Very Short Answer Questions (PYQ)

[1 Mark]

Q.1. If $f: R \rightarrow R$ is given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$ then determine $f(f(x))$.

Ans.

$$
\begin{aligned}
& \text { We have, } f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}=f\left\{\left(3-x^{3}\right)^{\frac{1}{3}}\right\}=\left[3-\left\{\left(3-x^{3}\right)^{\frac{1}{3}}\right\}^{3}\right]^{\frac{1}{3}} \\
& =\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}=x
\end{aligned}
$$

Q.2. Find $f \circ g(x)$, if $f(x)=|x|$ and $g(x)=|5 x-2|$

Ans. $f \circ g(x)=f(g(x))=f(|5 x-2|)=|5 x-2|$
Q.3. If $f(x)=\boldsymbol{x}+7$ and $g(x)=\boldsymbol{x}-\mathbf{7}, \boldsymbol{x} \in \boldsymbol{R}$, then find $\boldsymbol{f o g}(7)$.

Ans. $f \circ g(x)=f(g(x))=f(x-7)=x-7+7=x$
Therefore, $\operatorname{fog}(7)=7$
Q.4. If $f(x)=27 x^{3}$ and $g(x)=x^{1 / 3}$, find $g \circ f(x)$.

Ans. Given $f(x)=27 x^{3}$ and $g(x)=x^{1 / 3}$
$(g \circ f)(x)=g[f(x)]=g\left[27 x^{3}\right]=\left[27 x^{3}\right]^{1 / 3}=3 x$
Q.5. Write fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$.

Ans. $f \circ g(x)=f(g(x))$

$$
=f\left(x^{1 / 3}\right)=8\left(x^{1 / 3}\right)^{3}=8 x
$$

Q.6. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, write the range of R.

Ans.

Given:

$$
\begin{aligned}
& R=\{(x, y): x+2 y=8\} \\
& \because \quad x+2 y=8 \\
& \Rightarrow \quad y=\frac{8-x}{2} \quad \Rightarrow \quad \text { when } x=6, y=1 ; x=4, y=2 ; x=2, y=3 . \\
& \therefore \quad \text { Range }=\{1,2,3\}
\end{aligned}
$$

Q.7. Let $R=\left\{\left(a, a^{3}\right)\right.$: a is a prime number less than 5$\}$ be a relation. Find the range of R.

Ans. Here $\quad R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$
$\Rightarrow \quad R=\{(2,8),(3,27)\}$
Hence Range of $R=\{8,27\}$
Q.8. If $\boldsymbol{f}(\boldsymbol{x})$ is an invertible function, then find the inverse of $f(x)=\frac{3 x-2}{5}$.

Ans.

$$
\begin{aligned}
& \text { Let } y=f(x)=\frac{3 x-2}{5} \text {, then } \mathrm{D}_{f}=R \text { and } R_{f}=R \\
& \Rightarrow \quad 5 y=3 x-2 \quad \Rightarrow \quad 5 y+2=3 x \\
& \therefore \quad x=\frac{5 y+2}{3}, \forall x, y \in R \quad \Rightarrow \quad f^{-1}(x)=\frac{5 x+2}{3}
\end{aligned}
$$

Q.9. If the binary operation * on the set of integers Z, is defined by a * $b=a+3 b^{2}$, then find the value of 2 * 4 .

Ans. 2 * $4=2+3 \times 4^{2}=50$
Q.10. Let * be a binary operation on N given by a * $b=$ HCF of a, b where $a, b \in N$. Write the value of 22 * 4.

Ans. 22 * $4=$ HCF of $22,4=2$
Q.11. If the binary operation * defined on Q, is defined as $a^{*} b=\mathbf{2 a}+\boldsymbol{b} \boldsymbol{a} \boldsymbol{a b}$ for all $a, b \in Q$, then find the value of 3 * 4 .

Ans. 3 * $4=2 \times 3+4-3 \times 4=-2$
Q.12. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2)$, (2, 1)\} not to be transitive.

Ans. R is not transitive as $(1,2) \in R,(2,1) R \operatorname{But}(1,1) \notin R$
[Note: A relation R in a set A is said to be transitive if $(a, b) \in R,(b, c) \in R \Rightarrow(a, c)$ $\in R \forall a, b, c \in R]$
Q.13. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.

Ans. f is one-one because

$$
\begin{aligned}
& f(1)=4 ; \\
& f(2)=5 ; \\
& f(3)=6
\end{aligned}
$$

i.e., no two elements of A have same f image.
Q.14. Let * be a 'binary' operation on N given by a * $b=\operatorname{LCM}(a, b)$ for $a l l a, b \in N$. Find 5 * 7.

Ans. 5 * $7=$ LCM of 5 and $7=35$
Q.15. The binary operation * $: R \times R \rightarrow R$ is defined as $a * b=2 a+b$. Find (2*3) * 4.

Ans. $(2$ * 3$)$ * $4=(2 \times 2+3) * 4=7$ * 4

$$
=2 \times 7+4=18
$$

Q.16. If the binary operation * on the set Z of integers is defined by a * $b=a+b-5$, then write the identity element for the operation in Z.

Ans. Let $e \in Z$ be required identity

$$
\begin{aligned}
& \therefore \quad a^{*} e=a \forall a \in Z \\
& \Rightarrow \quad a+e-5=a \quad \Rightarrow \quad e=a-a+5 \quad \Rightarrow \quad e=5
\end{aligned}
$$

Q.17. Let * be a binary operation, on the set of all non-zero real numbers, given $b y a * b=a b / 5$ for all $a, b \in R-\{0\}$. Find the value of x given that 2 * $\left(x^{*} 5\right)=10$.

Ans.
Given $2 *(x * 5)=10$

$$
\begin{aligned}
& \Rightarrow \quad 2 * \frac{x \times 5}{5}=10 \quad \Rightarrow \quad 2 * x=10 \\
& \Rightarrow \quad \frac{2 \times x}{5}=10 \quad \Rightarrow \quad x=\frac{10 \times 5}{2} \\
& \Rightarrow \quad x=25 .
\end{aligned}
$$

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. Check whether the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is transitive.

Ans. No, it is not transitive because $1 R 2,2 R 1$ but $1 R 1$, i.e., $(1,1)$ does not lie in R.
Q.2. Find the number of all onto functions from the set $\{1,2,3, \ldots, n)$ to itself.

Ans. Total number of all onto functions from the set $\{1,2,3, \ldots, n)$ to itself is $n!$.
Q.3. Let $S=\{a, b, c\}$, find the total number of binary operations on S.

Ans. The number of binary operations on the set consisting n elements is $n^{n^{2}}$. Here $\mathrm{n}=$ 3. Therefore, total number of binary operation $S=(3)^{3^{2}}=3^{9}$.
Q.4. If X and Y are two sets having 2 and 3 elements respectively then find the number of functions from X to Y.

Ans. Number of functions from X to $Y=3^{2}=9$.
Q.5. Which one of the following graph represents the function of x ? Why?

Ans.

(a)

Graph (a) represents the function of x, because vertical line drawn in (a) meets the graph at only one point i.e., for one x, in domain there exist only one $f(x)$ in codomain.
Q.6. If the mapping f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5$, $1),(1,3)]$, then write fog.

Ans. Obviously, domain of "fog" is domain of g i.e., $\{2,5,1\}$.
Now, $f \circ g(2)=f(g(2))=f(3)=5 \quad \Rightarrow \quad f \circ g(5)=f(g(5))=f(1)=2$

$$
f \circ g(1)=f(g(1))=f(3)=5 \quad \Rightarrow \quad f \circ g=\{(2,5),(5,2),(1,5)\}
$$

Short Answer Questions-I (PYQ)

[2 Mark]
Q.1. What is the range of the function $f(x)=\frac{|x-1|}{(x-1)}$?

Ans.

$$
\text { Given } f(x)=\frac{|x-1|}{(x-1)}
$$

Obviously, $|x-1|=\left\{\begin{aligned}(x-1) & \text { if } x-1>0 \text { or } x>1 \\ -(x-1) & \text { if } x-1<0 \text { or } x<1\end{aligned}\right.$
Now, (i) $\forall x>1, \quad f(x)=\frac{(x-1)}{(x-1)}=1$, (ii) $\forall x<1, \quad f(x)=\frac{-(x-1)}{(x-1)}=-1$,

$$
\text { i.e., } \quad f(x)=-1,1
$$

$\therefore \quad$ Range of $f(x)=\{-1,1\}$.
Q.2. If \boldsymbol{f} is an invertible function, defined as $f(x)=\frac{3 x-4}{5}$, write $f^{-1}(x)$.

Ans.

Since f^{-1} is inverse of f.

$$
\begin{aligned}
& \therefore \quad f \circ f-1=I \quad \Rightarrow \quad f^{-1}(x)=I(x) \\
& \Rightarrow \quad f^{-1} f^{-1}(x)=x \quad \Rightarrow \quad f(f-1(x))=(x) \\
& \Rightarrow \quad \frac{3\left(f^{1}(x)\right)-4}{5}=x \quad \Rightarrow \quad f^{-1}(x)=\frac{5 x+4}{3}
\end{aligned}
$$

Q.3. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, define $f[f(x)]$.

Ans. $f(f(x))=f(3 x+2)=3(3 x+2)+2$

$$
=9 x+6+2=9 x+8
$$

Short Answer Questions-I (OIQ)

[2 Mark]

Q.1. State the reason for following binary operation '*', defined on the set Z of integers, to be non-commutative $a * b=a b^{3}$. Also find 2 * 3 .

Ans. Since $\quad a b^{3} \neq b a^{3} \forall a, b \in Z$
$\Rightarrow \quad a * b \neq b^{*} a$
Hence, '*' is not commutative.
Also, 2 * $3=2 \times 3^{3}=54$
Q.2. If $\boldsymbol{f}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ defined by $f(x)=\frac{2 x-7}{4}$ is an invertible function then find $\boldsymbol{f}^{\mathbf{- 1}}$.

Ans.

$$
\begin{array}{lll}
\text { Let } f(x)=y & \Rightarrow & y=\frac{2 x-7}{4} \\
\Rightarrow \quad 2 x-7=4 y \quad & \Rightarrow \quad 2 x=4 y+7 \quad \Rightarrow \quad x=\frac{4 y+7}{2}
\end{array}
$$

Hence, $f^{-1}(x)=\frac{4 x+7}{2}$
Q.3. Write the inverse relation corresponding to the relation R given by $R=$ $\{(x, y): x \in N, x<5, y=3\}$. Also write the domain and range of inverse relation.

Ans.
Given, $R=\{(x, y): x \in N, x<5, y=3\}$
$\Rightarrow \quad R=\{(1,3),(2,3),(3,3),(4,3)\}$
Hence, required inverse relation is

$$
R^{-1}=\{(3,1),(3,2),(3,3),(3,4)\}
$$

$\therefore \quad$ Domain of $R^{-1}=\{3\}$
And Range of $R^{-1}=\{1,2,3,4\}$
Q.4. Let $A=\{1,2,3\}$. Write all one-one functions on A.

Ans. All one-one functions on A are as follows:
$f_{1}=\{(1,1),(2,2),(3,3)\} ; \quad f_{2}=\{(1,1),(2,3),(3,2)\}$

$$
\begin{array}{ll}
f_{3}=\{(1,2),(2,1),(3,3)\} ; & f_{4}=\{(1,3),(2,2),(3,1)\} \\
f_{5}=\{(1,3),(2,1),(3,2)\} ; & f_{6}=\{(1,2),(2,3),(3,1)\}
\end{array}
$$

Q.5. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by

$$
f(x)=3 x+1 \text { and } g(x)=x^{2}+2
$$

Find $f 0 g(2)$.
Ans. $f \circ g(x)=f(g(x))=f\left(x^{2}+2\right)=3\left(x^{2}+2\right)+1=3 x^{2}+6+1$
$\Rightarrow \quad f \circ g(x)=3 x^{2}+7$
$\therefore \quad f \circ g(2)=3 \times 2^{2}+7=12+7=19$
Q.6. Let $A=\{1,2,3\}, B=\{4,5\}$ and $C=\{5,6\}$. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined as $f(1)=4, f(2)=5, f(3)=4, g(4)=5$ and $g(5)=6$. Find $g o f$.

Ans. Obviously 'gof function is defined as
gof: $A \rightarrow C$ such that
$g \circ f(1)=g(f(1))=g(4)=5$
$g \circ f(2)=g(f(2))=g(5)=6$
$g \circ f(3)=g(f(3))=g(4)=5$
Hence, gof : $A \rightarrow C$ is given by $g \circ f=\{(1,5),(2,6),(3,5)\}$
Q.7. Let * be the binary operation on the set $\{1,2,3,4\}$ defined by $a * b=$ HCF of a and b. Compute (2 * 3) * 4 and 2 * (3 * 4).

Ans. $(2$ * 3$) * 4=(\mathrm{HCF}$ of 2 and 3$) * 4=(1 * 4)=1$

$$
2 *(3 * 4)=2 *(\text { HCF of } 3 \text { and } 4)=2 * 1=1
$$

Long Answer Questions-I (PYQ)

[4 Mark]

Q.1. Consider the binary operation * on the set $\{1,2,3,4,5\}$ defined by $a^{*} b=\min$. $\{a, b\}$. Write the operation table of the operation *.

Ans. Required operation table of the operation * is given as

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Q.2. Show that the relation R in the set $N \times N$ defined by $(a, b) R(c, d)$ if $a^{2}+d^{2}=b^{2}$ $+c^{2} \forall a, b, c, d \in N$, is an equivalence relation.

Ans.
Given, R is a relation in $N \times N$ defined by $(a, b) R(c, d) \Rightarrow a^{2}+d^{2}=b^{2}+c^{2}$

Reflexivity:

$$
\begin{array}{ll}
\because & a^{2}+b^{2}=b^{2}+a^{2} \forall a, b \in N \\
\Rightarrow & (a, b) R(a, b) \quad \Rightarrow \quad R \text { is reflexive }
\end{array}
$$

Symmetry: Let $(a, b) R(c, d)$

$$
\begin{aligned}
& \Rightarrow \quad a^{2}+d^{2}=b^{2}+c^{2} \quad \Rightarrow \quad b^{2}+c^{2}=a^{2}+d^{2} \quad \Rightarrow \quad c^{2}+b^{2}=d^{2}+a^{2} \\
& \Rightarrow \quad(c, d) R(a, b) \quad \Rightarrow \quad R \text { is symmetric }
\end{aligned}
$$

Transitivity: Let $(a, b) R(c, d)$ and $(c, d) R(e, f)$

$$
\begin{aligned}
& \Rightarrow \quad a^{2}+d^{2}=b^{2}+c^{2} \text { and } c^{2}+f^{2}=d^{2}+e^{2} \quad \Rightarrow \quad a^{2}+d^{2}+c^{2}+f^{2}=b^{2}+c^{2}+d^{2}+e^{2} \\
& \Rightarrow \quad a^{2}+f^{2}=b^{2}+c^{2} \quad \Rightarrow \quad(a, b) R(c, f) \\
& \Rightarrow \quad R \text { is transitive. }
\end{aligned}
$$

Hence, R is an equivalence relation.

[6 Mark]

Q.1. Consider $f: R_{+} \rightarrow[-9, \infty]$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible with $f^{1}(y)=\left(\frac{\sqrt{54+5 y}-3}{5}\right)$.

Ans.

To prove f is invertible, it is sufficient to prove f is one-one onto

$$
\text { Here, } \quad f(x)=5 x^{2}+6 x-9
$$

One-one: Let $x_{1}, x_{2} \in R_{+}$, then

$$
\begin{array}{llll}
& f\left(x_{1}\right)=f\left(x_{2}\right) & \Rightarrow & 5 x_{1}^{2}+6 x_{1}-9=5 x_{2}{ }^{2}+6 x_{2}-9 \\
\Rightarrow & 5 x_{1}^{2}+6 x_{1}-5 x_{2}^{2}-6 x_{2}=0 \\
\Rightarrow & 5\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+6\left(x_{1}-x_{2}\right)=0 & \Rightarrow & \left.\begin{array}{c}
\\
\Rightarrow \\
\Rightarrow \\
\Rightarrow \\
\Rightarrow \\
\Rightarrow
\end{array} x_{1}-x_{1}{ }^{2}-x_{2}{ }^{2}\right)+6\left(x_{1}-x_{2}\right)=0 \\
& x_{1}=x_{2} & & \left(x_{1}-x_{2}\right)\left(5 x_{1}+5 x_{2}+6\right)=0 \\
{\left[\because 5 x_{1}+5 x_{2}+6 \neq 0\right]}
\end{array}
$$

i.e., f is one-one function.

Onto: Let $f(x)=y$

$$
\begin{aligned}
& \therefore \quad y=5 x^{2}+6 x-9 \quad \Rightarrow \quad 5 x^{2}+6 x-(9+y)=0 \\
& \Rightarrow \quad x=\frac{-6 \pm \sqrt{36+4 \times 5(9+y)}}{10} \quad \Rightarrow \quad x=\frac{-6 \pm \sqrt{216+20 y}}{10} \\
& \Rightarrow \quad x=\frac{ \pm \sqrt{54+5 y}-3}{5} \quad \Rightarrow \quad x=\frac{\sqrt{54+5 y}-3}{5} \quad\left[\because x \in R_{+}\right]
\end{aligned}
$$

Obviously, $\forall y \in[-9, \infty]$ the value of $x \in R_{+}$
$\Rightarrow \quad f$ is onto function.
Hence, f is one-one onto function, i.e., invertible.
Also, f is invertible with

$$
f^{-1}(y)=\frac{\sqrt{54+5 y}-3}{5}
$$

Q.2. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Show that \boldsymbol{f} is one-one and onto and hence find $\boldsymbol{f}^{\mathbf{- 1}}$.
Ans.

One-one:

Let $x_{1}, x_{2} \in A$
Now, $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{array}{llll}
\Rightarrow & \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3} \quad \Rightarrow \quad\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{1}-3\right)\left(x_{2}-2\right) \\
\Rightarrow & x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-2 x_{1}-3 x_{2}+6 & \Rightarrow \quad-3 x_{1}-2 x_{2}=-2 x_{1}-3 x_{2} \\
\Rightarrow & -x_{1}=-x_{2} & \Rightarrow & x_{1}=x_{2}
\end{array}
$$

Hence, f is one-one function.
Onto:
Let $\quad y=\frac{x-2}{x-3} \quad \Rightarrow \quad x y-3 y=x-2$
$\Rightarrow \quad x y-x=3 y-2 \quad \Rightarrow \quad x(y-1)=3 y-2$
$\Rightarrow \quad x=\frac{3 y-2}{y-1}$
From above it is obvious that $\forall y$ except 1, i.e., $\forall y \in B=R-\{1\} \exists x \in A$ Hence, f is onto function.

Thus, f is one-one onto function.
If f^{-1} is inverse function of f then $f^{-1}(y)=\frac{3 y-2}{y-1}$
[from (i)]
Q.3. Let $\boldsymbol{f}: \boldsymbol{N} \rightarrow \boldsymbol{N}$ be defined by $\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$ for all $\boldsymbol{n} \in \boldsymbol{N}$. Find whether
the function \boldsymbol{f} is bijective.

Ans.

Given $f: N \rightarrow N$ defined such that $f(n)=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$
Let $x, y \in N$ and let they are odd then

$$
f(x)=f(y) \quad \Rightarrow \quad \frac{x+1}{2}=\frac{y+1}{2} \quad \Rightarrow \quad x=y
$$

If $x, y \in N$ are both even then also

$$
f(x)=f(y) \Rightarrow \frac{x}{2}=\frac{y}{2} \Rightarrow x=y
$$

If $x, y \in N$ are such that x is odd and y is even then

$$
f(x)=\frac{x+1}{2} \quad \text { and } \quad f(y)=\frac{y}{2}
$$

Thus, $x \neq y$ for $f(x)=f(y)$
Let $x=6$ and $y=5$
We get $f(6)=\frac{6}{2}=3, f(5)=\frac{5+1}{2}=3$
$\therefore \quad f(x)=f(y)$ but $x \neq y$
So, $f(x)$ is not one-one.
Hence, $f(x)$ is not bijective.
Q.4. Consider the binary operations * $R \times R \rightarrow R$ and $0: R \times R \rightarrow R$ defined as $a^{*} b=|a-b|$ and $a o b=a$ for all $a, b \in R$. Show that ${ }^{\text {'*' } \text { is commutative but not }}$ associative, ' o ' is associative but not commutative.

Ans.

For operation '*'

$$
\text { ‘ } \because \text { ' }: R \times R \rightarrow R \text { such that } a * b=|a-b| \forall a, b \in R
$$

Commutativity:

$\forall a, b \in R, a^{*} b=|a-b|=|b-a|=b^{*} a$
i.e., '4' is commutative

Associativity:

$$
\begin{aligned}
& \forall a, b, c \in R,(a * b) * c=|a-b|^{*} c=||a-b|-c| \\
& \text { But } \quad \text { and } a *\left(b^{*} c\right)=a^{*}|b-c|=|a-|b-c|| \\
& \Rightarrow \quad|a-b|-c|\neq|a-|b-c| \\
& \Rightarrow \quad(a * b) * c \neq a *(b * c) \\
& \Rightarrow
\end{aligned} \quad * \text { is not associative. }
$$

Hence, ' $*$ ' is commutative but not associative.

For Operation ' o '

$$
o: R \times R \rightarrow R \text { such that } a o b=a
$$

Commutativity:

$$
\begin{aligned}
& \forall a, b \in R, a o b=a \text { and } b o a=b \quad \because a \neq b \Rightarrow a o b \neq b o a \\
& \Rightarrow \quad ' o \text { ' is not commutative. }
\end{aligned}
$$

Associativity:
$\forall a, b, c \in R,(a o b) \quad o c=a o c=a$

$$
\Rightarrow \quad a o(b o c)=a o b=a \quad \Rightarrow \quad(a o b) o c=a o(b o c)
$$

$$
\Rightarrow \quad \text { ' } o \text { ' is associative }
$$

Hence ' o ' is not commutative but associative.
Q.5. If $f, g: R \rightarrow R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, $\forall x \in R$. Then find fog and gof. Hence find fog (-3), fog(5) and gof (-2).

Ans.

Here, $f(x)=|x|+x$ can be written as

$$
f(x)=\left\{\begin{array}{rll}
2 x & \text { if } & x \geq 0 \\
0 & \text { if } & x<0
\end{array}\right.
$$

And $g(x)=|x|-x$, can be written as

$$
g(x)=\left\{\begin{array}{c}
0 \text { if } x \geq 0 \\
-2 x \quad \text { if } \quad x<0
\end{array}\right.
$$

Therefore, gof is defined as

For $x \geq 0, \operatorname{gof}(x)=g(f(x)) \quad \Rightarrow \quad \operatorname{gof}(x)=g(2 x)=0$
and for $x<0, \operatorname{gof}(x)=g(f(x))=g(0)=0$

Hence, gof $(x)=0 \forall x \in R$.

Again, fog is defined as

For $x \geq 0, f \circ g(x)=f(g(x))=f(0)=0$
and for $x<0, f o g(x)=f(g(x))=f(-2 x)=2(-2 x)=-4 x$

Hence,

2nd part

$$
\begin{array}{ll}
f \circ g(5)=0 & {[\because 5 \geq 0]} \\
\operatorname{fog}(-3)=-4 \times(-3)=12 & {[\because-3<0]} \\
\operatorname{gof}(-2)=0 &
\end{array}
$$

Q.6. Show that the relation R on the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by $R=\{(a, b)$ $:|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

Ans.

We have the given relation
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$, where $a, b \in A$ and $A=\{x \in Z: 0 \leq x \leq 12\}=\{0,1,2, \ldots ., 12\}$. We discuss the following properties of relation R on set A.

Reflexivity: For any $a \in A$ we have

$$
|a-a|=0, \text { which is multiple of } 4
$$

$(a, a) \in R$ for all $a \in R$.
So, R is reflexive.
Symmetry: Let $(a, b) \in R$.

\Rightarrow	$\|a-b\|$ is divisible by 4	\Rightarrow	$\|a-b\|=4 \mathrm{k} \quad[$ Where $k \in Z]$
\Rightarrow	$a-b= \pm 4 \mathrm{k}$	\Rightarrow	$b-a=\mp 4 k$
\Rightarrow	$\|b-a\|=4 \mathrm{k}$	\Rightarrow	$\|b-a\|$ is divisible by 4
\Rightarrow	$(b-a) \in R$		

So, R is Symmetric

Transitivity: Let $a, b, c \in A$ such that $(a, b) \in R$ and $(b, c) \in R$

$$
\begin{aligned}
& \Rightarrow \quad|a-b| \text { is multiple of } 4 \quad \text { and } \quad|b-c| \text { is multiple of } 4 . \\
& \Rightarrow \quad|a-b|=4 m \quad \text { and } \quad|b-c|=4 n, m, n \in N \\
& \Rightarrow \quad a-b= \pm 4 m \quad \text { and } \quad|a-c|= \pm 4 n \\
& \therefore \quad(a-b)+(b-c)= \pm 4(m+n) \\
& \Rightarrow \quad a-c= \pm 4(m+n) \quad \Rightarrow
\end{aligned}||a-c|=4(m+n)] \text { (a,c) } \begin{aligned}
& \Rightarrow \quad|a-c| \text { is a multiple of } 4 \quad \Rightarrow
\end{aligned}
$$

So, R is transitive.

Hence, R is an equivalence relation.
Q.7. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R(c, d)$ if $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation.

Ans.

Here R is a relation defined as

$$
R=\{[a, b),(c, d)]: a d(b+c)=b c(a+d)\}
$$

Reflexivity: By commutative law under addition and multiplication

$$
\begin{gathered}
b+a=a+b \forall a, b \in N \\
a b=b a \forall a, b \in N \\
\therefore \quad a b(b+a)=b a(a+b) \forall a, b \in N \\
(a, b) R(a, b) \text { Hence, } R \text { is reflexive }
\end{gathered}
$$

Symmetry: Let $(a, b) R(c, d)$

$$
\begin{aligned}
(a, b) R(c, d) \quad & \Rightarrow \quad a d(b+c)=b c(a+d) \\
& \Rightarrow \quad b c(a+d)=a d(b+c) \\
& \Rightarrow \quad c b(d+a)=d a(c+b)
\end{aligned}
$$

[By commutative law under addition and multiplication]

$$
\Rightarrow \quad(c, d) R(a, b)
$$

Hence, R is symmetric.
Transitivity: Let $(a, b) R(c, d)$ and $(c, d) R(c, f)$
Now, $(a, b) R(c, d)$ and $(c, d) R(c, f)$
$\Rightarrow \quad a d(b+c)=b c(a+d)$ and $c f(d+e)=d e(c+f)$
$\Rightarrow \quad \frac{b+c}{b c}=\frac{a+d}{a d}$ and $\frac{d+e}{d e}=\frac{c+f}{c f}$
$\Rightarrow \quad \frac{1}{c}+\frac{1}{b}=\frac{1}{d}+\frac{1}{a}$ and $\frac{1}{e}+\frac{1}{d}=\frac{1}{f}+\frac{1}{c}$
Adding both, we get
$\Rightarrow \quad \frac{1}{c}+\frac{1}{b}+\frac{1}{e}+\frac{1}{d}=\frac{1}{d}+\frac{1}{a}+\frac{1}{f}+\frac{1}{c}$
$\Rightarrow \quad \frac{1}{b}+\frac{1}{e}=\frac{1}{a}+\frac{1}{f} \quad \Rightarrow \frac{e+b}{b e}=\frac{f+a}{a f}$
$\Rightarrow \quad \mathrm{af}(b+e)=\mathrm{be}(a+f) \quad \Rightarrow(a, b) R(e, f) \quad[c, d \neq 0]$
Hence, R is transitive.

In this way, R is reflexive, symmetric and transitive.
Therefore, R is an equivalence relation.
Q.8. Consider $f: R_{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse $(\boldsymbol{f}-1)$ of \mathbf{f} given by $f^{1}(y)=\sqrt{y-4}$, where \boldsymbol{R}_{+}is the set of all nonnegative real numbers.

Ans.

One-one: Let $x_{1}, x_{2} \in R$ (Domain)

$$
\begin{array}{rlrl}
& f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow & x_{1}^{2}+4=x_{2}^{2}+4 \\
\Rightarrow & x_{1}^{2}=x_{2}^{2} \\
\Rightarrow & x_{1}=x_{2} & {\left[\therefore x_{1}, x_{2} \text { are +ve real number }\right]}
\end{array}
$$

Hence, f is one-one function.
Onto: Let $y \in[4, \infty)$ such that

$$
\begin{array}{lll}
& y=f(x) \forall x \in R_{+} & \text {(set of non-negative reals) } \\
\Rightarrow \quad & y=x^{2}+4 & \\
\Rightarrow \quad & x=\sqrt{y-4} \quad & {[\therefore \mathrm{x} \text { is }+ \text { ve real number }]}
\end{array}
$$

Obviously, $\forall y \in[4, \infty), x$ is real number $\in R$ (domain)
i.e., all elements of codomain have pre image in domain.
$\Rightarrow f$ is onto.

Hence, f is invertible being one-one onto.
Inverse function: If f^{-1} is inverse of f, then

$$
\begin{array}{lll}
& \text { fof }^{-1}=I & \quad \text { (Identity function) } \\
\Rightarrow & \text { fof }^{-1}(y)=y \forall y \in[4, \infty) \\
\Rightarrow & f\left(f^{-1}(y)\right)=y \\
\Rightarrow & \left(f^{-1}(y)\right)^{2}+4=y \quad & \\
\Rightarrow & f^{-1}(y)=\sqrt{y-4}
\end{array}
$$

Therefore, required inverse function is $f^{-1}[4, \infty) \rightarrow R$ defined by

$$
f^{-1}(y)=\sqrt{y-4} \quad \forall y \in[4, \infty)
$$

Q.9. Determine whether the relation R defined on the set R of all real numbers

 as $R=\{(a, b): a, b \in R$ and $a-b+3-\sqrt{ } \in S$, where S is the set of all irrational numbers\}, is reflexive, symmetric and transitive.Ans.
Here, relation R defined on the set R is given as

$$
R=\{(a, b): a, b \in R \text { and } a-b+\sqrt{3} \in S\}
$$

Reflexivity: Let $a \in R$ (set of real numbers)
Now, $(a, a) \in R$ as $a-a+\sqrt{3}=\sqrt{3} \in S$
i.e., R is reflexive

Symmetric: Let $a, b \in R$ (set of real numbers)
Let $a, b \in R \quad \Rightarrow \quad a-b+\sqrt{3} \in S \quad$ (Set of irrational numbers)

$$
\Rightarrow \quad b-a+\sqrt{3} \in S
$$

$$
\begin{equation*}
\Rightarrow \quad(b, a) \in R \tag{ii}
\end{equation*}
$$

i.e., R is symmetric

Transitivity: Let $a, b, c \in R$
Now $(a, b) \in R$ and $(b, c) \in R \quad \Rightarrow \quad a-b+\sqrt{3} \in S$ and $b-c+\sqrt{3} \in S$

$$
\begin{align*}
& \Rightarrow \quad a-b+\sqrt{3}+b-c+\sqrt{3} \in S \\
& \Rightarrow \quad(a, c) \in R .
\end{align*}
$$

i.e., R is transitive
(i), (ii) and (iii) $\Rightarrow R$ is reflexive, symmetric and transitive.
Q.10. Show that the function \boldsymbol{f} in $A=\left\lvert\, \mathrm{R}-\left\{\frac{2}{3}\right\}\right.$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one and onto. Hence, find f^{-1}.

Ans.

One-one: Let $x_{1}, x_{2} \in A$
Now, $f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad \frac{4 x_{1}+3}{6 x_{1}-4}=\frac{4 x_{2}+3}{6 x_{2}-4}$
$\Rightarrow 24 x_{1} x_{2}+18 x_{2}-16 x_{1}-12=24 x_{1} x_{2}+18 x_{1}-16 x_{2}-12$
$\Rightarrow-34 x_{1}=-34 x_{2} \quad \Rightarrow \quad x_{1}=x_{2}$
Hence, f is one-one function.

Onto:
Let $\quad y=\frac{4 x+3}{6 x-4} \quad \Rightarrow \quad 6 \mathrm{xy}-4 y=4 x+3$
$\Rightarrow 6 \mathrm{xy}-4 x=4 y+3 \quad \Rightarrow \quad x(6 y-4)=4 y+3$
$\Rightarrow \quad x=\frac{4 y+3}{6 y-4}$
$\Rightarrow \quad \forall y \in$ codomain $\exists x \in$ domain $\left[\because x \neq \frac{2}{3}\right] \Rightarrow f$ is onto function.
Thus, f is one-one onto function.
Also, $f^{-1}(x)=\frac{4 x+3}{6 x-4}$
Q.11. Let T be the set of all triangles in a plane with R as relation in T given by $R=$ $\left\{\left(T_{1}, T_{2}\right): T_{1} \cong T_{2}\right\}$. Show that R is an equivalence relation.

Ans. We have the relation, $R=\left\{\left(T_{1}, T_{2}\right): T_{1} \cong T_{2}\right\}$
Reflexivity: As Each triangle is congruent to itself,
i.e., $\quad T_{1} \cong T_{2} \quad \forall T_{1} \in T$

Thus, R is reflexive.
Symmetry: Let $T_{1}, T_{2} \in T$, such that

$$
\begin{array}{rll}
\left(T_{1}, T_{2}\right) \in R & \Rightarrow & T_{1} \cong T_{2} \\
T_{2} \cong T_{1} & \Rightarrow & \left(T_{2}, T_{1}\right) \in R
\end{array}
$$

i.e., R is symmetric.

Transitivity: Let $T_{1}, T_{2}, T_{3} \in T$, such that $\left(T_{1}, T_{2}\right) \in R$ and $\left(T_{2}, T_{3}\right) \in R$

$$
\begin{array}{llll}
\Rightarrow & T_{1} \cong T_{2} & \text { and } & T_{2} \cong T_{3} \\
\Rightarrow & T_{1} \cong T_{3} & \Rightarrow & \left(T_{1}, T_{3}\right) \in R
\end{array}
$$

i.e., R is transitive.

Hence, R is an equivalence relation.
Q.12. Let $f: W \rightarrow W$, be defined as $f(x)=x-1$, if x is odd and $f(x)=x+1$, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.

Ans. One-one:

Case I When x_{1}, x_{2} are even number

Now, $f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad x_{1}+1=x_{2}+1 \quad \Rightarrow \quad x_{1}=x_{2}$
i.e., f is one-one.

Case II When x_{1}, x_{2} are odd number
Now, $f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad x_{1}-1=x_{2}-1 \quad \Rightarrow \quad x_{1}=x_{2}$
i.e., f is one-one.

Case III When x_{1} is odd and, x_{2} is even number
Then, $x_{1} \neq x_{2}$. Also, in this case $f\left(x_{1}\right)$ is even and $f\left(x_{2}\right)$ is odd and so
$f\left(x_{1}\right) \neq f\left(x_{2}\right)$
i.e. $x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)$
i.e., f is one-one.

Case IV When x_{1} is even and, x_{2} is odd number
Similar as Case III, we can prove f is one-one.

Onto:

Given, $f(x)= \begin{cases}x-1, & \text { if } \text { xisodd } \\ x+1, & \text { if } \text { xiseven }\end{cases}$
\Rightarrow For every even number ' y ' of codomain \exists odd number $y+1$ in domain and for every odd number y of codomain there exists even number $y-1$ in domain.
i.e. f is onto function. Hence, f is one-one onto i.e., invertible function.

Inverse:

Let $f(x)=y$
Now, $y=x+1 \Rightarrow x=y-1$
And, $y=x-1 \Rightarrow x=y+1$
Therefore, required inverse function is given by

$$
f^{-1}(x)=\left\{\begin{array}{cl}
x+1, & \text { if } \text { xisodd } \\
x-1, & \text { if xiseven }
\end{array}\right.
$$

Q.13. If the function $f: R \rightarrow R$ be defined by $f(x)=2 x-3$ and $g: R \rightarrow R$ by $g(x)$ $=x^{3}+5$, then find the value of $(f \circ g)^{-1}(x)$.

Ans. Here $f: R \rightarrow R$ and $g: R \rightarrow R$ be two functions such that

$$
f(x)=2 x-3 \quad \text { and } \quad g(x)=x^{3}+5
$$

$\because \quad f$ and g both are bijective (one-one onto) function.
$\Rightarrow \quad f \circ g$ is also bijective function.
$\Rightarrow \quad f o g$ is invertible function.
Now, $f \circ g(x)=f\left\{(g(x)\} \quad \Rightarrow \quad f \circ g(x)=f\left(x^{3}+5\right)\right.$
$\Rightarrow \quad f \circ g(x)=2\left(x^{3}+5\right)-3 \Rightarrow f \circ g(x)=2 x^{3}+10-3$
$\Rightarrow \quad f \circ g(x)=2 x^{3}+7$
For inverse of fog (x)
Let

$$
\begin{aligned}
& \text { fog }(x)=y \\
& \Rightarrow \quad x=\operatorname{fog}^{-1}(y) \\
& \Rightarrow \quad y=2 x^{3}+7 \\
& \Rightarrow \quad 2 x^{3}=y-7 \\
& \Rightarrow \quad x^{3}=\frac{y-7}{2} \quad \Rightarrow \quad x=\left(\frac{y-7}{2}\right)^{\frac{1}{3}} \\
& \Rightarrow \quad \operatorname{fog}^{-1}(y)=\left(\frac{y-7}{2}\right)^{\frac{1}{3}} \quad \Rightarrow \quad \operatorname{fog}^{-1}(x)=\left(\frac{x-7}{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

(i)
Q.14. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$ is invertible, where S is the range of f. Hence, find inverse of f.

Ans.

Let $y \in S$, then $y=4 x^{2}+12 x+15$, for some $x \in N$

$$
\Rightarrow \quad y=(2 x+3)^{2}+6 \quad \Rightarrow \quad x=\frac{(\sqrt{y-6})-3}{2}, \quad \text { as } \quad y>6
$$

Let $g: S \rightarrow N$ is defined by $g(y)=\frac{(\sqrt{y-6})-3}{2}$
$\therefore \quad \operatorname{gof}(x)=g\left(4 x^{2}+12 x+15\right)=g\left((2 x+3)^{2}+6\right)=\frac{\sqrt{(2 x+3)^{2}}-3}{2}=x$
and $\quad f o g(y)=f\left(\frac{(\sqrt{y-6})-3}{2}\right)=\left[\frac{2[(\sqrt{y-6})-3]}{2}+3\right]^{2}+6=y$
Hence, fog $(y)=I_{S}$ and $\operatorname{gof}(x)=I_{N}$
f is invertible, $f^{-1}=g$.
Q.15. Let Z be the set of all integers and R be relation on Z defined as $R=\{(a, b)$ $: a, b \in Z$ and is divisible by 5$\}$. Prove that R is an equivalence relation.

Ans. Given $R=\{(a, b): a, b \in Z$ and $(a-b)$ is divisible by 5$\}$
Reflexivity: $\forall a \in Z$

$$
\begin{aligned}
& a-a=0 \text { is divisible by } 5 \\
\Rightarrow & (a, a) \in R \forall a \in Z
\end{aligned}
$$

Hence, R is reflexive.
Symmetry: Let $(a, b) \in R \quad \Rightarrow \quad a-b$ is divisible by 5

$$
\begin{aligned}
& \Rightarrow \quad-(b-a) \text { is divisible by } 5 \\
& \Rightarrow \quad(b-a) \text { is divisible by } 5 \\
& \Rightarrow \quad(b, a) \in R
\end{aligned}
$$

Hence, R is symmetric.

Transitivity: Let $(a, b),(b, c) \in R$
$\Rightarrow \quad(a-b)$ and $(b-c)$ are divisible by 5
$\Rightarrow \quad(a-b+b-c)$ is divisible by 5
$\Rightarrow \quad a-c$ is divisible by 5
$\Rightarrow \quad(a, c) \in R$
Hence, R is transitive.
Thus, R is an equivalence relation.
Q.16. Let $\mathrm{f}: \mathrm{R}-\left\{-\frac{1}{3}\right\} \rightarrow \mathrm{R}$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. Show that, in $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ Range of f, f is one-one and onto. Hence find f^{-1} :
Range $f \rightarrow R-\left\{-\frac{4}{3}\right\}$.
Ans.

Let $x_{1}, x_{2} \in R-\left\{-\frac{4}{3}\right\}$
Now $f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad \frac{4 x_{1}}{3 x_{1}+4}=\frac{4 x_{2}}{3 x_{2}+4}$
$\Rightarrow 12 x_{1} x_{2}+16 x_{1}=12 x_{1} x_{2}+16 x_{2}$
$\Rightarrow \quad 16 x_{1}=16 x_{2}$
$\Rightarrow \quad x_{1}=x_{2}$
Hence f is one-one function

Since, co-domain f is range of f
So, $f:\left|\mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow\right| \mathrm{R}$ in one-one onto function.
For inverse function
Let $f(x)=y$
$\Rightarrow \quad \frac{4 x}{3 x+4}=y \quad \Rightarrow \quad 3 x y+4 y=4 x$
$\Rightarrow \quad 4 x-3 x y=4 y$
$\Rightarrow \quad x(4-3 y)=4 y$
$\Rightarrow \quad x=\frac{4 y}{4-3 y}$
Therefore, f^{-1} : Range of $f \rightarrow R-\{-4 / 3\}$ is $f^{-1}(y)=\frac{4 y}{4-3 y}$
Q.17. Let $A=R \times R$ and * be the binary operation on A defined by $(a, b)^{*}(c, d)=$ $(a+c, b+d)$. Show that * is commutative and associative. Find the identity element for * on A, if any.

Ans. For Commutativity

Let $(a, b),(c, d) \in R \times R$

$$
\begin{aligned}
(a, b)^{*}(c, d) & =(a+c, b+d) \text { and }(c, d) *(a, b)=(c+a, d+b) \\
& =(a+c, b+d) \quad[\because \text { Commutative law holds for real number }] \\
\Rightarrow \quad(a, b)^{*}(c, d) & =(c, d)^{*}(a, b)
\end{aligned}
$$

For Associativity

Let $(a, b),(c, d)$ and $(e, f) \in R \times R$
$\left((a, b)^{*}(c, d)\right)^{*}(e, f)=(a+c, b+d)^{*}(e, f)=(a+c+e, b+d+f)$
$(a, b)^{*}\left((c, d)^{*}(e, f)\right)=(a, b)^{*}(c+e, d+f)=(a+c+e, b+d+f)$
$\left.\left((a, b)^{*}(c, d)\right)^{*}(e, f)\right)=(a, b)^{*}\left((c \cdot d)^{*}(e, f)\right)$
$\therefore \quad$ * is associative
Let $\left(e_{1}, e_{2}\right)$ be identity

$$
\begin{aligned}
& \Rightarrow \quad(a, b)^{*}\left(e_{1}, e_{2}\right)=(a, b) \quad \Rightarrow \quad\left(a+e_{1}, b+e_{2}\right)=(a, b) \\
& \Rightarrow \quad a+e_{1}=a \text { and } b+e_{2}=b \quad \Rightarrow \quad e_{1}=0, e_{2}=0
\end{aligned}
$$

$(0,0) \in R \times R$ is the identity element.
Q.18. Let $A=Q \times Q$, where Q is the set of all rational numbers, and * be a binary operation on A defined by $(a, b)^{*}(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in A$. Then find
Q. The identity element of * in A.

Ans. (i) Let (x, y) be the identity element in A.
Now, $(a, b)^{*}(x, y)=(a, b)=(x, y)^{*}(a, b) \forall(a, b) \in A$
$\Rightarrow \quad(a x, b+a y)=(a, b)=(x a, y+b x)$
Equating corresponding terms, we get
$\Rightarrow \quad a x=a, b+a y=b$ or $a=x a, b=y+b x$,
$\Rightarrow \quad x=1$ and $y=0$
Hence, $(1,0)$ is the identity element in A.
Q. (ii) Invertible elements of A, and hence write the inverse of elements $(5,3)$ and $\left(\frac{1}{2}, 4\right)$

Ans.
(ii) Let (a, b) be an invertible element in A and let ($c, d)$ be its inverse in A.

$$
\begin{aligned}
& \text { Now, }(a, b) *(c, d)=(1,0)=(c, d) *(a, b) \\
& \Rightarrow \quad(a c, b+a d)=(1,0)=(c a, d+b c) \\
& \Rightarrow \quad a c=1, b+a d=0 \text { or } 1=c a, 0=d+b c \quad \text { [By equating coefficients] } \\
& \Rightarrow \quad c=\frac{1}{a} \text { and } d=\frac{b}{a} \text { where, } a \neq 0
\end{aligned}
$$

Therefore, all $(a, b) \in A$ is an invertible element of A if $a \neq 0$, and inverse of (a, b) is $\left(\frac{1}{a},-\frac{b}{a}\right)$.
For inverse of $(5,3)$
Inverse of $(5,3)=\left(\frac{1}{5},-\frac{3}{5}\right)$
$\left(\because\right.$ Inverse of $\left.(a, b)=\frac{1}{a}, \frac{-b}{a}\right)$

For inverse of $\left(\frac{1}{2}, 4\right)$
Inverse of $\left(\frac{1}{2}, 4\right)=(2,-8)$

Long Answer Questions-I (OIQ)

[4 Mark]

Q.1. Let $f: R \rightarrow\left[0, \frac{\pi}{2}\right)$ defined by $f(x)=\tan ^{-1}\left(x^{2}+x+a\right)$, then find the value or set of values of ' a ' for which f is onto.

Ans.

Given function is $f: R \rightarrow\left[0, \frac{\pi}{2}\right)$.
Since, f is onto \Rightarrow Range of f is $\left[0, \frac{\pi}{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad 0 \leq f(x)<\frac{\pi}{2} \quad \Rightarrow \quad 0 \leq \tan ^{-1}\left(x^{2}+x+a\right)<\frac{\pi}{2} \\
& \Rightarrow \quad \tan 0 \leq x^{2}+x+a<\tan \frac{\pi}{2} \quad \Rightarrow \quad 0 \leq x^{2}+x+a<\infty
\end{aligned}
$$

It is possible only when $a=\frac{1}{4}$
As $\quad x^{2}+x+\frac{1}{4}=x^{2}+2 x \times \frac{1}{2}+\left(\frac{1}{2}\right)^{2}$

$$
=\left(x+\frac{1}{2}\right)^{2} \quad \text { and } 0 \leq\left(x+\frac{1}{2}\right)^{2}<\infty
$$

Hence, the required value of $a=\frac{1}{4}$.
Q.2. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=\boldsymbol{x}^{2}-\boldsymbol{x}, \boldsymbol{x} \in \boldsymbol{A}$ and, ${ }^{g(x)=2\left|x-\frac{1}{2}\right|-1 x} \in \boldsymbol{A}$. Are \boldsymbol{f} and \boldsymbol{g} equal? Justify your answer.

Ans.
For two functions $f: A \rightarrow B$ and $g: A \rightarrow B$ to be equal, $f(a)=g(a) \forall a \in A$ and $R_{f}=R_{g}$.
Here, we have $f(x)=x^{2}-x$

$$
g(x)=2\left|x-\frac{1}{2}\right|-1 \quad[x \in A=\{-1,0,1,2\}]
$$

We see that, $f(-1)=(-1)^{2}-(-1)=2$

$$
g(-1)=2\left|(-1)-\frac{1}{2}\right|-1=2 \times \frac{3}{2}-1=3-1=2
$$

So, $\quad f(-1)=g(-1)$
Again, we check that, $f(0)=g(0)=0, f(1)=g(1)=0$ and $f(2)=g(2)=2$.
Hence, f and g are equal functions.
Q.3. Let $A=\{x \in R:-1 \leq x \leq 1\}=B$. Show that $f: A \rightarrow B$ given by $f(x)=x|x|$ is a bijection.

Ans. We have,

$$
f(x)=x|x|=\left\{\begin{array}{cc}
x^{2}, & \text { if } x \geq 0 \\
-x^{2}, & \text { if } x<0
\end{array}\right.
$$

For $x \geq 0, f(x)=x^{2}$ represents a parabola opening upward and for $x<0, f(x)=-$ x_{2} represents a parabola opening downward.

So, the graph of $f(x)$ is as shown in figure.
Since any line parallel to x-axis, will cut the graph at only one point, so f is one-one. Also, any line parallel to y-axis will cut the graph, so f is onto.

Thus, it is evident from the graph of $f(x)$ that f is one-one and onto.
Q.4. If $f(x)=\sqrt{x}(x \geq 0)$ and $g(x)=x^{2}-1$ are two real functions, then find $f \circ g$ and $g o f$ and check whether $f \circ g=g o f$.

Ans.

The given functions are $f(x)=\sqrt{x}, x \geq 0 \quad$ and $\quad g(x)=x^{2}-1$
We have, domain of $f=[0, \infty)$ and range of $f=[0, \infty)$

$$
\text { domain of } g=R \text { and range of } g=[-1, \infty)
$$

Computation of gof. We observe that range of $f=[0, \infty) \subseteq$ domain of g
$\therefore \quad$ gof exists and gof $:[0, \infty) \rightarrow R$
Also, $\operatorname{gof}(x)=g(f(x))=g(\sqrt{x}))=(\sqrt{x})^{2}-1=x-1$
Thus, g of: $[0, \infty) \rightarrow R$ is defined as $\operatorname{gof}(x)=x-1$

Computation of fog. We observe that range of $g=[-1, \infty) \subseteq$ domain of f.

$$
\begin{array}{ll}
\therefore & \text { Domain of fog }=\{x: x \in \text { domain of } g \text { and } g(x) \in \text { domain of } f\} \\
\Rightarrow & \text { Domain of } f \circ g=\{x: x \in R \text { and } g(x) \in[0, \infty)\} \\
\Rightarrow & \text { Domain of } f \circ g=\left\{x: x \in R \text { and } x^{2}-1 \in[0, \infty)\right\} \\
\Rightarrow & \text { Domain of } f \circ g=\left\{x: x \in R \text { and } x^{2}-1 \geq 0\right\} \\
& \text { Domain of } f \circ g=\{x: x \in R \text { and } x \leq-1 \text { or } x \geq 1\} \\
\therefore & \text { Domain of } \text { fog }=x: x \in(-\infty,-1] \cup[1, \infty)
\end{array}
$$

Also, fog $(x)=f(g(x))=f\left(x^{2}-1\right)=\sqrt{x^{2}-1}$

Thus, fog : $(-\infty,-1] \cup[1, \infty) \rightarrow R$ is defined as $f \circ g(x)=\sqrt{x^{2}-1}$.
We find that fog and gof have distinct domains. Also, their formulae are not same.

Hence, \quad fog \neq gof

Q.5. Let X be a non-empty set and * be a binary operation on $P(X)$ (the power set of set X) defined by

$$
A^{*} B=A \cup B \text { for all } A, B \in P(X)
$$

Prove that '*' is both commutative and associative on $P(X)$. Find the identity element with respect to '*' on $P(X)$. Also, show that $\Phi \in P(X)$ is the only invertible element of $P(X)$.

Ans. As we studied in earlier class that for sets A, B, C
$A \cup B=B \cup A$ and $(A \cup B) \cup C=A \cup(B \cup C)$
Therefore, for any $A, B, C \in P(X)$, we have
$A \cup B=B \cup A$ and $(A \cup B) \cup C=A \cup(B \cup C)$
$\Rightarrow \quad A^{*} B=B^{*} A$ and $\left(A^{*} B\right)^{*} C=A^{*}\left(B^{*} C\right)$
Thus, '*' is both commutative and associative on $P(X)$
Now, $A \cup \Phi=A=\Phi \cup A$ for all $A \in P(X)$

$$
A^{*} \Phi=A=\Phi^{*} A \text { for all } A \in P(X)
$$

So, Φ is the identity element for '*' on $P(X)$. Let $A \in P(X)$ be an invertible element. Then, there exists $S \in P(X)$ such that

$$
\begin{aligned}
& A * S=\Phi=S^{*} A \\
\Rightarrow \quad & A \cup S=\Phi=S \cup A \quad \Rightarrow \quad S=\Phi=A
\end{aligned}
$$

Hence, Φ is the only invertible element.
Q.6. Let $g(x)=1+\boldsymbol{x}-[\boldsymbol{x}]$ and $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}1, & x>0\end{array}\right.$

Ans.

$$
f \circ g(x)=f(g(x))=f(1+x-[x])=f(1+\{x\})=1
$$

$$
\text { Here, } \quad\{x\}=x-[x]
$$

Obviously, $\quad 0 \leq x-[x]<1$
$\Rightarrow \quad 0 \leq\{x\}<1$
$\Rightarrow \quad 1+\{x\} \geq 1$
$\therefore \quad$ fog $(x)=f(1+\{x\})=1$
$\left[\begin{array}{ll}\text { Note: } & \text { Symbol }\{x\} \text { denotes the partial part or decimal part of } x . \\ & \text { For example, }\{4.25\}=0.25,\{4\}=0,\{-3.45\}=0.45 \\ & \text { In this way } x=x-[x] \quad \Rightarrow \quad 0 \leq\{x\}<1\end{array}\right]$

[6 Mark]

Q.1. If the operation '*' on $Q-\{1\}$, defined by $a{ }^{*} b=a+b-a b$ for all $a, b \in Q-\{1\}$, then
(i) Is '*’ commutative?
(ii) Is '*' associative?
(iii) Find the identity element.
(iv) Find the inverse of ' a ' for each $a \in Q-\{1\}$

Ans. We have, $a^{*} b=a+b-a b \forall a, b \in Q-\{1\}$, then
(i) Commutative: Let $a, b \in Q-\{1\}$

Now, $a^{*} b=a+b-a b$
$b^{*} a=b+a-b a=a+b-a b \quad[\because$ Commutative law holds for $+\& \times]$
Hence, $a^{*} b=b^{*} a$
i.e., ' ${ }^{\prime}$ ' is commutative.
(ii) Associative: Let $a, b, c \in Q-\{1\}$

Now, $\left(a^{*} b\right)$ * $c=(a+b-a b){ }^{*} c=a+b-a b+c-a c-b c+a b c$
$a^{*}\left(b^{*} c\right)=a^{*}(b+c-b c)=a+b+c-b c-a b-a c+a b c$
i.e., $\left(a^{*} b\right){ }^{*} c=a^{*}\left(b^{*} c\right)$

Hence, '*' is associative.
(iii) Identity: Let e be the identity element.

Then, $\forall a \in Q-\{1\}$, we have

$$
\begin{array}{ll}
& a^{*} e=a \quad \Rightarrow \quad a+e-a e=a \\
\Rightarrow & (1-a) e=0 \\
\Rightarrow & e=0 \in Q-\{1\} \quad[\because a \neq 1 \Rightarrow 1-a \neq 0] \\
\text { Now, } & a^{*} 0=a+0-a \times 0=a \\
& 0 * a=0+a-0 \times a=a
\end{array}
$$

Thus, 0 is the identity element in $Q-\{1\}$.
(iv) Inverse: Let b be the inverse element of a, for each $a \in Q-\{1\}$.

$$
\begin{array}{ll}
\text { Then } & a^{*} b=e=0 \Rightarrow a * b=0 \\
\Rightarrow & a+b-a b=0 \Rightarrow a b-b=a \\
\Rightarrow & b(a-1)=a \\
\Rightarrow & b=\frac{a}{a-1} \in Q-\{1\}
\end{array}
$$

Q.2. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}+x$ is a bijection.

Ans.

We have the function $f: R \rightarrow R$ given by $f(x)=x^{3}+x$.
Injectivity: Let $x, y \in R$ such that $f(x)=f(y)$

$$
\begin{array}{lr}
\Rightarrow & x^{3}+x=y^{3}+y \\
\Rightarrow & x^{3}-y^{3}+x-y=0 \\
\Rightarrow & (x-y)\left(x^{2}+x y+y^{2}\right)+(x-y)=0
\end{array}
$$

$$
\left[\begin{array}{cc}
\because & x^{2}+\mathrm{xy}+y^{2} \geq 0 \text { for all } x, y \in R \\
\because & x^{2}+\mathrm{xy}+y^{2}+1 \geq 1 \text { for all } x, y \in R
\end{array}\right]
$$

$$
\Rightarrow \quad(x-y)\left(x^{2}+x y+y^{2}+1\right)=0
$$

$$
\Rightarrow \quad x-y=0 \quad \Rightarrow \quad x=y
$$

Thus, $f(x)=f(y) \quad \Rightarrow \quad x=y$ for all $x, y \in R$.
So, f is injective.

Surjectivity: Let y be an arbitrary element of R such that $f(x)=y$
$\Rightarrow \quad x^{3}+x=y \quad \Rightarrow \quad x^{3}+x-y=0$
For every value of y, the equation $x^{3}+x-y=0$ has a real root a.
Therefore, $a^{3}+a-y=0 \quad[\because$ An odd degree equation has at least one real root.]

$$
a^{3}+a=y \Rightarrow f(a)=y
$$

Thus, for every $y \in R$ there exists $a \in R$ such that

$$
f(a)=y
$$

So, f is surjective.
Hence, $f: R \rightarrow R$ is a bijection.
Q.3. Let $A=R-\{3\}$ and $B=R-\left\{\frac{2}{3}\right\}$. If $f: A \rightarrow B: f(x)=\frac{2 x-4}{3 x-9}$, then prove that f is a bijective function.

Ans.

One-one: Let x_{1}, x_{2} be any two elements of A, then

$$
\begin{align*}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Rightarrow \frac{2 x_{1}-4}{3 x_{1}-9}=\frac{2 x_{2}-4}{3 x_{2}-9} \\
& \Rightarrow 6 x_{1} x_{2}-18 x_{1}-12 x_{2}+36=6 x_{1} x_{2}-12 x_{1}-18 x_{2}+36 \\
& \Rightarrow-18 x_{1}-12 x_{2}=-12 x_{1}-18 x_{2} \\
& \Rightarrow-18 x_{1}+12 x_{1}=-18 x_{2}+12 x_{2} \\
& \Rightarrow-6 x_{1}=-6 x_{2} \Rightarrow x_{1}=x_{2} \tag{i}
\end{align*}
$$

Hence, f is one-one function.

Onto: Let $\quad y=\frac{2 x-4}{3 x-9} \quad \Rightarrow \quad 3 x y-9 y=2 x-4$

$$
\begin{aligned}
& \Rightarrow \quad 3 x y-2 x=9 y-4 \quad \Rightarrow \quad x(3 y-2)=9 y-4 \\
& \Rightarrow \quad x=\frac{9 y-4}{3 y-2}
\end{aligned}
$$

From above, it is obvious that $\forall y \neq \frac{2}{3}$ i.e. $\forall y \in B, \exists x \in A$

Hence, f is onto function
(i) and (ii) $\Rightarrow f$ is one-one onto i.e. bijective function.
Q.4. Given a non-empty set X. Let ${ }^{*}: P(X) \times P(X) \rightarrow P(X)$ defined as

$$
A^{*} B=(A-B) \cup(B-A) \forall A, B \in P(X)
$$

Show that the empty set Φ is the identity for the operation * and all the elements A of $P(X)$ are invertible with $A^{-1}=A$.

Ans. Here operation '*‘ is defined as

* $: P(X) \times P(X) \rightarrow P(X)$ such that $A^{*} B=(A-B) \cup(B-A) \forall A, B \in P(X)$

Existence of identity:

Let $E \in P(X)$ be identity for '*‘ in set $P(X)$

$$
\begin{array}{ll}
\Rightarrow & A^{*} E=A=E^{*} A \\
\Rightarrow & (A-E) \cup(E-A)=A=(E-A) \cup(A-E)
\end{array}
$$

It is possible only when $E=\Phi$, Because

$$
(A-\Phi) \cup(\Phi-A)=A \cup \Phi=A \quad \text { and } \quad(\Phi-A) \cup(A-\Phi)=\Phi \cup A=A
$$

Hence, Φ is identity element.

Existence of inverse:

Let A^{-1} be the inverse of A for '*‘ on set $P(X)$.

$$
\begin{array}{ll}
\therefore & A^{*} A^{-1}=\Phi=A^{-1 *} A \quad \Rightarrow \\
\Rightarrow & A-A^{-1}=\Phi=A^{-1}-A=\Phi \quad \Rightarrow \\
\Rightarrow & \left.A \subset A^{-1}\right) \cup\left(A^{-1}-A\right) \text { and } A^{-1} \subset A \\
\Rightarrow & A=A^{-1}
\end{array}
$$

Hence, each element of $P(X)$ is inverse of itself.
Q.5. Show that the relation R on the set A of points in a plane, given by
$R=\{(P, Q)$: Distance of the point P from the origin = Distance of point Q from origin\} is an equivalence relation.

Further, show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.

Ans. If O be the origin, then

$$
R=\{(P, Q): O P=O Q\}
$$

Reflexivity: \forall point $P \in A$

$$
O P=O P \quad \Rightarrow \quad(P, P) \in R
$$

i.e., R is reflexive.

Symmetry: Let $P, Q \in A$, such that $(P, Q) \in R$

$$
O P=O Q \quad \Rightarrow \quad O Q=O P \quad \Rightarrow \quad(Q, P) \in R
$$

i.e., R is symmetric.

Transitivity: Let $P, Q, S \in A$, such that $(P, Q) \in R$ and $(Q, S) \in R$

$$
O P=O Q \quad \text { and } \quad O Q=O S
$$

$$
O P=O S \quad \Rightarrow \quad(P, S) \in R
$$

i.e., R is transitive.

Now we have R is reflexive, symmetric and transitive.
Therefore, R is an equivalence relation.
Let $P, Q, R \ldots$ be points in the set A, such that

$$
\left.\begin{array}{ll}
& (P, Q),(P, R) \ldots \in R \\
\Rightarrow & O P=O Q ; O P=O R ; \ldots \\
\Rightarrow & O P=O Q=O R=\ldots
\end{array} \quad \text { [where } O \text { is origin }\right]
$$

i.e., All points $P, Q, R \ldots \in A$, which are related to P are equidistant from origin ' O '.

Hence, set of all points of A related to P is the circle passing through P, having origin as centre.

