=r$
$\Rightarrow \mathrm{r}=\frac{110}{\pi}$
Now, Area of the field $=\pi r^{2}$
$=\pi\left(\frac{110}{\pi}\right)^{2}$
$=\frac{110 \times 110 \times 7}{22}$
$=3850 \mathrm{~m}^{2}$
Now,
Cost of ploughing $1 \mathrm{~m}^{2}$ of the field $=$ Rs 0.50
Cost of ploughing $3850 \mathrm{~m}^{2}$ of the field $=$ Rs 0.50×3850
= Rs 1925
Hence, the cost of ploughing the field is Rs 1925

21. Question

A field is in the form of a circle. The cost of ploughing the field at Rs. 1.50 per m^{2} is Rs. 5775 . Find the cost of fencing the field at Rs. 8.50 per metre.

Answer

Cost of ploughing $1 \mathrm{~m}^{2}$ of the field $=$ Rs 1.50
The total cost of ploughing the field = Rs 5775
So,
Area of the field $=\frac{\text { The total cost of ploughing the field }}{\text { Cost of ploughing per square. meter }}$
$=\frac{5775}{1.50}$
$=3850 \mathrm{~m}^{2}$
Given: A field is in the form of a circle.
Let the radius of the field $=r$
\therefore Area of the field $=\pi r^{2}$
$\Rightarrow 3850=\pi r^{2}$
$\Rightarrow 3850=\frac{22}{7} \mathrm{r}^{2}$
$\Rightarrow r^{2}=\frac{3850 \times 7}{22}$
$\Rightarrow r^{2}=1225$
$\Rightarrow r=\sqrt{1225}$
$\Rightarrow \mathrm{r}=\sqrt{ }(5 \times 5 \times 7 \times 7)$
$\Rightarrow \mathrm{r}=35 \mathrm{~m}$
Now,
Circumference $=2 \pi r$
$=2 \times \frac{22}{7} \times 35$
$=2 \times 22 \times 5$
$=220 \mathrm{~m}$
Cost of fencing 1 m of the field $=$ Rs 8.50
Cost of fencing 220 of the field $=$ Rs 8.50×220
= Rs 1870

22. Question

A chord of a circle of radius 10 cm subtends a right angle at the centre. Use $\pi=3.14$ and find:
(i) area of the minor sector
(ii)area of the major sector

Answer

Given: Radius of the circle $=\mathrm{OA}=\mathrm{OB}=10 \mathrm{~cm}$
and $\theta=90^{\circ}$
(i) Area of the minor sector
"Area of minor sector " $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{90}{360} \times 3.14 \times\left(10^{2}\right)$
$=\frac{1}{4} \times 3.14 \times 100$
$=3.14 \times 25$
$=78.5 \mathrm{~cm}^{2}$

(ii) Area of major sector

Area of major sector $=$ Area of circle - Area of minor sector $=\pi r^{2}-78.5$
$=3.14 \times(10)^{2}-78.5$
$=314-78.5$
$=235.5 \mathrm{~cm}^{2}$

23. Question

In a circle of radius 21 cm , and arc subtends an angle of 60° at the centre. Find
(i) length of arc
(ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord of the arc.

Answer

Given: Radius of the circle $=O A=O B=21 \mathrm{~cm}$
and $\theta=60^{\circ}$
(i) Length of the arc

Length of the $\operatorname{arc} A P B=\frac{\theta}{360} \times 2 \pi r$
$=\frac{60}{360} \times 2 \times \frac{22}{7} \times 21$
$=\frac{1}{6} \times 2 \times 22 \times 3$
$=22 \mathrm{~cm}$
(ii) Area of the sector formed by this arc

Area of minor sector OAPB $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{60}{360} \times \frac{22}{7} \times 21 \times 21$
$=\frac{1}{6} \times 22 \times 3 \times 21$
$=11 \times 21$
$=231 \mathrm{~cm}^{2}$
(iii) area of the segment formed by the corresponding chord of the arc

In $\triangle O A B$,
$\angle \mathrm{OAB}=\angle \mathrm{OBA}(\mathrm{As} \mathrm{OA}=\mathrm{OB})$
$\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{OBA}=180^{\circ}$
$2 \angle \mathrm{OAB}+60^{\circ}=180^{\circ}$
$\angle \mathrm{OAB}=60^{\circ}$
$\therefore \triangle \mathrm{OAB}$ is an equilateral triangle.
Area of $\triangle \mathrm{OAB}=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times(21)^{2}$
$=\frac{441 \sqrt{3}}{4} \mathrm{~cm}^{2}$

Area of segment $A P B=$ Area of sector $O A P B-$ Area of $\triangle O A B$
$=\left(231-\frac{441 \sqrt{3}}{4}\right) \mathrm{cm}^{2}$

24. Question

A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle [Use $\pi=3.14, \sqrt{3}=1.73$]

Answer

Given: Radius of the circle $=0 \mathrm{~A}=\mathrm{OB}=12 \mathrm{~cm}$
and $\theta=120^{\circ}$
To find: Area of the corresponding segment of the circle
i.e. Area of segment APB = Area of sector OAPB - Area of \triangle AOB

So, firstly we find the Area of sector OAPB
Area of minor sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{120}{360} \times 3.14 \times(12)^{2}$
$=\frac{1}{3} \times 3.14 \times 12 \times 12$
$=150.72 \mathrm{~cm}^{2}$
Now, we have to find the area of $\triangle \mathrm{AOB}$
We draw $\mathrm{OM} \perp \mathrm{AB}$
$\therefore \angle \mathrm{OMB}=\angle \mathrm{OMA}=90^{\circ}$
In \triangle OMA and \triangle OMB
$\angle \mathrm{OMA}=\angle \mathrm{OMB}\left[\right.$ both 90°]
$\mathrm{OA}=\mathrm{OB}$ [both radius]
$\mathrm{OM}=\mathrm{OM}$ [common]
$\therefore \mathrm{OMA} \cong \triangle \mathrm{OMB}$ [by RHS congruency]
$\Rightarrow \angle \mathrm{AOM}=\angle \mathrm{BOM}[\mathrm{CPCT}]$
$\therefore \angle \mathrm{AOM}=\angle \mathrm{BOM}=\frac{1}{2} \angle \mathrm{BOA}$
$=\frac{1}{2} \times 120=60^{\circ}$
\therefore In right triangle OMA, we have
$\sin 60^{\circ}=\frac{A M}{O A}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{AM}}{12}$
$\Rightarrow \mathrm{AM}=6 \sqrt{3} \mathrm{~cm}$
$\Rightarrow 2 \mathrm{AM}=12 \sqrt{3} \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=12 \sqrt{3} \mathrm{~cm}$
and
$\cos 60^{\circ}=\frac{\mathrm{OM}}{\mathrm{OA}}$
$\Rightarrow \frac{1}{2}=\frac{\mathrm{OM}}{12}$
$\Rightarrow \mathrm{OM}=6 \mathrm{~cm}$
\therefore Area of $\triangle A O B=\frac{1}{2} \times \mathrm{AB} \times \mathrm{OM}$
$=\frac{1}{2} \times 12 \sqrt{3} \times 6$
$=36 \sqrt{3}$
$=36 \times 1.73$
$=62.28 \mathrm{~cm}^{2}$
Area of segment $\mathrm{APB}=$ Area of sector $\mathrm{OAPB}-$ Area of $\triangle \mathrm{AOB}$
$=(150.72-62.28)$
$=88.44 \mathrm{~cm}^{2}$

25. Question

A brooch is made with silver wire in the form of a circle with diameter 35 mm . The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in the figure. Find:
(i) the total length of the silver wire required.
(ii) the area of each sector of the brooch

Answer

Here, brooch is made up of silver wire in the form of a circle.
The diameter of the brooch $=35 \mathrm{~mm}$
$" \Rightarrow$ The radius of the brooch, r " $=\frac{35}{2} \mathrm{~mm}$
Since the wire is used in making 5 diameters and circle
So,
The total length of the silver wire required = length of wire in circle

+ wire used in 5 diameters
$=2 \pi r+5 \times 2 r$
$=2 \mathrm{r}(\pi+5)$
$=2 \times \frac{35}{2}\left(\frac{22}{7}+5\right)$
$=35\left(\frac{22+35}{7}\right)$
$=5 \times 57$
$=285 \mathrm{~mm}$
Now, Area of each sector of the brooch
$=\frac{1}{10} \times \Pi r^{2}$
$=\frac{1}{10} \times \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2}$
$=\frac{385}{4}$
\therefore Area of each sector $=\frac{385}{4} \mathrm{~mm}^{2}$

26. Question

A horse is tied to a pole at one corner of a square grass field of side 15 m using 10 m long rope. Find
(i) the area of that part of the field in which the horse can graze.
(ii) the decrease in the grazing area if the rope was 5 m long instead of 10 m . [Use $\pi=3.14$]

Answer

(i)

Let $A B C D$ be square field
and length of rope, $r=10 \mathrm{~m}$
We need to find the area of the field which horse can graze, i.e. the area of sector QBP

As we know that in a square all angles are of 90°
Hence, $\angle \mathrm{QBP}=90^{\circ}$
Area of sector $\mathrm{QBP}=\frac{\theta}{360} \times \pi \mathrm{r}^{2}$
$=\frac{90}{360} \times 3.14 \times 10 \times 10$
$=\frac{1}{4} \times 314$
$=78.5 \mathrm{~m}^{2}$
Hence, the area of the field which horse can graze $=78.5 \mathrm{~m}^{2}$
(ii) the decrease in the grazing area if the rope was 5 m long instead of 10 m

Length of rope is decreased to 5 m
Area grazed by a horse now = Area of sector HBG
Area of sector $\mathrm{HBG}=\frac{\theta}{360} \times \pi \mathrm{r}^{2}$
$=\frac{90}{360} \times 3.14 \times 5 \times 5$
$=\frac{1}{4} \times 3.14 \times 25$
$=19.625 \mathrm{~m}^{2}$
So, the decrease in the grazing area
= Area of sector QBP - Area of sector HBG
$=78.5-19.625$
$=58.875 \mathrm{~m}^{2}$

27. Question

In a circular table cover of radius 32 cm , a design is formed leaving an equilateral triangle ABC in the middle as shown in the given figure. Find the area of the design (shaded region)

Answer

Given: Radius of circle $=32 \mathrm{~cm}$
Area of design $=$ Area of circle - Area of $\triangle \mathrm{ABC}$
Firstly, we find the area of a circle
Area of circle $=\pi r^{2}$
$=\frac{22}{7} \times(32)^{2}$
$=\frac{22}{7} \times 32 \times 32$
$=\frac{22528}{7} \mathrm{~cm}^{2} \ldots$ (a)
Now, we will find the area of equilateral $\triangle \mathrm{ABC}$

Construction:
Draw OD \perp BC
In $\triangle \mathrm{BOD}$ and $\triangle \mathrm{COD}$
OB = OC (radii)
OD = OD (common)
$\angle \mathrm{ODB}=\angle \mathrm{ODC}\left(90^{\circ}\right)$
$\therefore \triangle \mathrm{BOD} \cong \triangle \mathrm{COD}$ [by RHS congruency]
$\Rightarrow \mathrm{BD}=\mathrm{DC}[$ by CPCT]
or $\mathrm{BC}=2 \mathrm{BD} . . .(\mathrm{i})$
and, $\angle \mathrm{BOD}=\angle \mathrm{COD}=\frac{1}{2} \angle \mathrm{BOC}=\frac{120}{2}=60^{\circ}$
Now, In $\triangle B O D$, we have
$\sin 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{OB}}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{BD}}{32}$
$\Rightarrow \mathrm{BD}=16 \sqrt{3} \mathrm{~cm}$
From (i), $B C=2 B D \Rightarrow B C=32 \sqrt{3} \mathrm{~cm}$
Now, Area of equilateral $\triangle \mathrm{ABC}$
$=\frac{\sqrt{3}}{4}(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times(32 \sqrt{3})^{2}$
$=768 \sqrt{ } 3 \mathrm{~cm}^{2}$
Therefore, Area of design = Area of circle - Area of $\triangle A B C$
$=\frac{22528}{7}-768 \sqrt{3} \mathrm{~cm}^{2}[$ from (a) and (b)]

28. Question

Find the area of the shaded region in the figure, if $\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{PR}=7 \mathrm{~cm}$ and 0 is the centre of the circle.

Answer

Given: $P Q=24 \mathrm{~cm}$ and $P R=7 \mathrm{~cm}$
Since QR is a diameter, it forms a semicircle
We know that angle in a semicircle is a right angle.
Hence, $\angle \mathrm{RPQ}=90^{\circ}$
Hence, $\triangle \mathrm{RPQ}$ is a right triangle
In $\triangle R P Q$ by Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { Perpendicular })^{2}+(\text { Base })^{2}$
$(Q R)^{2}=(P Q)^{2}+(P R)^{2}$
$\Rightarrow(\mathrm{QR})^{2}=(24)^{2}+(7)^{2}$
$\Rightarrow(Q R)^{2}=576+49$
$\Rightarrow(Q R)^{2}=625$
$\Rightarrow(Q R)^{2}=(25)^{2}$
$\Rightarrow Q R=25 \mathrm{~cm}$
\therefore Diameter, $\mathrm{QR}=25 \mathrm{~cm}$
\Rightarrow Radius $=\frac{25}{2}$
So,
Area of semicircle $=\frac{1}{2} \pi r^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2}$
$=\frac{11 \times 25 \times 25}{28}$
$=\frac{6875}{28} \mathrm{~cm}^{2}$
Now, Area of $\triangle P Q R$
Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$
$=\frac{1}{2} \times P Q \times P R$
$=\frac{1}{2} \times 24 \times 7$
$=12 \times 7$
$=84 \mathrm{~cm}^{2}$
Area of shaded region $=$ Area of semicircle - Area of $\triangle P Q R$
$=\frac{6875}{28}-84$
$=\frac{6875-2352}{28}$
$=\frac{4523}{28} \mathrm{~cm}^{2}$

29. Question

$A B$ and $C D$ are arcs of two concentric circles of radii 21 cm and 7 cm respectively and centre 0 . If $\angle A O B=30^{\circ}$, find the area of the shaded region.

Answer
Area of the shaded region
= Area of sector AOB - Area of sector COD
Area of sector AOB
Here, radius $=21 \mathrm{~cm}$ and $\theta=30^{\circ}$
Area of minor sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{30}{360} \times \frac{22}{7} \times 21 \times 21$
$=\frac{1}{12} \times 22 \times 3 \times 21$
$=\frac{231}{2} \mathrm{~cm}^{2}$
Area of sector COD
Here, radius $=7 \mathrm{~cm}$ and $\theta=30^{\circ}$
Area of minor sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{30}{360} \times \frac{22}{7} \times 7 \times 7$
$=\frac{1}{12} \times 22 \times 21$
$=\frac{77}{6} \mathrm{~cm}^{2}$
Now, shaded region $=$ Area of sector $A O B-$ Area of sector COD
$=\frac{231}{2}-\frac{77}{6}$
$=\frac{693-77}{6}$
$=\frac{616}{6}$
$=\frac{308}{3} \mathrm{~cm}^{2}$
Hence, area of shaded region is $\frac{309}{3} \mathrm{~cm}^{2}$

30. Question

In the given figure $A B C D$ is a square whose each side is 14 cm . $A P D$ and $B P C$ are semicircles. Find the area of the shaded region.

Answer

Area of shaded region $=$ Area of square $A B C D$

- Area of semicircle APD
- Area of semicircle BPC

Area of square ABCD

Given: Side of square $=14 \mathrm{~cm}$
Area of square $=$ Side \times Side
$=14 \times 14$
$=196 \mathrm{~cm}^{2}$

Area of semicircle APD

Diameter $=\mathrm{AD}=14 \mathrm{~cm}$
So,
Radius $=\frac{14}{2}=7 \mathrm{~cm}$
Area of semicircle APD $=\frac{1}{2} \pi r^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times 7 \times 7$
$=11 \times 7$
$=77 \mathrm{~cm}^{2}$
Similarly, Area of semicircle BPC $=77 \mathrm{~cm}^{2}$
Area of shaded region $=$ Area of square $A B C D$

- Area of semicircle APD
- Area of semicircle BPC
= 196-77-77
$=42 \mathrm{~cm}^{2}$
Hence, area of shaded region is $42 \mathrm{~cm}^{2}$

31. Question

In the given figure a square OABC is inscribed in a quadrant OPBQ. If OA $=20 \mathrm{~cm}$, find the area of the shaded region.

Answer

Area of shaded region = Area of quadrant OBPQ

- Area of square OABC

Area of square OABC

Given: Side of square $=20 \mathrm{~cm}$
Area of square $=$ Side \times Side
$=20 \times 20$
$=400 \mathrm{~cm}^{2}$

Area of quadrant

We need to find the radius
Joining OB
Also, all angles of a square are 90°
$\therefore \angle \mathrm{BAO}=90^{\circ}$
Hence, $\triangle O B A$ is a right triangle
In $\triangle O B A$, by Pythagoras Theorem
$(\text { Hypotenuse })^{2}=(\text { Perpendicular })^{2}+(\text { Base })^{2}$
$(O B)^{2}=(A B)^{2}+(O A)^{2}$
$\Rightarrow(\mathrm{OB})^{2}=(20)^{2}+(20)^{2}$
$\Rightarrow(\mathrm{OB})^{2}=400+400$
$\Rightarrow(\mathrm{OB})^{2}=800$
$\Rightarrow \mathrm{OB}=\sqrt{ }(10 \times 10 \times 2 \times 2 \times 2)$
$\Rightarrow \mathrm{OB}=20 \sqrt{2} \mathrm{~cm}$
Area of quadrant $=\frac{1}{4} \pi r^{2}$
$=\frac{1}{4} \times 3.14 \times(20 \sqrt{2})^{2}$
$=3.14 \times 5 \times 20 \times 2$
$=628 \mathrm{~cm}^{2}$
Area of shaded region $=$ Area of quadrant OBPQ

- Area of square OABC
$=628-400$
$=228 \mathrm{~cm}^{2}$

32. Question

It is proposed to add to a square lawn with the side 58m, two circular ends (the centre of each circle being the point of intersection of the diagonals of the square.) Find the area of the whole lawn [Take $\pi=3.14$]

Answer

ABCD is a square lawn of side 58 m . AED and BFC are two circular ends.
Now, diagonal of the lawn $=\sqrt{(58)})^{2}+(58)^{2}=58 \sqrt{2} \mathrm{~m}$
It is given that diagonal of square = Diameter of circle
\therefore The radius of a circle having a centre at the point of intersection of diagonal
$=\frac{58 \sqrt{2}}{2}=29 \sqrt{2} \mathrm{~m}$
It is given that square $A B C D$ is inscribed by the circle with centre 0 .
\therefore Area of 4 segments $=$ Area of circle - Area of square
$=\pi r^{2}-(\text { side })^{2}$
$=\frac{22}{7} \times 29 \sqrt{2} \times 29 \sqrt{2}-58 \times 58$
$=\frac{22}{7} \times 29 \times 29 \times 2-29 \times 29 \times 4$
$=29 \times 29 \times 4\left(\frac{11}{7}-1\right)$
$=29 \times 29 \times 4 \times\left(\frac{4}{7}\right)$
\Rightarrow Area of two segments $=\frac{1}{2} \times 29 \times 29 \times 4 \times\left(\frac{4}{7}\right) \mathrm{m}^{2}$
$=\frac{29 \times 29 \times 8}{7}$
$=961.14 \mathrm{~m}^{2}$
Area of whole lawn = Area of circle - Area of two segments
$=\frac{22}{7} \times 29 \sqrt{2} \times 29 \sqrt{2}-\frac{29 \times 29 \times 8}{7}$
=5286.28-961.14
$=4325.14 \mathrm{~m}^{2}$

33. Question

Find the difference between the area of a regular hexagonal plot each of whose side is 72 m and the area of the circular swimming tank inscribed in it.
(Take $\pi=\frac{22}{7}$)

Answer

The side of hexagonal plot $=72 \mathrm{~m}$
Area of equilateral triangle $\mathrm{OAB}=\frac{\sqrt{3}}{4}(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times 72 \times 72$
$=1296 \sqrt{3} \mathrm{~cm}^{2}$
\therefore Area of hexagonal plot $=6 \times$ Area of triangle OAB
$=6 \times 1296 \sqrt{3}$
$=7776(1.732)$
$=13468.032 \mathrm{~m}^{2}$
In \triangle OCA, by Pythagoras theorem
$(\text { Hypotenuse })^{2}=(\text { Perpendicular })^{2}+(\text { Base })^{2}$
$(\mathrm{OA})^{2}=(\mathrm{OC})^{2}+(\mathrm{AC})^{2}$
$\Rightarrow(72)^{2}=(\mathrm{OC})^{2}+(36)^{2}$
$\Rightarrow(\mathrm{OC})^{2}=5184-1296$
$\Rightarrow(\mathrm{OC})^{2}=3888$
$\Rightarrow r^{2}=3888$
\therefore Area of inscribed circular swimming tank $=\pi r^{2}$
$=\frac{22}{7} \times 3888$
$=12219.429 \mathrm{~m}^{2}$
\therefore Required difference $=13468.032-12219.429$
$=1248.603 \mathrm{~m}^{2}$

Hence, the difference between the area of a regular hexagonal plot and the area of the circular swimming tank inscribed in it is $1248.60 .3 \mathrm{~m}^{2}$

34. Question

In the figure, ABC is a quadrant of a circle of radius 14 cm , and a semicircle is drawn with BC as diameter. Find the area of the shaded region.

Answer

Area of shaded region = Area of segment with chord BC
Now, $\mathrm{AC}=\mathrm{BA}=14 \mathrm{~cm}$
$\therefore B C=\sqrt{ }(14)^{2}+(14)^{2}=14 \sqrt{2} \mathrm{~cm}$
\therefore Area of semicircle on $B C=\frac{1}{2} \pi r^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times 14 \sqrt{2} \times 14 \sqrt{2}$
$=154 \mathrm{~cm}^{2}$
Area of $\triangle A B C=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 14 \times 14$
$=98$
So, Area of shaded region $=154-98$
$=56 \mathrm{~cm}^{2}$

35. Question

The area of an equilateral triangle is $100 \sqrt{3} \mathrm{~cm}^{2}$. Taking each vertex as centre, a circle is described with a radius equal to half the length of the side of the triangle, as shown in the figure. Find the area of that part of the triangle which is not included in the circles [Take $\pi=3.14$ and $\sqrt{3}=1.732$]

Answer

Area of the shaded region
= Area of an equilateral triangle - Area of 3 sectors
Given: Area of equilateral $\triangle \mathrm{ABC}=100 \sqrt{3} \mathrm{~cm}^{2}$
$\Rightarrow \frac{\sqrt{3}}{4} \mathrm{a}^{2}=100 \sqrt{3}$
$\Rightarrow \mathrm{a}^{2}=400$
$\Rightarrow \mathrm{a}=20 \mathrm{~cm}$
It is given that radius is equal to half the length of the side
i.e. $r=\frac{a}{2}=\frac{20}{2}=10 \mathrm{~cm}$

Now,
Area of 3 sectors $=3 \times \frac{\theta}{360} \times \pi r^{2}$
Area of 3 sectors $=3 \times \frac{60}{360} \times \frac{22}{7} \times 10 \times 10$
$=\frac{11}{7} \times 100$
$=157.14 \mathrm{~cm}^{2}$
Hence, the area of the shaded region
$=$ Area of $\triangle \mathrm{ABC}-$ Area of 3 sectors
$=100 \sqrt{3}-157.14$
$=100 \times 1.732-157.14$
$=173.2$ - 157.14
$=16.06 \mathrm{~cm}^{2}$

36. Question

In an equilateral triangle of side 12 cm , a circle is inscribed touching its sides. Find the area of the portion of the triangle not included in the circle. [Take $\sqrt{3}=1.73$ and $\pi=3.14$]

Answer

Area of shaded region $=$ Area of $\triangle A B C-$ Area of circle
Given side of triangle $=12 \mathrm{~cm}$
\therefore Area of equilateral triangle $=\frac{\sqrt{3}}{4}(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times 12 \times 12$
$=36 \sqrt{3} \mathrm{~cm}^{2}$
Now, we have to find the area of a circle. For that we need a radius.
Draw AD \perp BC
So, In BDO
$\tan 30^{\circ}=\frac{O D}{B D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{r}}{6}\left[\because \mathrm{AD} \perp \mathrm{BC} \Rightarrow \mathrm{BD}=\frac{1}{2} \mathrm{BC}=6 \mathrm{~cm}\right]$
$\Rightarrow \mathrm{r}=2 \sqrt{3} \mathrm{~cm}$
Now, Area of circle $=\pi r^{2}$
$=3.14 \times(2 \sqrt{3})^{2}$
$=37.68 \mathrm{~cm}^{2}$
Area of shaded region $=$ Area of $\triangle \mathrm{ABC}-$ Area of circle
$=36 \sqrt{3}-37.68$
$=36(1.73)-37.68$
$=24.6 \mathrm{~cm}^{2}$
Hence, the area of the portion of the triangle not included in the circle is $24.6 \mathrm{~cm}^{2}$

37. Question

In a circular table-cover of radius 16 cm , a design is formed leaving an equilateral triangle $A B C$ in the middle as shown in the figure. Find the area of the design (shaded region in the figure).

Answer

Given: Radius of circle $=16 \mathrm{~cm}$
Area of shaded region $=$ Area of circle - Area of $\triangle A B C$
Firstly, we find the area of a circle
Area of circle $=\pi r^{2}$
$=\frac{22}{7} \times(16)^{2}$
$=\frac{22}{7} \times 16 \times 16$
$=\frac{5632}{7} \mathrm{~cm}^{2}$.
Now, we will find the area of equilateral $\triangle \mathrm{ABC}$

Construction:
Draw OD \perp BC
In $\triangle B O D$ and $\triangle C O D$
OB = OC (radii)
OD = OD (common)
$\angle O D B=\angle O D C\left(90^{\circ}\right)$
$\therefore \triangle \mathrm{BOD} \cong \Delta \mathrm{COD}$ [by RHS congruency]
$\Rightarrow \mathrm{BD}=\mathrm{DC}[$ by CPCT$]$
or $\mathrm{BC}=2 \mathrm{BD} . . .(\mathrm{i})$
and, $\angle \mathrm{BOD}=\angle \mathrm{COD}=\frac{1}{2} \angle \mathrm{BOC}=\frac{120}{2}=60^{\circ}$
Now, In $\triangle B O D$, we have
$\sin 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{OB}}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{BD}}{16}$
$\Rightarrow \mathrm{BD}=8 \sqrt{3} \mathrm{~cm}$
From (i), $B C=2 B D \Rightarrow B C=16 \sqrt{3} \mathrm{~cm}$
Now, Area of equilateral $\triangle \mathrm{ABC}$

$$
\begin{align*}
& =\frac{\sqrt{3}}{4}(\text { side })^{2} \\
& =\frac{\sqrt{3}}{4} \times(16 \sqrt{3})^{2} \\
& =192 \sqrt{3} \mathrm{~cm}^{2} \ldots \text { (b) } \tag{b}
\end{align*}
$$

Therefore, Area of design = Area of circle - Area of $\triangle A B C$
$=\frac{5632}{7}-192 \sqrt{3} \mathrm{~cm}^{2}$ [from (a) and (b)]
$=804.57-332.544$
$=472.03 \mathrm{~cm}^{2}$

